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We formulate the propagation of strings in background fields, including the effects of metric,
antisymmetric tensor, and dilaton expectation values, as well as gauge field backgrounds in the
case of heterotic strings. The inclusion of background fermion fields is sketched. The equations of
motion of all these fields are shown to be the consequence of (super) conformal invariance of the
string.

1. Introduction

Supersymmetric string theories are promising candidates for a unified theory of
the physical world. They offer the possibility of explaining the low-energy spectrum
of chiral matter fields interacting through gauge and gravitational forces [1] in a
framework free of perturbative ultraviolet infinities [2]. The high-energy spectrum is
almost uniquely determined by requiring a consistent interplay between quantum
mechanics and the reparametrization invariance of the string. Nevertheless, our
understanding of the string theory is inadequate: at the moment we only know how
to calculate in perturbation theory, and procedures for multiloop calculations are
only now being developed. Since local gauge and coordinate symmetries are not
manifest in the Feynman rules, their origin and meaning in string theory are still
mysterious. A full understanding will have to await the discovery of the gauge-
invariant, second-quantized string action. In order to help bridge this gap in our
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knowledge it would be useful to formulate string perturbation theory in a general
background field. We would then derive insight from the gauge-covariance proper-
ties of the background. There are two perspectives on this approach—one can either
consider it as providing a background on which the full string evolves, or think of
integrating out the string modes in a background in order to derive an effective
action at low energies. Both viewpoints are valid provided the string theory is weakly
coupled. In this work we outline the background field formulation, presenting details
in a future communication [3].

The consistency of string dynamics determines the background field configura-
tion: by background fields, we mean the spacetime manifold I together with the
background matter fields in it. Here consistency requires that the quantum string
theory maintains its classical conformal invariance [4], since conformal transforma-
tions are part of the two-dimensional reparametrization group [5]. We will show that
conformal invariance in the presence of background fields determines the back-
ground-field equations of motion. We do the calculations in some detail for bosonic
background fields: the metric G,,, antisymmetric tensor gauge potential B,,, and
dilaton @, as well as the vector potential A7 in the case of heterotic strings [6]. We
will find that all of the equations of motion of these fields are consequences of
conformal invariance in the string theory. We also sketch the inclusion of back-
grounds for the fermionic partners of these fields; their equations of motion follow
from superconformal invariance (i.e. world-sheet conformal supersymmetry) of the
strong fields.

v

2. The bosonic string

The bosonic string propagating in a non-trivial background is described by a
generalized nonlinear sigma model defined on a two-dimensional surface with
intrinsic metric y”". For consistency, the model should be conformally invariant, so
that the longitudinal modes of the string decouple from physical amplitudes [7].
Therefore we can only admit renormalizable interactions and, barring the discovery
of a consistent quantization of the Liouville theory [8], the sigma model must be
invariant under Weyl rescalings (y™" — A(§)y™") of the two-dimensional metric.

The most general classical action satisfying these criteria is

Sy = — [ {3y G, (X),,X"0, X"+ 5¢""B,,(X)3,,X*3, X" |
nism Ira’ 2VYY ny m n 2€ wy m n
where X*(§), p=1,..., D maps the string into a D-dimensional spacetime I and

the dimensional coupling constant «’ turns out to be the inverse string tension. The
“coupling constant” functions G,, and B,, can be identified as the background
spacetime graviton and antisymmetric tensor fields in which the string is propagat-
ing. Since these fields are massless in the closed string theory, it is reasonable to



C.G. Callan et al. / Strings in background fields 595

allow them to have background expectation values. It is no accident that the
background fields couple to the operators which are, in the string theory, the vertex
operators for emitting precisely those fields.

The closed string has one other massless excitation, namely the dilaton, and we
should be able to give it a background expectation value as well. How to do this is a
bit mysterious since all the renormalizable and Weyl-invariant sigma model terms
have been used up! Fradkin and Tseytlin [9] have suggested that one should add to
S the renormalizable, but not Weyl invariant, term

nism

1
Su=— [a% Y RO®(X),
dil 477-[ & Y ( )

where R® is the scalar curvature of the two-dimensional manifold and @( X) is the
background dilaton field in the spacetime 9. Since Weyl invariance is so crucial to
the consistency of string theory, it seems mad to introduce terms which explicitly
break it. Nevertheless, we shall show that, properly treated, Sy, does the right thing.

It is essential for string consistency that, as a quantum field theory, the sigma
model be locally scale invariant. This is equivalent to the requirement that the
two-dimensional world-sheet stress-energy tensor of the theory be traceless. In our
model, local scale invariance is broken explicitly by S, and implicitly by anomalies.
The general structure of the trace is

20T = By RO+ BS v Y™, X*0, X" + BEem"d, X439, X,

where 8%, B¢ and B are local functionals of the coupling functions G,,, B,, and &.

The quantities of interest can be calculated in perturbation theory by a varlety of
methods. We choose the conformal gauge in which y,,, = €%°§,, on the world sheet,

mn
and work in complex coordinates z, z(8,;=4.,=1,8,, = 8. = 0). The dimensional
continuation of the action is

S, = fd e 290G X*IX" + B, dX X"+ o/(~4330)D) .

4ma’
As usual, we perform all the index algebra in two dimensions and continue the
volume element to d dimensions. The trace of the stress-energy tensor is the same
thing as the variation of the effective action with respect to o. Using (two-dimen-
sional) background-field perturbation theory, we have calculated the o-dependence
of the effective action and have found the following results:

B? 1D——26 (
« o a8n’ @ l6n?

4vd) —4v2d - R+ LH?} +0(a),
=R, —{H)NH,, +2vyv,0+0(a),

ny

BL=viH) - 2(v\@)H), +O(a’).
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Here H,,\=3V(,B,,, is the antisymmetric tensor field strength, and R, is the
Ricci tensor. The leading term in 8% was discovered by Polyakov [8] (the 26-arises
from the conformal gauge Faddeev-Popov determinant), the R,, term was discussed
by Friedan and others (4], and the inclusion of the H-field torsion has been
considered by Witten [10] and Curtright and Zachos [11]. It 1s important to note that
since the coefficient of R®® is smaller by a factor a’ (the loop-expansion parame-
ter) than the other couplings, its classical contribution is of the same order as the
one-loop quantum contributions of the G,, and B,, couplings. This 1s because RO
is scale non-invariant at the classical level while the other couplings only lose scale
invariance at the quantum level.

The vanishing of 8¢ and 82 in T, is sufficient to guarantee the existence of a
Virasoro algebra [12] generated by the trace-free parts, T,, and T.., of the stress
tensor:

(7., T =T+ T,,)8(z = w) + 358 7 (2 = w),

T ]=%(TEE+TW»W')6/(Z - w)+11—_7c8 W(Z— w),

w

220 Tww] =0.

The Schwinger term, c, in this algebra is identical to our function 8% and the theory
is fully conformally invariant only when B8® vanishes as well as B¢ and B%. The
condition that all three “beta functions” vanish amounts to a set of equations of
motion for the background fields. The rest of this section will be devoted to showing
that these equations are a sensible generalization of the classical equations for the
graviton, dilaton and antisymmetric tensor fields.

First we must solve a little puzzle: When B¢“=p8%=0 we have a conformal
algebra with Schwinger term ¢ = 8?. The algebra certainly implies that ¢ is a
c-number, but % appears to be operator-valued starting with its O(a’®) term.
However, the Bianchi identities applied to 8¢ and 8% show that

0=v*(R,, —H2 +2v,v,0)
= VV(_:)‘(V@)2+2VZ(I)+ iR - élez)’

which is to say that 8% is constant in 9L, or a c-number! Once 82 is known to be a
c-number, it can be set equal to zero. We expect that this result, namely that the @
equation is a consequence of the B and G equations plus the Bianchi identities,
holds to all orders in o’

With this in mind, we can recast the string consistency equations in a form which
makes clear that they are just conventional field equations in W, provided that
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D = 26:
B(D
= RO 2 — matter
0=BS+ 87 G#V;,——(R#,—gcwk)—qy ter
ZB(D 1urpG 2 2 1 2
0=28xw 'a—’+§G W,=2(V¢)—V(D—EH,
0= BB = V}\H;Z\V - 2( V)\‘p)H;L)\v >
where

T’;r:xatterzi[]_lﬂzv _ %GFVHZ] - 2V}LVV¢ + ZGIL,,V2¢ - 2G,“,(V¢)2

The first equation is recognizable as the Einstein equation and the second two are
the matter equations of motion which guarantee conservation of the (spacetime)
matter stress-energy tensor. These equations can be derived by varying the action
[9,13]

[d2xvG e 2¢{ R+ 4(vo)’ - L)
with respect to its three field variables. The peculiar @-dependence of this action
exposes the fact that e?? is the string loop-expansion parameter: The constant mode
of the dilaton field multiplies the Euler characteristic, (1/47)/d?¢/y R, of the

world sheet in the sigma-model action. Thus an s-loop contribution to the func-
tional integral, which comes from a world sheet with » handles, is proportional to

872(1 7n)d5.
After a conformal rescaling of G by
40 /(D-2)
G,w —-e GM .
where D is the dimension of 91) the equations take on the more familiar form
q
—_ 1 . atter
0=(R,,~ G, R) — T,mauer,
— 2 1 .—8¢/(D-2 2
O=v"Pd+ ¢ € /A 'H s
- —80/(D-2) A
0 V,‘(e HW),

where

tter __ L 2 _ 1 2] . —-8¢/(D-2
Tmaver = L{H2 ~ LG, H?|e 30/(P-2 4

v

D-2 [(V,}D)(vp) - %Gﬂy(vqj)z] '
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These equations can be derived by varying an action [9]
deX\/—{R _ (V@) 1 8e/(D- z)Hz}

which is essentially identical to the bosomic part of the Chapline-Manton [14]
supergravity action. In particular, this makes clear that the constant mode of the
dilaton field has the effect of rescaling the gravitational coupling constant.

So, to one-loop order, the string consistency equations are nothing but the
classical field equations for the massless modes of the string, including the elusive
dilaton field! Acceptable backgrounds for string physics are then just solutions of
the classical field equations. At two-loop order, we will obtain contributions to the
equations of motion and effective action which are of order &’R? etc. and which
represent short-distance corrections to the classical equations. We will have more to
say about higher-loop corrections later on. For the moment let us note that the
effective action, calculated to all orders, simply summarizes the expansion in powers
of energy of all the no-string-loop S-matrix elements involving the massless string
excitations. This puts some non-trivial restrictions (having to do with the fact that
the string S-matrix has no negative metric or other unphysical contributions [15]) on
the terms which can actually appear in the action. Whether a no-string-loop
computation is accurate enough for any given application depends on the size of the
string loop-coupling constant, e®. Obviously the dynamics of the dilaton field will
play a crucial role in determining the physics of the full string theory.

Conformal symmetry provides another means of establishing the link between the
string and the background, considering the sigma model couplings, G, B and @, to
be a background for the full string theory. The effective action is just the generating
functional for S-matrix elements. Consider for example the metric coupling: an
infinitesimal variation of the background metric produces the correlation functions

Ay={V ...V},
V.= faG;;)aXMEX”,

which are just the curved space generalizations of string graviton amplitudes. The
Virasoro algebra generated by 7,, and T;, serve to distinguish physical from
unphysical graviton vertex operators just as in flat space (recall that in flat space,
8G) = {(kye* X with physical vertices satisfying k*=0=k¢,,) [7]. Thus, al-
though one might have thought that there were two gravitons in the theory, namely
fluctuations of the background and fluctuations of the string, they really are one and
the same. One can therefore think of the metric coupling as a “string condensate”.
Of course similar remarks apply to the antisymmetric tensor and the dilaton. It is in
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fact an amusing exercise to find the dilaton operator in a non-trivial background,
since it mixes with the graviton coupling even in flat space.

At the string theory tree level (i.e. spherical world-sheet topology), conformal
invariance also implies that the sigma model is a solution of the string equations of
motion. The global conformal group SL(2,C) is a symmetry of the correlation
functions even before integrating over the location of the vertices on the world sheet.
This means that the one-point function

< f 8G”V8X“5X”>

must be scale invariant since scale transformations are part of the global conformal
group. However only the identity operator is scale invariant, so the one-point
function must vanish—i.e. the equations of motion are satisfied (this argument was
first presented by Candelas, Horowitz, Strominger, and Witten in ref. [4]). This need
not be true on surfaces with handles, where dilations are not a symmetry; in other
words, there can be quantum corrections to the equations of motion. One must find
some other argument, perhaps using spacetime supersymmetry (see below), that the
tree-level vacuum remains stable.

Since our discussion has implicitly been restricted to closed strings, we have had
nothing to say about gauge bosons. If we consider open strings as well, then the
massless excitations of the string will include gauge bosons and couplings to
background gauge fields can be introduced by adding to the sigma-model action line
integrals about the string boundary of the type

dXxe
¢A” P ds.

There are severe technical obstacles to calculating the effect of such couplings on the
trace of the world-sheet stress-energy tensor. They have to do with the fact that the
contribution of A, to the metric equation of motion comes from vanishingly small
boundaries which are, in effect, joining an open onto a closed string topology. Since
it is difficult to regulate the associated singularities, we prefer to restrict our
attention to closed strings and eventually introduce gauge fields through the hetero-
tic string mechanism.

3. Supersymmetry and higher-loop corrections

We now consider sigma models with N =1 world-sheet supersymmetry. These
theories describe type 11 superstrings [16] in curved backgrounds, since a projection
onto even world-sheet fermion number renders them spacetime supersymmetric
[17,18]. As we shall see, in these models the higher-loop corrections to the beta
functions are particularly simple. Since the use of complex superspace coordinates
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facilitates the analysis, we introduce the superpartners 8,8 of the commuting
complex coordinates z, 7. In this basis, the only non-vanishing y-matrix elements are
Yéo = vi; = 1; the superspace covariant derivatives simplify to

D=3,+89, D=03;+00

tal

and the supersymmetry algebra is just D*=4_ and D2 = 4..
The supersymmetric version of the dimensionally continued bosonic sigma model
is obtained through the correspondence rules

Xt > X*(z,2.0,0),
o(z,z2)>0(z,2,6.,0),
d,,0.-D,D,

d?z —» d%*zd%.

The result is

1
e’

[ d?2d%0¢“">2{G,, DX*DX" + B,,DX"DX" + a’(~4DDo) @} .

Sya1 =

Perturbative background field calculations may be done with this action by perform-
ing a normal coordinate expansion and then using superspace Feynman rules [19].

The requirement to be met in order to build a string theory is that the effective
action be sigma-independent, or that the trace of the super stress-energy tensor
vanish. By the supersymmetric generalization of the arguments of the previous
section, we know that the general form of this trace will be

2aTy;= B‘p(DBo) + ,B’g‘DX”ﬁX" + BﬁDX"BX",

where the distinction between B¢ and B is that one is symmetric and the other is
antisymmetric in the indices. The various beta functions can be computed, as in the
previous section, as perturbative expansions in powers of «’. Setting the beta
functions equal to zero produces the equations of motion for the background fields.

There are some simplifications in the beta functions which occur on passing to the
supersymmetric model and which will be important to us. In the first place,
the presence of fermions does not affect the one-loop beta functions. Further, in the
sigma model with only G,, couplings, it is known that the two-loop [19], and
strongly believed that all higher-loop [20] corrections to B¢ vanish, so that a
one-loop solution to the equations of motion is probably a solution to all orders!
Our calculations indicate that the two-loop corrections to 8¢ and 87 continue to
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vanish even when the dilaton and the antisymmetric tensor fields are included* [21].
However, we know by examining a special case, namely the supersymmetric non-
linear sigma model on a group manifold [22], that 8% continues to receive correc-
tions to all orders when H,,, # 0. It is tempting to conjecture that the strongest
possible result is true, namely that in the supersymmetric theory 8¢ and 8% continue
to vanish to all orders, with the corrections to 8% summing up so that D, of the
resulting conformal field theory is ten.

The vanishing of higher-loop corrections to 7,; in the case where B,, = @’ =0 is
reminiscent of the Adler-Bardeen theorem [23]. Indeed, when the background admits
N = 2 world-sheet supersymmetry, 7,. is in the same supermultiplet as the diver-
gence of the axial current which rotates the two supersymmetries and a version of
the Adler-Bardeen theorem might well hold [24].** Unfortunately, the dilaton
couples only to the N = 1 world-sheet Einstein supermultiplet and there is no way of
implementing the above scheme unless ¢’ = 0. Consequently the methods which
have been used to prove the no-renormalization theorem for the purely metric sigma
models [20] will probably have to be rethought carefully.

At this point it is appropriate to raise the question of string loop corrections to the
equations of motion. This is a subtle matter which we do not fully understand. On
the one hand, the conformal anomalies of the sigma model are short-distance effects
and ought, barring some disaster, to be the same for all world-sheet topologies. On
the other hand, in the supersymmetric theory, this would mean that the classical
equations of motion are perturbatively exact, that scale invariance is an exact
symmetry and that the mass scale of the vacuum is not determined in perturbation
theory. This may be the case in backgrounds admitting spacetime supersymmetry,
where it might be possible to prove a nonrenormalization theorem. The alternative to
this peculiar situation is that higher world-sheet topologies modify the consistency
conditions in some way, yet this would imply different consistency conditions on
different topologies. It is difficult to see how these different demands on the
background are reconciled. We expect that detailed studies of how our background
field calculations actually work on higher world-sheet topologies will shed light on
these perplexing questions.

4. The heterotic string

The heterotic string [6] is a promising starting point for deriving realistic models
of particle physics. It has an N = ! Majorana-Weyl world-sheet supersymmetry:
only the left-moving bosons have fermionic partners and the supersymmetry of
opposite chirality is absent. Right-moving fermions do exist, but they are used to
form a chiral E; ® E4 or SO(32) current algebra. The massless bosons of the string

* The vanishing of the two-loop beta function with general H # 0 has been shown in ref. [21].
** This idea has occurred independently to the second set of authors in [20].
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theory include the gauge bosons of this current algebra as well as the usual graviton,
dilaton and antisymmetric tensor field.

The sigma-model action corresponding to background values of all these massless
fields can be written in chiral superspace as

2 _ _ _
Sye12= o f d’zdfe 2°{G,, DX*3X" + B,,DX*3X" + «’(—4Ddo) @

+A4,,(X)DX¥j+ 049y ) .

Here X*(z,z,0) and o(z, z,4), are the string coordinates and conformal factor,
A4(x) is the background spacetime gauge field and Y are the right-handed fermions
on which the algebra of currents j“=y'T{/ is realized, with T“ the generators of
the gauge algebra. Because the gauge fields couple over the entire string rather than
on the boundary, we shall see that, contrary to the open string case, they are no
harder to deal with than the graviton and antisymmetric tensor field. We emphasize
that the use of the fermionic representation of the gauge current algebra is ines-
sential: the calculations may be phrased in an invariant way, but the use of the
fermionic formulation is convenient and conceptually familiar. Similar remarks
apply to the spacetime fermions. There seems to be some confusion as to whether the
world-sheet supersymmetric sigma model always describes the superstring, since the
variables of the superstring are spacetime spinors, not vectors like *. However the
world-sheet supersymmetric sigma-model can have a subsector which is spacetime
supersymmetric [16,17). Moreover, the model may be phrased entirely in terms of
SO(9,1) current algebra [28] —the representation in terms of Y* is just a conveni-
ence (indeed, other representations are more suited to the treatment of spacetime
fermion backgrounds [18, 3]).

Once again, we obtain equations of motion by imposing the condition that 7., the
trace of the energy-momentum tensor, vanish. The one-loop results for 8%, 8¢ and
B¢ are unchanged. In addition, there is a now a beta function for Aj; which turns out
to have the value (ignoring contributions from the dilaton and antisymmetric tensor
fields)

BA — VVF:V+ O((X’) ,

where F,, = T“F/, is the Yang-Mills field strength appropriate to the gauge group of
the model. Thus B8 gives the proper Yang-Mills field equation to this order.

The general two-loop beta-function calculation is quite complicated because of the
many possible mixings between different background fields. We shall focus on some
aspects which are of particular importance to phenomenological applications: the
appearance of gauge-variant Chern-Simons terms in the antisymmetric tensor field
strength, and the appearance of a gauge field-strength-squared term as well as
curvature-squared terms in the Einstein equations.
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To compute effects of the external gauge field, we need the normal coordinate
expansion of the corresponding term in the sigma-model lagrangian. To second
order in the quantum field £, the result is

4ma/'R = AIDX* ), + Fo(DX*) &), — AFstr(DE”) j,— £44Dj,
In the last term, which is obtained by integration by parts, the spacetime derivative
has been completed to a gauge-covariant derivative D, in order to complete all the
F,, to Yang-Mills field strengths. It is tempting to use the classical equation of
motion for the fermion fields to argue that this term vanishes. However, the current
is a chiral gauge current and has an anomaly which can be expressed in terms of the
projection of the background gauge field onto the string:

1 _
jd_— _ ___fa " v
D, j: S FLoXxrax’.
Taking this anomaly into account, and carrying out a further normal coordinate
expansion, we can rewrite the last term of the previous equation as

L1 = %@‘;A‘g*(ag“éX” — 0EHIX").
We will use these vertices to calculate the gauge field contribution to the various beta
functions.

As a first application, consider the two-loop diagram of fig. 1, where the vertices
come from the term F;, DX*£’j,, the dashed line is the £ propagator and the solid
lines are the fermi propagators. A modest amount of calculation shows that this
graph contributes — 1o’ tr( I':LAF,,)‘) to BC. This is the contribution of the gauge-field
energy-momentum tensor to our version of the Einstein equation. No other graphs
give a similar contribution. It is perhaps disturbing that the gauge field enters at
two-loop order, while the similar contribution from the antisymmetric tensor field
enters at one-loop order. However, the dimensionalities of the fields and the fact
that the only dimensional parameter in the game, «’, is also the loop-counting
parameter make this inevitable.

The same sort of analysis can be carried out for the vertices involving a coupling
to the background connection and curvature. Once again it is important to note that

Fig. 1. The two-loop graph which generates the Yang-Mills field contribution to the energy-momentum
tensor.
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there is an anomaly, this time in the generating current of local Lorentz transforma-
tions. The two-loop contribution to B¢ will contain field strength-squared terms
which are in general rather unpleasant to work out. When the background is
Ricci-flat, however, these contributions simplify to

1,./pApe
2(1R"L RV)\pO‘

The key point is that N = J supersymmetry, unlike N = 1, is not powerful enough to

remove higher-loop contributions to the beta-function. We shall also see that the
sign of this contribution is quite significant.

The term in the sigma-model lagrangian containing the background gauge field is
formally invariant to gauge transformations, indicating that the physics we extract
from the theory will not depend on the gauge chosen for the background field.
Unfortunately, the proof of gauge invariance makes use of covariant conservation of
the anomalous gauge current, j“. The equations of motion for the background fields
are therefore not actually gauge-invariant! If all goes well, the gauge non-invariance
will be of a very special kind, organizing itself into the Chern-Simons completion of
the antisymmetric tensor field strength familiar from ten-dimensional supergravity
theories.

A complete proof of this is beyond the scope of our investigations, but we can see
how it begins to work in two-loop order. Consider the graphs shown in fig. 2, where
the dashed lines are the £ propagators and the solid lines are the fermi propagators.
The left-most vertex is the term

(OX*3E" — X 3¢ )M,

arising from the normal coordinate expansion of the antisymmetric tensor term in
the sigma-model lagrangian. The other vertices come from the expansion of the
gauge-field interaction term and, in particular, the right-most vertex in fig. 2b is the
term arising from the anomaly. Since the anomaly is a one-loop effect, the graph in
fig. 2b is really a two-loop contribution despite having only one explicit loop. The

Fig. 2. Two-loop graphs which generate the Chern-Simons picce of the antisymmetric tensor field
strength.
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contribution of these graphs to 8¢ turns out to be

a/

T6—W—H’“,>\ tr( F* A A™).

There is another set of graphs which contributes the same sort of term, with the

gauge Chern-Simons term, tr(F' A A) replaced by the Lorentz Chern-Simons term.
The net effect of all this is clearly to replace the antisymmetric tensor field

strength, H,,,, which appeared in BY at one-loop order, by the well-known

Chern—Simons completion [25]

Ho>H=H+dt(FAA)~ta'tr(R A w).

A careful study of three-loop graphs would no doubt show the squares of the
Chern-Simons terms appearing with the proper coefficients. Let us assume that all
the gauge variance arising from the anomaly is absorbed in this redefinition of
H—on the basis of our calculations this is plausible but by no means proven. Then,
by the well-known properties of the Chern-Simons terms, gauge invariance of the
full theory can be recovered by making the antisymmetric tensor field gauge-variant
in the manner of Green-Schwarz and Chapline-Manton [25, 14)]. In other words, the
gauge non-invariance of the anomalous sigma model [26] is not a disaster (providing
our assumption about what happens at higher orders is right) but essential to
reproducing the correct ten-dimensional supergravity physics. It is important to note
that the gauge-variance discussed here has nothing to do with the chiral anomalies of
ten-dimensional field theory which, being one-string-loop effects, are invisible at the
level we are working,.
What we know so far about the two-loop beta function of the heterotic string
sigma-model can be summarized as follows:
G=R,,~ A2 +2vv,0+ La/(R

ny py

Aot 2
RV —wF2) +

wAor

Although all the details are not worked out, we expect that, after a suitable
conformal rescaling of the metric, the equations of motion can be derived from an
action of the form

fd xr{R— (V(b) 4 e BEAD-D 2

+lare 4O/ DD RurhoR uFZ)} :

Since there are quite a few terms we have not computed (in particular, terms
second-order in the curvature which vanish for Ricci-flat spaces), we are in no
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position to make general statements about background fields which might satisfy the
equations to all orders. The exception is the case where the gauge and gravitational
fields conspire so as to make a theory which is actually N =1 supersymmetric and
gauge-invariant. For example, in the case where B= @’ =R, =0, we may embed
the spin connection in a subgroup of the gauge group via wi* = 44T so that, in
effect, the curvature and gauge field strength are the same. Then the Lorentz and
gauge Chern-Simons terms cancel against each other and the R? and F? termsin 8¢
do also. Thus the 8¢, and presumably all other equations of motion, are satisfied to
the order we have calculated. This is no accident as this choice of background has
reinstated both N =1 supersymmetry (N =2 if 9 is Kiahler) and gauge invariance
in that the right-handed gauge fermions and the left-handed Lorentz vector fermions
now undergo exactly the same interactions for the subset of the theory coupling to
the background. The component term Ff, " T4y’ reproduces the four-fermion
interaction of the N =1 sigma model. Presumably, because the theory is now fully
supersymmetric, such a background field satisfies the equations of motion to all
orders and is a satisfactory vacuum solution.

5. Spacetime fermions

Finally, we note that background spacetime fermions may be incorporated into
the sigma model using the recently discovered covariant fermion vertex Vg [18]. We
have seen that bosonic background fields (except the dilaton) couple to the corre-
sponding bosonic vertex operators of the string theory. This suggests that we add to
the sigma-model action similarly constructed background fermion terms. For in-
stance, in the heterotic sigma model,

Stermion = [N aal X) JVE+£,(X)TXV

describes the effect of background gluino fields, A ,,, and gravitino fields, §,,. This
is an unconventional sigma model, involving anticommuting coupling parameters,
but it is renormalizable by power counting and should be perfectly well-defined. An
extension of this kind is absolutely essential if we are to deal with issues of
spacetime, as opposed to world-sheet, supersymmetry. Such couplings are also
necessary in the type II theories to incorporate, e.g., all the massless antisymmetric
tensor backgrounds.

In order to define a satisfactory string theory, the sigma model must be supercon-
formal-invariant. This is by no means guaranteed because the fermion couplings are
not written in terms of superfields [18], unlike the bosonic couplings which can be
written in manifestly supersymmetric form. In the bosonic case, the vanishing of 7,;
automatically ensured the vanishing of T, since both operators are in the same
supermultiplet. This is no longer true when spacetime fermions are present. Instead,
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one finds that 7,,=0 is the generalized d’Alembertian equation of the fermion
background while 7, =0 is the generalized Dirac equation which contains more
information. This may seem somewhat mysterious, but it is related to the fact that
the Ramond operator [27] (the string generalization of the Dirac operator) is also the
generator of conformal supersymmetry on a cylindrical closed string world sheet. We
have verified that for vanishing background fields the requirement of superconfor-
mal invariance in O(«’) forces the gluino and gravitino fields to satisfy the Dirac
and Rarita-Schwinger equations, respectively. The extension to general background
fields is tedious but straightforward. Details will be reported elsewhere [3].

6. Conclusions

Our work has shown that all the massless particles of the string can be incorpo-
rated in a background field approach. The equations of motion are consequences of
superconformal invariance: conformal invariance supplies the dynamics for space-
time bosons, local world-sheet supersymmetry gives the spacetime fermion dy-
namics. All the interesting equations of physics are subsumed in this invariance
principle. Viewed as an expansion of the low energy effective lagrangian in powers
of a’, the loop expansion of the sigma model is capable of reproducing all the terms
of spacetime field theory— Chern-Simons terms, four fermion interactions, dilaton
couplings, higher derivative interactions, etc.—in a very simple way. Our results also
lend strong support to the idea that backgrounds which admit N =1 world-sheet
supersymmetry are exact solutions of the full (tree-level) string equations. We have
not dealt with the effects of higher-loop string corrections, and anticipate problems
consistently maintaining conformal invariance of the sigma model on world sheets of
differing topologies. Perhaps these problems are mitigated by the intervention of
spacetime supersymmetry. We hope that our investigations shed light on the
important issues of string theory, particularly the problems of finding phenomeno-
logically interesting compactifications to four dimensions and discovering the
gauge-invariant, second-quantized string action.
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