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INTRODUCTION TO POLYAKOV’S STRING THEORY
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1. Polyakov’s description of the string

A one-dimensional string in its classical motion sweeps out a surface in
space—time. This world-surface, in & dimensions, is described by a
function x*(¢), u =1... Zdepending on two real parameters ¢ = (&', &2).
We build a relativistic quantum theory of the string by making an
integral

J Dxe™ AR, (1.1)

surfaces
over all space-time trajectories. The main requirement is that the
integral be invariant under reparametrization ¢ — (¢); the physical
properties of the string should not depend on the parameter labels we
assign to the space-time events in its history.
Polyakov’s proposal is to write the integral over surfaces using a
Riemannian metric

ds? = g,(&)dEede?
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on the parameter space as an auxiliary variable:

J Gge 49 J D xe” A0, (1.2)
metrics surfaces
d2
g = 1| L2 /o g@0,54 0, (13)
2 ) 2%
Alg) = pg | d*¢/g(8). (1.4)

Here
d*¢/g(&) = d*&/det(g,(¢))

is the covariant area element, g™(&)g,.(£) = 6* and 8, = 0/3&°
The metric g,,(¢) defines the formal volume element & x through the
inner product

(6, dx), = fdzz V9 0xH(E) 8x,(&) (1.5)

on infinitesimal variations of x*(£), in the same way that the finite

dimensional volume element d2¢ \/§ is determined by the inner product
9ap(£)OE6E on variations of & The volume element Pg on the space of
metrics is similarly determined by the inner product

(39, 99), = J 428 /g g™ (E)g () 09 4el(E) 0G3ul &), (1.6)

The action and volume elements are covariantly defined, so the integral
(1.2) over surfaces is at least formally invariant under reparametrization.

The particular choices (1.3-6) for the volume elements and the action
can be singled out by their symmetries and by their scaling properties in
parameter space. Everything is included which is: (i) relativistically
invariant, (ii) covariant under reparametrization, (iii) polynomial in the
parameter derivatives and (iv) of naive scaling dimension = 0. Nothing
else would be relevant to the continuum limit in parameter space.

The functional integral (1.2) characterizes the string’s propagation
locally in the parameters. To describe a particular kind of string (open,
say, or closed) undergoing a particular process (propagation, interaction)
it is necessary to specify the boundaries and other global topological
properties of the surface and then to include boundary terms in the
functional integral. We will not do that here, limiting attention to the
local structure of the string. The technical apparatus we use can be
adapted to account for the boundary and other topological effects.

It is helpful, on the other hand, to have in mind an example. This will
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be the complex upper half plane
H={e"": —w<t<ow, 0<o<mn}
which is the surface used to describe the open string. All other surfaces
of interest are obtained from the upper half plane by identifying points.
We want to use the integral (1.2) over surfaces to calculate
expectation values for the string to occupy an arbitrary set of points in
space—time:

G(xl’---’ X,n) =< ﬁl J‘dzék vV g(ék)a(x(ék)_xk)> s (1.7)
k=

whose Fourier transform is

n

G(p1s- - Pn) =< I1 jdsz \/g(ék)ei"*"“ik’>~ (1.8)

k=1
The covariant integration over &,...,¢, ensures that the expectation
values are of reparametrization invariant quantities. We learn spectral
information from the space-time asymptotics of G(x,...x,). Its Fourier
transform has poles in the squared momenta (p; +...+p )* at the
physical masses of the particle states of the string; the residues at the
poles are the scattering amplitudes. Again, we will be interested here

only in local properties of the operators /g(¢) e *¢).

2. Gauge fixing

The functional integral (1.2) contains an overall infinite factor due to
invariance under the local gauge group of reparametrizations. This
factor, which drops out of expectation values, is effectively removed by
restricting the integral to a gauge slice: a subspace of metrics which
meets each orbit of the local gauge group exactly once.

We will use without proof a basic fact of two-dimensional geometry:
given any metric g,(&) there is always a reparametrization & — 5(¢)
which at least locally makes the metric conformally Euclidean:

Gap(E)AEAE = p(n)d,,dndn’.

Moreover, any further reparametrization n — #'() which preserves the
conformally Euclidean form of the metric cannot be local, where local
means equaling the identity n' =n outside some arbitrarily small
neighborhood.

Thus a good gauge slice consists of all the metrics which are
conformal to a given Euclidean metric d,, dn* dn®. A more general gauge
slice is the conformal class [§] of metrics conformal to some not
necessarily Euclidean metric g,,:
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[9] = {9.(&) = DG, (&)} @2.1)

All of these conformal classes are locally equivalent under
reparametrization, but global topology usually prevents the existence of
an everywhere Euclidean metric; then the gauge slice must be a non-
Euclidean conformal class. Moreover, one conformal class is usually not
enough to make a global gauge slice: also to be integrated over are a
finite number of variables m, ... m,, called the moduli, which parametrize
the inequivalent conformal classes [g(m,...m,)]. The upper half plane
has no moduli. We leave aside the global problem of integrating over
the moduli.

The integration over all metrics is now replaced with an integral over
some conformal class:

J Dg = J%N(q), (2.2)

all metrics R
(41

where J(g) is a Faddeev-Popov determinant needed to take account of
the variable volume of the orbits of the reparametrization group.

3. Complex tensor calculus

It will be convenient to continue the investigation of the integral over
surfaces using mathematical language based on a single complex
parameter in place of two real ones. Once we have singled out a
conformal class [¢g] of metrics on parameter space, we can limit
ourselves to a special class of local parametrizations, the conformal
parametrizations: those in which the metric is conformally Euclidean.
Then we replace the two real parameters (¢!, &2) with z = £14+i¢2 A
metric in [§] now takes the form

gap(£)dE4dE = p(z, 2)ldz|*. (3.1)

If ¢ —n() is any conformal reparametrization then w = ' +in? is
either an analytic function of z, ,w = 0, or an anti-analytic function,
d,w = 0. The complex derivatives are

6: = %(61 —10,) 62 = %(61 +i6d,). (3.2)

Conversely, if w=n'+in? is (anti-) analytic in z then E-n(&)is a
conformal reparametrization. Thus choosing a conformal class [¢] of
metrics is exactly equivalent to choosing a collection of local complex
parametrizations, all (anti-) analytically related to each other.
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Given such an analytic structure we can define classes of one
component tensor fields, of the form

t, . (dz)ymdzy (3.3)

for arbitrary integers n and m. Clearly this form is not changed under
conformal reparametrization, if anti-analytic reparametrization is
accompanied by complex conjugation. The indices z and 7 in eq. (3.3)
each range over only one value, since there is only one complex
parameter, but they are useful to write in order to keep tract of
transformation properties. A tensor with —n subscripts is written with
+n supercirpts: e.g., t#25(dz) " 2(dz)" L.

It is not hard to verify that any real tensor field on the parameter
surface can be written as a linear combination of complex tensors of the
form (3.3). In particular, a metric g,, = pd,, in [4] is written

dz? = g.:dzdz +g;,dzdz, (3.4)
9:: = gz, = 3p. (3.5)

The other possible complex components of a real symmetric tensor
vanish :

ry

g:: = 9z = 0. (3.6)
The components of the inverse metric are

gF =gt =2p1, 3.7)

9= =g"=0. (3.8)

A metric is useful for contracting z and ? indices in pairs, so that, given a
particular metric, any complex tensor of the form (3.3) can be rewritten
in the more special form

t, (dz)' (3.9)
with
.= (g%, ;.. (3.10)

We will say that tensors of the form (3.9) have rank n.

This complex tensor language makes it very easy to describe the
covariant derivatives for the metric g, In the Z direction the covariant
derivative is just the partial derivative. Clearly

Vi, = g¥#dst, = g=V;t, (3.11)

transforms as it stands as a tensor of rank n—1 under conformal
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reparametrization. The covariant derivative in the z direction is derived
from that in the Z direction by a series of complex conjugations, raisings
and lowerings:

Vz[zu = (gzz')naz[(gﬁ)n[z..:l
= (0, —nd. logp), . (3.12)
The covariant definition guarantees that V. t, transforms as a tensor of

rank n+1.
The curvature tensor is the commutator of covariant derivatives:

[V, V.1, = ngz__. (3.13)

All tensors are one component objects, so all curvature is scalar. From
egs. (3.11) and (3.12) we calculate

R = p~'(—40,0;logp). (3.14)

If we write the metric g, in terms of a background metric g,
Ja = €%, then we can relate the covariant derivatives and curvatures
of the two metrics:

V? = e*d)ﬁz’ (315)
V., =V,-nd,¢, (3.16)
R = e #(—2V?0,¢ +R). (3.17)

4. Faddeev—Popov fields

The determinant arising from the gauge fixing in eq. (2.2) is to be
represented as a Grassmannian integral over anti-commuting Faddeev-
Popov fields. We need to find which operator to take the determinant of.

An infinitesimal reparametrization is a vector field, or rank —1 tensor,
8z = v*(z, Z). It induces a variation of the metric by

(G + 09.p)AE AE" = gup(E+E)A(E + EH)d(E" +5E°). (4.1)
Expanding to first order in the variations, we find

89,: = (V2 +Vad)g,-, 4.2)

dg,, = 2V .. (4.3)

The variations dg,; and &g,, are clearly orthogonal in the inner product
(1.6).
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Now we have two sets of variables to describe the metrics
infinitesimally close to g,, = €%j,,: (1) arbitrary orthogonal variations
9.z 6g..; and (2) variations d¢ along the gauge slice and infinitesimal
reparametrizations ¢*. In the first set of variables the volume element Zg
is

29 =%9.:99..99::. 4.4)
In the second variables this becomes
: 095 9.2 Gz=)
29 = D 19D ¥ D p det —ZZETE 4.5
29 = D" D7D P de b, %) 4.5)

where & ¢ is based on the inner product

(00,0¢), = fdzi\/.%‘(b(i)&qﬁ(f) (4.6)

and Z 7% 1 is based on

(), = f d2¢ /g g . (4.7)

We can simplify (4.5) by noting that

) A

Y ¢
Eﬁgu =0, o7 9= = 0
’ a5

and that (3/0¢)g,; is essentially the identity operator. We get
) 265 2 (09
D9 = D7D 1°9 jpldet]| S ) (4.8)

Now we would like to drop the factor D * % 17 as being the volume
element on the reparametrization group. But this is slightly problematic,
since the inner product (4.7) which defines this volume element retains
some dependence on ¢. This implies that the volume of the gauge group
is not a constant along the gauge slice, in which case it does not simply
factor out of the functional integral. Assuming that the ¢ dependence of
D *9D 7 can be absorbed into Z,p we can go ahead to write the
Faddeev—Popov determinant:

J(g) = det(V*)det(V?), (4.9)

where V* acts from rank —1 tensors to rank —2 tensors and VZ is its
complex conjugate.
We introduce Faddeev-Popov ghost fields: ¢*(z,Z) and its complex
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conjugate, to represent the infinitesimal reparametrizations; and b,.(z,2)
and its complex conjugate, to represent infinitesimal variations
perpendicular to the gauge slice. These fields anti-commute. The
Faddeev-Popov determinant is

J(g) = j G oD pe At (4.10)

d%¢
Alg.be) = |5 Ja(b..Vict +cc), (4.11)

with Grassmannian volume elements %, = @gcz@gcf and 2, =
Db, ,b:; derived from the inner products

(c,¢), = J‘dzé\/;gzzfch, (4.12)
(b, b), = szé ﬁ(qﬁ}zbubz—z- (4.13)

5. The free field integrals

The integral over surfaces now takes the form

— A(g) - Alg.b,c) — Alg,x)
9,0¢ j 2D bD e J G xe .

conformal factors F.P. ghosts surfaces

(5.1)

The actions ((1.3) and (4.11)) for x*, b, and ¢ are quadratic in the
fields, so these are free fields on the parameter space. Moreover, their
actions are conformally invariant:

A(e*g, x) = A(g, x),

A(e®g,b,c) = A@. b,c). (5.2)
The corresponding field equations

8;0,x* =0, (5.3)

0" =0, b, =0, (5.4)

are consequently independent of ¢. Thus the conformal field o(&)
decouples from the excitations of the free fields. But it does not
necessarily decouple from the quantum fluctuations in the ground state
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of the free fields, because the volume elements ,@gxggb@gc are not
independent of ¢.

Define S(g) to be the ground state action of the free fields in the
metric g,,:

e S — g4 fggb@gc J‘ng g~ A5}~ Alg.x) (5.5)
Then eq. (5.1) can be rewritten in the form

l:e—s(ﬁ) J@g(ﬁ e—sen(ﬁwd’):”:es(ﬁ) Jv@gb@éc@gxe—A@sb~c)—AL‘7sx):| , (56)

Serr(d. §) = S(e®g)—S(@), (5.7)

representing the integral over surfaces as three completely decoupled
field theories on the parameter space, in a common background metric
Gab(&).

The strategy now is to find an explicit formula for S..(g, ¢) by making
a systematic study of how the free field integrals over x*,b_, and c*
depend on the classical metric g,,,.

We use the standard machinery of functional integration. Introduce a
source x,(¢) for x* and anti-commuting sources y, for ¢ and B for b_:

(6 x) = | d22/grx" (5.9)
(B,b) = |d%z./g(B7b,, +c.c.), (5.9)
(1,¢) = {d?z /g (3. +cc.). (5.10)

o/

The generating functional for connected diagrams is
e = j@gb@gcg xe " AG.5.0-Ag, )+ (LX) BB +(7,0) (5.11)
p . .
Explicitly,
d?z d2w
Wig.1.B.7) = =Slg)+ H—ﬁ\/ﬁ; gw)

X D2 WK 2) X, (W) =187 c™b, D), (5.12)
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where the Green's functions satisfy

1
5 (—40.0.Kx (20, (W) = 8167z = w), (5.13)
1
(28X c%h,,,> = 6% (z—w). (5.14)
2n
We will only need to know the singular parts at short distance:
{xP(z)x,(w)y ~ —dhlog|z—w|, (5.15)
by ~ . (5.16)
z—w

The effective action I'(g, x, b, ¢) is obtained by the Legendre transform
r+w = (x)+(B,b)+,c) (5.17)
L 2m oW 2n oW . 2m oW

(5.18)

_—\/—5%’ zz:ﬁﬁz" C—\/gé'yz

Note that we are relying on context to distinguish the effective fields x*,
b., and ¢* of eq. (5.18) from the integration variables x*, b_, and ¢ of eq.
(5.11).

Since the fields are free, we just get back as effective action the
classical action plus the ground state contribution:

I'(g,x,b,c) = S(g)+ Alg. b, c)+ A{g, x). (5.19)
The inverse Legendre transform is

2n oI

= ——— —— = - z H
L N V7V _x", (5.20)
-2
g = —20 ?Tr - v (5.21)
\/‘; b zz
—2n oT
ol v, (5.22)

Ve = T/ 2
\/; oc
6. Renormalization of the free field integrals

The only undefined step in the integration over x* b,. and c¢® is the

renormalization of S(g). We will indicate here that this can be done in a
reparametrization invariant way, but then we will actually calculate the
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renormalized S(g) directly, using only scaling arguments and
reparametrization  invariance, independent of any particular
renormalization scheme.

One way to renormalize S(g) while maintaining reparametrization
invariance is to introduce a small distance cutoff ¢ in parameter space,
using the metric g,,(¢) to define what is meant by the distance & The
standard power counting argument for two-dimensional field theory
gives that the divergent part of S(g) takes the form

g)d,v_j 26 g2 A_,+& "A_, +loged,), (6.1)

where /g A, is a local expression in the metric, of dimension k. The
dimension of an expression 4 is d if 4 — «’A4 when the metric is scaled
by g — 27 %g. By the reparametrization invariance of the cutoff, the
A, must be covariant scalars. The only such expressions are 4_, = ¢,,
/L1 =0, Ay = ¢,R with ¢, , constants. Thus S(g) is renormalized by
including in the bare action A(g) eq. (1.4) for the metric a local cutoff
dependent counter-term

- [d%ﬁ(w%l +c¢,logeR) (6.2)

v

and taking the limit ¢ — 0. Note that the term \/QR in A(g) is a total
divergence (see eq. (3.14)), so plays no role in the local structure.

7. Variational formulas

In order to write Ward identities expressing the reparametrization
invariance of the effective action (5.19) we will need some variational
formulas. First we list them, then give derivations.

Suppose the metric g,.dzdz+c.c. is varied by

0g = (0¢g,;dzdZ +g,,dzdz)+cc.. (7.1)

The corresponding variation of covariant derivatives on rank # tensors
and of scalar curvature will be

OV: = —6pV* 43697V, + sz(ng”)a‘ (7.2)

OV, = —nV.(6$)~109..V+ 2 V*(5g..), (73)
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SR = (—2V?V, —R)d¢ + V*V?Sg,, — V.V _ 697, (7.4)
where
897" = —(¢%)*0g;: (7.5)

varies the inverse metric. These formulas apply to an arbitrary variation
of the metric.
Next consider variations induced by an infinitesimal reparametrization

0z = v¥(z, 2). (7.6)
The variation of the metric will be eq. (7.1) with

op = V7 +Vip,, (7.7)

dg., =2V,v,, d8g¥F = —2V4~ (7.8)
A rank n tensor changes by

o, =v°V,t, +v?Vit, +nV 0, . (7.9)
In particular,

ox* = v°V x* + tFVx*, (7.10)

oct = vV, c* +0°Vcr — V,1?c?, (7.11)

0b,, = v*'V,b,, +1?Vb, +2V,07b_,. (7.12)

The remainder of this section contains the derivations.

We face an obstacle to studying a general variation (7.1) of the metric
using the language of complex tensors because the change dg., # 0 of
the conformal class of the metric changes what it means to be a complex
tensor field of rank n. We need, therefore, a linear transformation we can
use to convert rank n tensor fields for the conformal class of the new
metric back into rank n tensor fields for the conformal class of the
original metric.

First we look for a complex conformal parameter z+4z(z, Z) for the
new metric (7.1). It must satisfy, for some p,

p(z, A +82)° = (1 +¢)g.:dzdZ+0g,.dzdz) +c.c., (7.13)
which is equivalent to the condition
0:(0z) = —19.:09%. (7.14)

Now we transform a tensor t, (dz)", of rank n for the original conformal
class, to
(1=nd,oz)t, [d(z+d2)]" (7.15)
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Using eq. (7.14) we can write this as the infinitesimal transformation
5t, (dzy = — g(gzzég“)tz__(dz)"_ldz_. (7.16)

Note that the transformation is covariantly defined, by eq..(7.16), and
gives a rank n tensor for the conformal class of the new metric, by eq.
(7.15). Also note that the scalars, the rank O tensors, are unaffected.
Now we are in a position to describe how tensor fields vary under a
reparametrization (7.6). A rank n tensor field ¢, (dz)" goes to

t, (z+06z.2+65)[d(z+2)], (7.17)
Le.
ot, (dz)* = (*V,+ vV +nV_ ), (dz)
+n(Var), (dzy1dz. (7.18)

The result is a rank n tensor for the new conformal class [¢+ d¢g] but not

for [g]. The formula (7.18) applied to the metric g,.dzdZ gives egs. (7.1),
(7.7) and (7.8) as the new metric g+0Jg. To see the variation of ¢, as

itself a rank » tensor for [¢g] we use the inverse of eq. (7.16) on eq. (7.18).
The result is eq. (7.9).

Next we find the corresponding variations of the covariant derivatives,
using eq. (7.9) in

(VE4+0Ve)t, +6t, ) = Vi, +6(V7, )
(V,+3V,)(t, +0t, )=V, +5(V,t, ). (7.11)

This gives eqs. (7.2) and (7.3), at least when the variations of the metric
are of the form (7.7) and (7.8). But directly from egs. (3.15) and (3.16) we
know that the contribution due to d¢ in eqs. (7.2) and (7.3) is valid for
any o¢. The validity of the terms involving dg,, and dg%, for general dg,,
and d¢7, then follows, because any tensor dg,, can be represented locally
in the form (7.8), and the covariant derivates are locally defined objects.
Finally. the variation (7.4) of the scalar curvature is calculated by
substituting egs. (7.2) and (7.3) in eq. (3.13).

8. The free field stress—energy tensor

We make the stress-energy tensor by varying the effective action with
respect to the metric:

—4n oI dn oW

VAR R

e 8.1
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—4n oI 4 oW
—— —+source terms. (8.2)

.= — =
2z \/:] 5922 \/g 5gzz

The classical part A(g, x)+ A(g, b, ¢) in I' is independent of ¢, so
2n 0S8

ﬁ %.‘/zi'

That is, the trace of the stress—energy tensor is due entirely to quantum
effects in the ground state.

The traceless part, @_,, of the stress—energy tensor has contributions
from both the ground state and the excitations. Using the variational
formulas (7.2) and (7.3) in eq. (8.1) we find that

0, =01 +0 (8.4)

zz

e

= (8.3)

zZ

where the ground state contributes

—4n oS

%= T (8.5)
NI
and the excitations
@:gc = - szuvzxu - 2bszzCz - Vzbzzcz' (86)

Note that @ does not depend on ¢. Using equations (8.2) for ©,, as
a variation of W we can write

0.. = (o

= (O + 05" (8.7)

The bracket { - > indicates expectation value in the presence of sources,
using the integral (5.11) over x*, b and ¢; while { - >, means expectation
value with no sources present, i.¢., ground state expectation value. The
O within brackets in eq. (8.7) is the expression (8.6) in the integration
variables; the @ outsides brackets is the same expression in the
effective fields. To derive eq. (8.7) we use the fact that the volume
elements ¥,b%,c%,x are unchanged under a traceless variation dg,,
of the metric.

Using eq. (8.7), we can calculate the traceless part of the ground state
stress—energy tensor from the singular behavior of the Green’s functions:

07, = - V.V, M @x, WPl - — 2V, +V, Kb, ™). - (8.8)

To make sense of this we need a covariant regularization of the
singularities at z = w, but the result will be finite. To see this, consider a
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change of scale ¢, — 2 g, This has no effect on the covariant
derivatives and Green’s functions in eq. (8.8), so it is equivalent to
scaling the short distance cutoff by ¢ — ae. Thus a divergence in eq. (8.8)
would have to be a local covariant expression in the metric, a rank 2
tensor, of dimension =< 0. The lowest dimension candidate, V,V,R, has
dimension +2. We conclude that ©__ is finite and dimensionless, ie.,
scale invariant.

We might remark that eq. (8.8) for @4, offers a route towards
calculating the background action S(g(m, ...m,)) in the full integral over
surfaces (5.6) when the surface has nontrivial topology and there are
inequivalent conformal classes [g(m,...m,)] parametrized by moduli
m,...m,. A variation dm; of the moduli can be represented as a variation
0,9°% of the background metric. Then, by eq. (8.5),

s 1 547
gr;j J \/(/ <:“T@ +cc> (8.9)

with @4, calculated via eq. (8.8) in terms of the free field Green’s
functions on the surface. Integrating eq. (8.9) gives S(g(m,...m,), up to a
constant.

9. Conservation of stress—energy: the Liouville action

A covariant functional .# of the fields and the metric is invariant under
variations (7.7). (7.8), (7.10)-(7.12) arising from an arbitrary
reparametrization 9z = v*(z, 2):

o 2n 0
: 7 K 9.1
|: V \/> 5(/ \/' 5(15} Jf:eldsf ( )
where
o 0 _2n 6
D ei e 2 z LA
Deieras = f Sk +(2V "+ ¢*V,) \/ e V.c \/; P
(‘7zbzz +>2I)ZZ‘7a (9'2)

\/ 6b Vibz: f obzf

Similarly any covariant functional % of the sources and the metric
satisfies

G =9
By

(9.3)

SOUFCES

[_vz dn 0 g i]
\/‘; 6gzz Z\/; 5¢
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o o _ g g w6
sources ~ ZX f 5 u vz z\/* 5yz zy2f 5,})2_
o 2 0

+(3V, 7 =2V, ) (9.4)

oV T o

By applying eq. (9.1) to I" we get the conservation law for stress—energy:
VO, +V:0;, = 1,V 1" +7.V.+V.(3.c%)

+ BV b, — 2V, (57b,.). 9.5)

We can easily verify eq. (9.5) for the excitation stress—energy, using eqs.

(8.4), (5.20)-(5.22). The new information is the conservation of stress-—
energy in the ground state:

2n 48

vior +v. (5 2 <o (9.6)
Vg 00

Fxamining the expression (8.8) for @7, we see that V@Y, must be a

local expression in the metric. Since ©¢, has dimension 0, V@, has
dimension + 1. The only such rank 1 tensor is V,R. Thus

—4
@4, = — VR, 9.7
Ve, = 5 V. ©.7)
where 1 is a number we have yet to determine.
By eq. (9.6),
s _ 4 \/—(R+ 2) 9.8

where u? is an arbitrary integration constant. We can integrate eq. (9.8)
using eq. (3.17) for R to find

Serr(g, @) = J Cf §°°0,$0,0 + R +p*e? — 11?). (9.9)

This is the Liouville action, providing (in egs. (5.6) and (5.7)) the
effective classical dynamics for the ¢ field.
The conservation of stress—energy now reads

—4
Ve, = 4 —— V_R + (source terms), (9.10)

T 24

(source terms) = x, V. x* +7,V,c*+ V. (y,c*) + (V. b,,) — 2V (f*b,,).
9.11)
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10. Ward identities and operator product expansions: A = 26 — 9

The conservation law, eqgs. (9.10) and (9.11), as an expression in the
metric and the sources, generates Ward identities for products of @

and the fields. For example, differentiating once with respect to the
source gives

1

5 V@2 xH(w)), = 1(z, w)V, x*, (10.1)
7
1
S VO, = VAWl 412wV e, (10.2)
n
1
7 VZ<@;§“bWW>C = =2V A(z,w)b,,.+1(z, w)V b, (10.3)
7
where
1z, w) = g V6% (z—w), (10.4)

is the covariant delta function. The expressions (@ - denote
connected expectation values in the presence of sources, arising when eq.
(8.2) is differentiated with respect to the sources. In writing eqs. (10.1)-
(10.3) the sources are in the end set to zero in neighborhoods of z and w,
but are left arbitrary elsewhere. This means that eqgs. {10.1)-(10.3) should
be interpreted as a set of operator identities. The distant sources make
the arbitrary state in which the identities hold.
Each Ward identity is equivalent to an operator product expansion

{OPE). The basic fact we use is that

1 1

—(20;) —— = 8%(z—w), (10.5)

2n z—w
which is proved by an integration by parts. To put eq. (10.5) into a
covariant form, define

Ky = (z=w) '+ f(z,w), (10.6)

where K, is a rank 2 tensor in z and a rank —1 tensor in w and f(z, w)
is regular and analytic in both variables for z near w. It is easily verified
that the singular part of K, keeps its form under conformal
reparametrization. The non-singular part will not matter in OPEs. Now
eq. (10.5) becomes

1

— VFKY, = 1(z, w). (10.7)
2n
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We will also need the distributions

n!

VK ~ ————— +0((z—w)™" 10.
(VPR ~ o +0(=w)) (108)
satisfying
VHVLKY) = (= 1)'V(z, w). (10.9)
For example, if g.. = 1p, then, in coordinate form,
1 1
V,.K ~ + ¢, logp. (10.10)

(z—w)*  z—w

Now we can rewrite the Ward identities (10.1)-(10.3) as the OPEs:

1
O W), ~ —— &, x*, (10.11)
Z—w
be W —1 L ,
O~ | 5+ —27, |, (10.12)
(z—w) z—w
. 2 L
<@§zcbww>c ~ 2 +-—0, bww' (1013)
(z—w) Z—w

We can easily confirm (10.11)-(10.13) using the explicit form (8.6) for
@7 and knowing the singular parts of the Green’s functions (5.15) and
(5.16). For example,

< - 2bz:Vzcz - Vzb:zcz? (.w>c = 2<bzzcw> azcz + az<bzzcw>czv (10. 14)

gives eq. (10.12).

Next we look at the Ward identity for (@X*©% . We vary the
conservation law, eqs. (9.10) and (9.11) with a variation 8g°* of the
metric, keeping the sources fixed, using the variational formulas (7.2)-
(7.4). This yields

1 .
VORI OR, = VI w) +[ <2V w) 12 W)V, ] 6,
n

(10.15)
The equivalent OPE is

(OLOUy ~ T VAKL+(QV, KL+ KLV, ), (10.16)

w

For the moment look only at the leading singularity
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_1
(z—w)*’

(OZOUD ~ (10.17)

We can find the same singularity by a direct Feynman diagram
calculation of the OPE:

(OO ~ 2[0.0,Lx"(2)x,(w)]*
+40 . Kb, c">C b,
(2,500, by + 2 o w]
+0Lb. ™0 Lc%h,,D
_—he6-9)
(z—w)*

Thus 4 = 26 — %, which finishes the calculation of the effective Liouville
action (9.9) for ¢(<&).
The full OPE (10.16) can be rewritten in the simple form

(10.18)

o oo ~14 2 T
<@zz@ww>c = (Z— + + )Cw <@ww> (10'19)

w)? (z—w)*  (z—w
if we define
0% = @ _ 2% (—0,log p &, log p+20.2.log p). (10.20)
From eq. (10.16) we know that the rhs of eq. (10.19) is analytic in z for
z # w, so in both variables by symmetry, therefore
0:{0%> =0, (10.21)

which can be confirmed by direct calculation using egs. (9.7) and (3.14).

11. Hilbert space interpretation: the Virasoro algebra
When the parameter surface is the upper half plane
H={z=¢"" —w0<1<0,0<0<n} (11.1)

the functional integral (5.1) can be interpreted as a theory of field
operators in Hilbert space, expectation values becoming the matrix
elements of t-ordered products. To do this carefully requires taking
account of boundary conditions and zero modes. Here we will only
sketch the basic structure and examine the commutation relations of the
free fields and the stress-energy tensor.
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Start by defining
at = 0,x*, 0;at = 0. (11.2)

The equation of motion holds if there are no sources near z, which is to
say it holds for all matrix elements of a*.

Next, double the parameter surface to include the lower half plane
H. The doubled surface is the punctured plane C—{0}. Define a* in H
by
al = at. (11.3)

Z

Generate operators by

a'lf]= #%J'(z)a‘; for ¢;f =0, (11.4)
T
Cy
ay= 3y z'ai, at=a"[z"] (11.5)

The contour C, in eq. (11.4) is any simple contour circling
counterclockwise once around the origin. We use the OPE (5.15)

ldiayy ~ —30"/(z—w) (11.6)

to calculate the commutation relations:

@l ad - ( <j§ 3€2> (Xata, 117

_Léu
ulr ¢ 2%y
[a“[f]. a,] = 9827“1( )(Z_w)_2 (11.8)
C,
—3040.,.1, (11.9)
[an, aun] = —3md40,,4, 0 (11.10)

In eq. (11.7) the contour C,,, contains 0 and w while C, contains 0 but
not w; t-ordering is used to produce the commutator. To get eq. (11.8),
the contour C,,—C, is deformed to a curve C, around w,
asymptotically close.
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The same arguments work for the Faddeev-Popov ghost fields. They
are extended to H by

c=ci b,=bh_. (11.11)
They satisfy
0:¢7 =0, db,,=0 (11.12)

and give operators according to

c[S] = §2d—;$zzcz for 3;S., = 0, (11.13)
Co

= i e, ¢, =c[z7" 7], (11.14)

b[t] = é%ﬁbzz for ¢;t* = 0, (11.15)
Co

b= Y =", b,—b["]. (11.16)

The OPE (5.16)

b ~ : , (11.17)

Z—Ww

leads, by deforming contours, to the anti-commutation relations

[c[S]. bpls = Spn (11.18)

LCm buls = 0 e (11.19)
The same procedure applies to (@ (10.20):

(%) =<0%) inH, (11.20)

<02, =0, (11.21)

Ov] = ézd;v%@fz) for 0,07 = 0, (11.22)

Co
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@SZ = z Z_"szn for L, = @[Z"+l]. (11.23)

The OPEs (10.11)-(10.13) and the contour deformation argument give
the commutation relations

[0[c],ai] = (@™, +2,v")al, (11.24)
[O[v], "] = e, —0,t™)c", (11.25)
[O[1]. by] = (%0, +28,8™)b,,.- (11.26)

Thus the operators ©[v] represent the infinitesimal conformal
reparametrizations. In particular, L, generates translation in the 1-
direction.

From the OPE (10.19) for (@°%,09,>. come the commutation relations

[O[c]. 6%,] = ("3, +20,0™)0%,— % 230w (11.27)

which is equivalent to

[Lm7 Ln] = (m-n)Lm+n+ (I;) m(mz_ 1)5m+n,0' (1128)

The latter are the commutation relations of the Virasoro algebra.

We see that the coefficients — A of the anomalous central term in the
Virasoro commutation relations (11.28) is exactly the same thing as the
coefficient of the conformal anomaly (9.8). They arise from the same
short distance effect, since both are calculated from the same leading
singularity in the OPE (10.17).

12. Transformation properties of (/g e

We will look at the properties of € * for a fixed metric g, The effective
operator is

(eir x(&)y = (&P *(E)poe? X, (12.0
To renormalize e * we need to remove the divergence in
(e X(EYyg = exp(— 1P EXE Ple=e) (1222)

From eq. (5.15) we know that, with cutoff ¢,
MEXE W]e—g ~ —30410gE. (12.3)
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Therefore a renormalized operator is defined by
Ceir >y = lim (e~irtlogsgiv vy | o0 (12.4)

&= 0

Because the renormalization is covariant, the operator satisfies

r

16 1 6 e
[z s _V’ﬁ 5 16 w)V{|<eP (W) = 0, (12.5)

or

z

\%
-{OEr X (W), —[

2, +1(, )M]<ei”'x(w)>o- (12.6)
s

1 0
Vo 996)
But a direct Feynman diagram calculation gives

2

VA(z,w)+1(z, w)V,, ]<€“’ *Who-
2n

(12.7)

V. . .
(= 0.x80,%,, € X)), = [

Thus

1 0 P’
=V, l:\/ qu( ) 1(z W)J {elr x(w)>. (12.8)
g

We know from eq. (12.2) that {e”” *(w)> cannot depend on ¢(z) far from
w. Therefore, writing g,, = ¢%j,,, we can make the ¢ dependence
explicit :

<eip'x(w)> = e—%p2¢(“’)<ei[’""(w)>.. (12.9)

This means that to calculate expectation values of \/q—(gvelf’ x&) in the
original integral over x* and g,,, we should use the operator

G(E) ell =P 14)8(E) giv-x(©)

in the integral (5.6) over x* b_..c* and ¢ with background metric Gup-

13. The stress—energy tensor of the classical Liouville model

The Liouville model is given by the functional integral over metrics
9ap = €%§,, in the background metric §,,:

e~ 50) fg,gd,e ) (13.1)
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Sei(d. @) = S(g)—S(9)

24 Jd éf[zgaba $0,¢ + R+ ple? —p]. (13.2)
This interacting quantum field theory must be solved to complete the
integral (5.6) over surfaces. Here we will discuss properties of the
classical Liouville model, leaving out the corrections due to quantum
fluctuations.

The Euler-Lagrange equation 65/6¢ = 0, ie., R = —u? (see eg. (9.8)),
is satisfied in the absence of sources for ¢, therefore the trace of the full
stress—energy tensor (8.3) vanishes. The full traceless stress—energy tensor
(8.1) can be split up

0,. =0 +04+06%" (13.3)

into the excitation and ground state stress-energies of the free fields in
the background metric §,,, and the classical stress-energy of the ¢ field.
The full stress—energy is conserved, because ((9.6), (9.3))

—4
Vie.. = -, V.R=0 (13.4)
by the equation of motion R = —yu* for ¢.

The vanishing of the trace ©,; means that the full integral (5.6) over
surfaces depends only on the conformal class of g, The conservation
(13.4) of the full stress—energy tensor means that (5.6) is invariant under
changes of g,, by reparametrization.

Let us now rewrite the conservation law (9.6) in terms of g,, and ¢
without assuming the equation of motion for d:

VO, +(V,~V.0) 2 oS _ (13.5)

Ja 06

The conservation law for stress-energy [egs. (9.6), (9.8)] in the back-
ground metric g, is

, Ao
V(@ +09,) = — % V.R + (source terms). (13.6)

Putting together (13.3), (5.6) we get
2n S

Vz@‘j’f‘:fVRqL(Vd) V.) \[5(1)

(13.7)
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which is the conservation law for the Liouville model in the presence of

the source (271/\/;)(65/(5(;5) for ¢. The form of the source term comes
from the variational formula for ¢ under reparametrization:

3¢ = (170, +V,°) +cc. (13.8)

which follows from /g = e“’\/g.
The anomalous conservation law (13.7) for @%;°' implies that the

Virasoro operators in the classical Liouville model satisfy anomalous
commutation relations, as in eq. (11.31), with coefficient + 4. Note that
the reparametrization invariance of the full functional integral can be
seen as a cancellation of anomalies between the free fields x*, b,,, ¢* and
the classical Liouville field.

We can also use the decomposition (13.3) in eq. (11.8) to get the Ward
identities

z

v (@ eip x(w)>, = [—‘ P iz w+ic, w)vw}
2n 4
x (el *(w)), (13.9)

z 2
;<@fz' ol e(l—p2/4)¢(w)>c = |:<IZ1 — 1) Vﬁ(z, w)+i(z, w)Vw:l
i

x (el =P b (w)>, (13.10)

which state precisely the cancellation of the anomaious weight of e *
against e —P'/49,

Finally, we give an explicit formula for ®%:. This can be derived in
two equivalent ways: (1) by making a variation 8¢* in eq. (13.2) using
the variational formulas (7.2)-(7.4); and (2) by using the covariance of
0., to calculate V_ (3/0¢)@.,. In either case the result is

zz

@ ¢ =%(—52¢5Z¢+2625z¢)~ (13.11)

14. Conclusions

The string theory, which began as a free scalar field x*(¢) on parameter
space, quantized in a fluctuating metric g,(¢), has become three
decoupled fields in a common background metric g,,(¢). The original x*
field and the Faddeev-Popov ghosts b, ¢ are free; while the field ¢(&),
which contains the conformal degrees of freedom of the metric
9ap = €%d.p, is governed by the Liouville action S.(d, ¢), eq. (9.9). We
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have seen that the Liouville action can be derived assuming only
reparametrization invariance in the gauge fixing and in the free field
quantization, along with elementary scaling behavior of the free fields.
It remains to quantize and solve the Liouville model. Here we will
only remark on some conditions which will need to be satisfied in the
quantization of the Liouville model. Essentially these state that the
quantization should not modify any of the conformal properties of the
classical Liouville model. In particular, there should be no quantum
contribution to the trace of the stress—energy tensor, the Virasoro
operators of the quantum Liouville model should satisfy the same
commutation relations as in the classical model ((13.7), (11.31)):

=
(L5357 14 9m] = (m— ) 8m 4+ == m(n = 1)8,,,, o (14.1)

m+n 12

and the operators el =49 should satisfy the classical Ward identities
(13.10).

We can derive these conditions from the requirement that the full
string theory be independent of the choice of background metric g, The
quantization of the Liouville model is summarized by writing the
effective quantum action

Sam(d: @) = Set(d, @)+ 454, $), (14.2)

which includes the quantum corrections AS(g, ¢). The stress—energy
tensor for the full string theory (with background metric g, understood)
is

@lotal — @free+@<b, qm’ (]43)
where the quantum Liouville stress—energy
@M = @% 1+ A0? (14.4)

also includes a quantum correction 40°.
The first thing to note is that the background metric g, is only an
arbitrary choice of origin in the gauge slice [¢] = {€?4,,}. Shifting

Gank&) = (1+ f(£))d(8)
should make no difference to the theory. Thus we should have
oL = 0. (14.5)

We already have two of the contributions to @' (see egs. (9.8) and
(9.9)):
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P .

O = 54 (R+p%)dz, (14.6)
a0 —A s .

0% = 57 R +1)g., (14.7)

which cancel each other, essentially by construction:

We therefore have the condition
407 =0, (14.9)

that there be no quantum correction to the trace of the stress-energy
tensor in the Liouville model.

This condition (14.9) implies that the quantum correction to the
effective action does not depend separately on ¢ and ¢ but only on the
combination g = e%4, so that

Sqmlds @) = S(g)+ 4S(9)—S(g). (14.10)

It is easy to work out that eq. (14.10) is the same as eq. (14.9) once we
note that @,; should be calculated by varying

9:: .(/22+5gzi

while at the same time sending

¢ = ¢—g7og.
This is because the variation of g.. should take place with the field held
fixed. In the Liouville model the field appearing in correlation functions
is actually the combination log\[ = ¢+log \/;
Next we show that the quantum correction AS(g) in eq. (14.10) must
be a covariant functional of the metric g, (¢). For the full theory to be
reparametrization invariant we need the conservation law

V@Rl L V@'Y — source terms. (14.11)

But in the previous section we saw that eq. (14.11) is satisfied using only
the classical Liouville stress—energy, again essentially by construction.
The quantum corrections should therefore contribute equally to both
sides of eq. (14.11):

2n 048

Vi(40¢) = (V,p-V,) "~ ——.
( zz) ( z¢ z)\/g (5¢

(14.12)
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When rewritten, eq. (14.12) becomes the statement that AS(g) is
reparametrization invariant:

2 348 1 S
0=V <— 7) -V, <; ) (14.13)
Jo o) T\ g oo
From egs. (14.12) and (13.7) we get that the anomalous conservation law
for the traceless stress—energy tensor of the quantum Liouville model:

Ao
Vs, am = 2 V.R +source terms, (14.14)

is identical to that for the classical model. By the discussion of sections
10 and 11, eq. (14.14) implies the Virasoro commutation relations (14.1).

In exactly the same way we can argue that the operators (\/5 e)l—p'/a
must keep their classical transformation properties (13.10) even after

quantization, in order that the observables jdzé\/gei!"x remain
reparametrization invariant.

These conditions on the quantization of the Liouville model are
concerned with the short distance properties of the model; they are
constraints on certain numbers appearing in operator product
expansions. The Liouville model has the appearance of a
superrenormalizable two-dimensional scalar field theory. But such a
theory, canonically quantized, will always have quantum conformal
anomalies at short distance. We expect, then, that the correct
quantization will give a new kind of two-dimensional quantum field
theory.
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