January, 1985 EFI 8509

COVARIANT METHODS IN SUPERSTRING THEORY

D. Friedan and S.H. Shenker

Enrico Fermi and James Franck Institutes
and Department of Physics
University of Chicago, Chicago, IL 60637

ABSTRACT

We briefly describe some recent developments in string theofy.
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This is a summary of work on superstrings which we did in the summer of 1984
and presented at Aspen iu August and ITP in August and September.}

Ten years ago Scherk and Schwarz? proposed that string theory could provide a
fundamental theory of matter interacting through gauge and gravitational forces.
By this summer three critical problems had emerged: to find string theories with
anomaly free gauge symmetries, to find compactifications of string theories yielding
chiral fermions in four dimensions, and to find a Lorentz covariant quantization of
the fermionic string.

Mandelstam® and Witten* had especially emphasized the issue of gauge sym-
metry. Strings with fundamental gauge symmetries (type I) were thought to be
anomalous because the massless spectrum gave both gauge and gravitational
anomalies, assuming invariant low energy effective actions.5 It appeared that gauge
symmetry would have to be generated dynamically. Mandelstam suggested that the
Foerster-Nielsen-Ninomiya-Shenker® mechanism would produce gauge symmetry in a
strongly coupled string theory. Witten suggested generating gauge invariance by
compactification of a closed string theory, using the construction of Frenkel, Kac and
Segal’ to replace D, dimensions with a current algebra for a rank D, gauge group.

It seemed to us that the strongly coupled string theory would be intractable, so
we concentrated on calculating anomalies for type I strings and on applying the
current algebra mechanism to closed fermionic strings. We showed that in
compactifications of closed fermionic strings gauge particles come from supercurrent
algebras. We proved that in such compactifications the fermions all have large
masses if the gauge group is nonabelian® Thus gauge symmetry must be funda-
mental.

To check the consistency of type I theories we worked out how to calculate
anomalies directly in string theory. The potentially anomalous hexagon diagram is a
straightforward one loop calculation in the covariant formulation of the fermionic
string using the well-known vertices for emission of transverse and longitudinal mass-
less spin one or spin two particles. Following this idea, Green and Schwarz? per-
formed the calculation, with remarkable results. The anomaly cancelled only for
gauge group SO(32). Thus internal consistency dramatically constrains the funda-

mental gauge group.
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Since a gauge invariant low energy effective action for the SO(32) string would
be snomalous it was clear there would have to be a Wess-Zumino term. Green and
Schwarz!® examined the structure of the string interactions responsible for the ano-
maly cancellation and used that information to write an anomaly-free field theory
with gauge group SO(32) and gauge-gravitational Wess-Zumino coupling. It was
immediately noticed that the anomaly cancellation in the field theory also took place
for gauge group EyX Eg, more attractive than SO(32) for phenomenological purposes.
The problem became to find an Eg X Ey string.

At the time the only known way to introduce gauge charges was to put them at
the ends of open strings.!! The gauge group in such theories had to be one of
SO(N) or Sp(N). It was clear that to implement an EgXEg gauge symmetry the
gauge charges would have to be put in the interior of the string. Freund!? suggested
using the current algebra mechanism, noting that for both EgX Eg and SO(32) the
trace anomaly condition 26==10+16 was satisfied, where 28 is the critical dimension
of the bosonic string, 16 the rank of the group and 10 the space-time dimension of
the compactified bosonic string. The problem became to combine the bosonic
current algebra with the fermionic string. Gross, Harvey, Martinec and Rohm13
found an elegant solution, the heterotic string, which works only for EgX E; and
SO(32).

A fermionic string in D space-time dimensions is described in the superconfor-
mal gauge by D free scalar superfields X"(z,ﬂ,?z',ﬁ) on the world surface.l* For this
discussion we focus on the (z,0) dependence. The superconformal gauge requires free
Fadeev-Popov superfields B and C, of spin 3/2 and -1.1° The action is
{1/2DX*DX,+BDC+BDT, so X'=1"+04*+0¢*, B(z0)=>bgtbr, (z,0)=cp+lcp.
The super stress energy tensor is -—1/2DX"1)2X“—DZBC+1/2DBDC—3/2BDz(}'. In the
type I theory there are free Grassman degrees of freedom t]'-,ﬁ:- on the ends of the
open string, with ,j=1 - - - N for gauge group SO(N) or Sp(N).16

The single string Hilbert space splits into bosonic (Neveu-Schwarz) and fer-
mionic (Ramond) sectors, characterized by boundary conditions ¢#(&*'z)==y"(2),
and similarly for the half-integer spin bosonic ghosts bg and cp. The supersymmetric
string theory is obtained by projecting on the subsector (—l)F =1, where F is sheet

fermion number.!?” In the functional integral the sum over Neveu-Schwarz and
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Ramond sectors and the projection (-1)F=1 are accomplished by summing over all
boundary conditions for half-integer spin fields around all nontrivial closed curves on
the world surface. In the type I theory a Lagrange multiplier is used to project on
the sector fx'=1 and a “twist” projection onto the adjoint representation is accom-
plished by summing over orientable and nonorientable surfaces. For type Il strings
only orientable surfaces are included.1®

Reparametrization invariance on the world surface requires the total trace ano-
maly é=Cpyatert Cghost 1O vanish.!® Since éy,,.,~D and €ehost="10, self-consistency
fixes D=10.1> Reparametrization invariance also implies the mass-shell conditions;
physical states must have total energy Ly==Lg pa11er+ Lo ghost=0. The fermionic ghost
ground state contributes ~1.20 The bosonic ghost ground state contributes 1/2 in
the N-S sector, 3/8 in the Ramond sector.?! These values fix the lightest particles
in both sectors to be massless.

In the functional integral representation the string anomalies come from zero
modes of ¢* ¢*. On the torus {one loop) the Dirac operator has a zero mode only for
periodic boundary conditions. On surfaces of genus g>>1 there are 47 boundary con-
ditions. The Dirac operator has an odd number of zero modes (generically one) for
92¢-1_9¢-1 houndary conditions and an even number {generically zero) for the rest.

The major unsolved problem in the covariant approach to fermionic string
theory is to construct the fermion vertex?2 and the space-time supersymmetry alge-
bra. The matter contribution to the fermion vertex is a dimension D/16=5/8 con-
formal field ©°(z), which transforms as a spinor under SO(1,9). To form a dimension
1 vertex we need an additional field £(z) of dimension 3/8. Goddard and Olive??
suggested that the ghosts might play a role. This motivated the calculation of the
ground state energy of the bosonic ghosts. The value 3/8 for the Ramond sector
implies that there is an operator E(2) in the bosonic ghost sector.?!

We have constructed a candidate ¥(z) by exponentiating the line integral of the
bosonic ghost current jp=cgbp. This ‘“bosonized” bosonic ghost has trace anomaly
¢=13, leaving a residual system with ¢==-2, which can be represented in terms of
new fermionic ghosts of dimensions 1 and 0. The nonzero ghost charge of ¥(z) is an

obstruction to constructing a covariant fermionic vertex operator.2!
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With J.D. Cohn and Z. Qiu?? we have calculated correlation functions of 6 by
three technmiques: (1) null vectors for the SO(1,9) Kac-Moody algebra and the
corresponding differential equations,®® (2) the spinorial extension of the Frenkel-Kac-
Segal? vertex operator construction for SO(1,9), and (3) the Luther-Peschel?6 dou-
bling construction for D Ising spins.

Compactification consists of replacing six free superfields by a nontrivial super-
conformal field theory on the world surface. Superconformal invariance requires
locality, supersymmetry and vanishing of the g-function. Reparametrization invari-
ance requires ¢=6. The most general renormalizable theory on the world surface can
be interpreted as a condensate of the massless bosonic degrees of freedom of the
string. There are at least two possibilities: (1) superconformal sigma models with
Wess-Zumino terms and (2) supersymmetric sigma models in Ricci-flat six mani-
folds.?”

In the first case, a massless vector particle is associated with each surface super-
current. The mass operator for the fermions includes the supersymmetry generator
G, of the Ramond sector of the sigma model. We proved from the super current
algebra that Gy>0 for all nonabelian groups.® Therefore all fermions become mas-
sive. For case (2), the chiral fermion spectrum is given by Witten's index for the
Ramond sector of the Ricci-flat sigma model, which is the index of a certain Dirac
operator on the Ricci-flat manifold.

Another possibility, suggested by the form of the fermion vertex, is a

compactification in which the bosonic ghosts couple to the matter fields.
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