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Abstract. Schwinger-Dyson equations are used to study the large N limit
of U(N) gauge theory on several small lattices. Explicit solutions are found
which are beyond the reach of existing steepest descent technique. They show
a phase transition in a three placquette model at coupling g2N = 3, resembling
the known transition in the one placquette model, and lending support to
expectations of a similar transition in the four dimensional lattice theory.

1. Introduction

The ί/(oo) lattice gauge theory differs qualitatively from the U(N) or SU(N)
theories in having an infinite number of internal degrees of freedom per unit
volume of space-time. Gross and Witten [1], using the steepest descent technique
of [2], solved exactly the large N limit of U(N) gauge theory on a single placquette
and found peculiarities attributable to just this difference. The free energy and
correlation functions depend analytically on the coupling constant except at a
single critical value, which marks a continuous transition between weak and
strong coupling phases. The average eigenvalue distribution of the placquette
variable (an N x N unitary matrix) covers the entire unit circle in the strong
coupling regime, but for small coupling constant is excluded from a neighborhood
o f - 1 .

This paper presents some new exact results for [/(oo) gauge theories on small
lattices. The main result is for a three placquette model which consists essentially
of two unitary matrices governed by the action S(U{, U2) = — βN tr((71 + U2 +
C/jC/* + adjoints). The steepest descent method (in the form used in [1] and [2])
fails here because the number of true degrees of freedom goes as N2 rather than N.
We look instead to the Schwinger-Dyson equations recently derived for lattice
gauge theories [3,4]. Because of symmetries special to the three placquette
lattice, the N = oo Schwinger-Dyson equations close on a manageable subset
of the correlation functions. Extending a technique suggested by Foerster [5],
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and employing an ansatz suggested by numerical calculation of the strong coupling
expansion, we find in closed form the unique solution of these equations which
is consistent with the strong coupling expansion and analytic in the coupling
constant in a neighborhood of infinity. This solution cannot be continued below
a critical value of the coupling constant, and the behavior of the one placquette
spectral density is qualitatively similar to that found by Gross and Witten.

The same techniques are used to calculate the spectral density at N = GO of
the product of two independent placquette variables with action S = — βN tτ(U1 +
U2 + adjoints). Again qualitative aspects of the one placquette model are
confirmed.

In only one small respect does the one placquette model seem to be atypical.
The phase transition there is signaled by a change in the asymptotic behavior
at large k of the /c-th Fourier coefficient of the average spectral distribution of
the placquette variable. In the strong coupling phase the coefficients vanish
identically for large k; in the weak coupling phase they diminish as a power of
k. But the strong coupling behavior is anomalous; in the more complicated
models the Fourier coefficients decay exponentially in k, the rate of decay vanish-
ing at the transition point.

These results are presented to serve three purposes: to add confidence that
the phase transition found in the one placquette model will also be present in
more realistic models; to refine slightly expectations of the location and charac-
teristics of the transition; and to give complete, non-terminating strong coupling
expansions for correlation functions in a L/(oo) lattice gauge model, to be used
as sources and test cases for conjectures on the general structure of the strong
coupling, 1/N double expansion.

The organization of the paper is as follows. In Sect. 2 the use of the Schwinger-
Dyson equations to calculate correlation functions is demonstrated on the one
placquette model. The results of Gross and Witten are reproduced. Section 3
contains a derivation of the Schwinger-Dyson equations for the three placquette
model. In Sect. 4 the strong coupling solution is presented and some of its pro-
perties discussed. Section 5 gives the spectral density calculation for two indepen-
dent placquette variables. Section 6 is a discussion of the results.

2. The one Placquette Model

We are interested in the probability measure on U(N) given by

dμ(U) = Z " 1 Qxp[βN(tr U + tr U*)]dU (1)

where dU is Haar measure, β = l/(g2N\ g the standard coupling constant, and Z
provides normalization. Conjugation by unitary matrices leaves dμ unchanged
so it is sufficient to consider expectation values </([/)) of functions invariant
under conjugation. These are generated by the functions N'1 tr(Uk). On evidence
from strong and weak coupling expansions we expect factorization in the large
N limit.That is, if/and g are invariant functions then </#> = </><#> at infinite
N. So it is enough to find (N~ι tr(Uk)}. These numbers are real because dμ



Some Nonabelian Toy Models in the Large N Limit 355

is invariant under replacement of U by its complex conjugate. And, since dμ is
invariant under 1/-• L/"1, only k> 0 need be considered.

Foerster pointed out [5] that the N = oo Schwinger-Dyson equations for
the one placquette model become algebraic when expressed in terms of the analytic
function

zUr1]), (2)

which completely describes the model in the large N limit. R(z) is holomorphic
in the interior of the unit disk because as a power series in z all its coefficients
<iV"1tr(l7k)> lie between - 1 and 1.

The Schwinger-Dyson equations are efficiently derived using a device due
to Guth [6]. Let I b e a skew adjoint N x N matrix. Start from the quantity

Hr\_X{\-zUy1^ (3)

then change variables from U to etXU. Haar measure is invariant under left

multiplication, so

d-$dUexp[βNtτ(e?xU + ί / * ^ * ) ] ^ 1 tr[X(l - zetXU)-1~\ = 0 (4)
_

or

\dμ{βN\τ[X(U - U*)~]N~x tr[Z(l - zU)~x]

+ N-1tr[X(l-zUΓ1zXU(l-zUy1]} = 0. (5)

Contract with the invariant quadratic form on the Lie algebra of U(N) (i.e., use
ΣiXafjίXjl = N~1δ\δk. for an appropriately normalized basis {Xa} of the skew

adjoint matrices) to get

+ N'Hrlil - zUy^zN'1 tv[U(l - zUy1]} =0 (6)

or

β{z'1 - z)R(z) -βz-1 -β<JS~HxU*y-R{z)

+ ([N-1tv(l-zU)-lY) = 0 (7)

In the large N limit this becomes

R(z)2 + [β(z~1 - z) - \\R(z) - βR'(0) -βz-λ = 0 (8)

or

R(z) - \[1 + β(z - z-ι) +^/FW] (9)

where

F(z) = [β(z + z-') + 1Y + 4β(R'(0) - β). (10)

R(z) must be analytic inside the unit circle, so the unknown R'(0) must be
chosen to ensure that F(z) has no zeros or poles of odd order there. When
0 < β ^ 1/2 the only possibility is Rf(0) = β, giving R(z) = 1 + βz. When 1/2 < β
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the analyticity condition is less restrictive, forcing only

l-(4β)-1^Rf(0)Sβ (11)

A unique solution is obtained by noting that the boundary value of R(z)
on the unit circle must satisfy the positivity condition

) - 1 ^ 0 (12)

or equivalently

Rty/F{z)^0. (13)

This is just the positivity of spectral distributions, and can be thought of as follow-
ing from

lΣi){ΣjUi)*'] ^° f o r a11 W ,
i j

which implies

jdz(2Re(R(z))- l)\c(z)\2 ^ 0 for all c(z), (15)

where the integral is taken around the unit circle.
We determine when (11) and (13) can be satisfied simultaneously. Under

conditions (11), the line {z:F(z) real negative} divides the unit disk in two. The
square root in (9) must lie on different sheets on either side of this line. F{ — 1)
and F(l) are both non-negative real but on opposite sheets on the Riemann
surface of the square-root, so-s/F( — 1) and>yF(l) cannot both be positive. F(l)
is always positive so F( — 1) must be made zero. This requires

1 . (16)

giving

R(z) = i [ l + β(z - z-') + β(ί + z - 1 ) v / z 2 - f 2 ( j 8 - 1 - l ) z + l ] . (17)

y/F{z) is imaginary along the arc Re(z) ^ 1 - β~ \ \z\ = 1, so the spectral density
2RQ(R(Z))— 1 vanishes there. As β-> GO this arc grows to fill the whole circle,
and R(z) approaches (1 — z)" 1 , corresponding to a spectral distribution concen-
trated at z= 1.

The correlation functions of the one placquette model are analytic in β
except at the critical value β = | . At β = \ they have continuous first derivatives
but not second derivatives. A signal of the transition is the asymptotic behavior
for large k of the Fourier coefficients < N~ 1 tr Uk) of the one placquette spectral
density. In the strong coupling regime, β^f , the large k Fourier coefficients
vanish identically. In the weak coupling regime they decay as k~3/2. To see this,
use the residue formula to write

> = § d z ^ (18)

where the contour of integration is a small circle around the origin. Deform the

integration path until it surrounds the branch cut of >/F(z), then use steepest

descent to find the large k behavior.
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3. Schwinger-Dyson Equations for the Three Placquette Model

Consider a lattice consisting of two vertices, three links connecting them, and
three placquettes, each with a different pair of links as boundary. The link variables
are Ό x, ί/2, and U3 and the action is

S(U1, U2, t/3) = - βNtτ(U1 U* + U2U* + U3U* + adjoints). (19)

Gauge invariance can be used to eliminate C/3, giving a two matrix version:

S(Uι,U2)= -βNtv(Uι + U2 + Uί (7* + adjoints), (20)

but the three matrix version better reveals the symmetries of the model. The
measure of interest is

dμ(Uι, U2, U3) = Z~ι exp[ - 5(1/ j , U2, U 3)]dU tdU 2dU 3. (21)

The gauge transformations take ( [ / 1 5 1 / 2 , l/3)-> ( F ^ W , V*U2W, F*l/3W0,
K and FF in U(N\ and leave dμ invariant. The factorization assumption says
that </#> = (f}(g) + 0{N~2) for gauge invariant functions/ and # with
nontrivial large N limits. Thus the only expectation values of interest at N = oo
are of the form < N ~ ! tr (7(L)>, where L/(L) is the product of link variables along
a closed loop L.

The first step in applying the analytic-algebraic technique is to notice that
the N = oo Schwinger-Dyson equations close on the correlation functions
generated by

1 ] > . (22)

To see this, start from the quantity

(N-ίtτ[X(l-wU1U*)-i(l-zUίU*)-ί']y9 (23)

replace U λ with etXU λ and proceed as in (4)-(6) to arrive at

βA + B + C = 0 (24)

where

A = (N-HτliU\U* + U\U* - U2U* - U3[/*)(l -wί7\UD~\l -zU\U*y-1])

(25)

(26)

C = < N " M r [ ( l - w L Γ ^ * ) - 1 ^ -zC/jC/^-^trfzC/jC/fίl - zU {U*y x]> (27)

Some algebraic manipulation gives

A = (w-1 + z" x - w - z)i?(w,z) - wr ̂ ( 0 , z) - z" ̂ , 0 ) - AλA2 (28)

where

X 1 = < J V - 1 t r [ l / 2 t 7 * ( l - z l / 1 l 7 * ) - 1 ] > (29)

/12 = < N - 1 t r [ l / 3 i ; * ( l - w L / ^ * ) - 1 ] ) . (30)
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Cyclicity of the trace gives

]>• (31)

The symmetries Uχ -• U2,U2-+ Uί and Uι -+ ί/*, U 2 -^ [/*, U 3 -> C7* then yield

Aχ = ̂ ^0,0) + zi^O, z) (32)

where

Similarly
A2 = R2(09 0) + wR2(w, 0). (34)

More algebraic manipulation combined with the factorization assumption for
N = co gives

B = R{w, 0)K(w, z) - JR(W, O)JR(O, z) (35)

and
C - jR(O, z)R(w, z) - R(w, z). (36)

Write R(w) = R(w, 0), note that the symmetry U2 -> U3, [73 -• l/2 implies i?(w, z) =
i?(z, w), and collect all of the above into the N = co algebraic Schwinger-Dyson
equation

[R{w) + R{z)- 1 + β(w~ 1 +z'1-w- z)~]R{w,z) = R(w)R{z)

+ β[w~ xR(z) + z-χR{w) + zR^O, z) + wR2(w, 0) + 2Λ'(0)]. (37)

Equation (37) refers only to information contained in jR(w, z); this is the closure
property claimed above.

A more useful form of (37) is obtained by the following manipulations. Expand
both sides of (37) in power series in w and use R^w, z) = R2(z, w) to get

R^z) = (1 - zYι{β-\R{z) - R{zf) + z-\\ - R(z)) + zΛ(z) + 2Λ'(0)]. (38)

Define

D(z)-,R(z) + i S ( z - 1 - z ) - l / 2 . (39)

Use (38) and (39) and a considerable amount of algebra to rewrite (31) as

R{w, z) = 1/2 + β{l + w + z) - (1 - z)- ̂ D(z) - (1 - w)" ^Dfw)

+ (1 - w)- Hi - z Γ Hi - wz)S(w, z) (40)

where

S(w, z) = [D(w) H- D(z)] ~ x T(w, z) (41)
and

T(w, z) = D(w)D(z) - β2(\ - w)(l - z)(l + w" !z~ ^ 4- 2/?JR'(0) + jS + 1/4. (42)

Now the problem is to find D(z) such that zD(z) is holomorphic in the interior
of unit disk value β at the origin, and such that R(w, z), given by (40)-(42), is
holomorphic in the bidisk | w | < l , | z | < l . A necessary condition is that T(w, z)
vanish on the curve C defined by D(w) -f D(z) = 0.
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4. A Solution of the Schwinger-Dyson Equation

There is a clue to a solution in the strong coupling expansion. If R(w, z) is expanded
in a triple Taylor series in w, z and β we know that βkwxzm will appear only if
k ^ 1 + m. Using this fact and the Schwinger-Dyson Eq. (37) we can calculate
the coefficients of the triple Taylor series recursively. We notice among the terms
contributing to R{z\ i.e. those with 1 = 0, a curious pattern holding to quite
high order: after βz, only terms with k — 2m divisible by three appear. Take as an
ansatz that this is the exact truth, or, what is equivalent, that D(βύ) depends only
on u and β3. We find that there is a unique solution to our problem for which
this ansatz holds.

Define the curve C in (u, v) by D(βu) + D(βv) = 0. By hypothesis, C depends
only on β3. Rearranging (42),

T(βu9 βv) = [D(βu)D(βv) + β3{u + υ)-u-1υ-ί] + β[u + υ- β3uv~]

T(βu, βv) can vanish along C only if both expressions in square brackets are
functions only of β there. Equivalently, along C :D{w) + D(z) = 0, we must have

D{w)D(z) + β2(w + z - w~ γz~γ) + a(β) = 0 (44)
and

w~λ + z~λ - wz + β~ λb(β) = 0 (45)

where a(β) and b(β) actually depend only on β3. Substituting for D(w) and w"1

in (44) we find that, on C,

D(z)2 = β2z~2 + bβz~1 + a + β2z. (46)

Near the origin the curve C looks like w = — z + 0(z2). Thus (46) must hold for
all z near 0. But zD(z) is analytic inside the unit circle, so (46) must be identically
true. This is compatible with (39) only if b — 1. We are left with

D(z) — βz~λ J P(z) (47)
where

F(z) = z3 + aβ~2z2 + β~ ιz + 1. (48)

To see the constraints on a(β) imposed by the analyticity of R(w, z), use (47)
and (48) in (40)-(42) and simplify to arrive at

R{w, z) — ^ + β(l + w + z) + β{w — z)~ x [(l + Z)ΛJP(W) — (1 + W)ΛV/P(Z)] . (49)

R(w, z) given by (49) is analytic whenevery/P(w) and λ/
/P(zj are. So the only cons-

traint on a(β) is that P(z) must have no zeros of odd order inside the unit circle.
Let the three zeros of P(z) be zγ, z2 and z 3 . Since zxz2zz = — 1 the only admissable
possibilities are:

Z 2 r = Z 3 ' l Z

2 l = 1 ( 5 0)

or | z 1 | = | z 2 | = | z 3 | = l. (51)

Alternative (50) is equivalent to
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where z2(z) must satisfy

Q(z2) = z3

2-β-1z2-2 = O,\z2\Sl (53)

For 1/3 < β or β < — 1 all three roots of Q(z) lie outside the unit circle, making (53)
impossible to satisfy. But for — 1 g/J ̂  1/3 there is exactly one root inside:

z2(β)= -2(3 i S)- 1 / 2 sin[ |s in- 1 ((3 i 8) 3 / 2 )], O ^ s i n ^ C ) ^ ^ (54)

It is easily seen that a(β) defined by (52) and (54) depends only on β3 and is analytic
in β near 0. It follows that R(w, z) defined by (47)-(49) is also analytic in β near 0.
The condition k ̂  1 + m in the triple Taylor series R(w, z) = Yuβ

kwιzm is verified
by noting that α(0) = \ so R{β~ V β~ xv) = 1 + u + ϋ + UD + 0(β). Since the Taylor
series coefficients of R{w, z) can be calculated recursively from (37), given this
fact about the strong coupling expansion, there can be no other solution of the
Schwinger-Dyson equation (37) compatible with the strong coupling expansion
and analytic in β near 0.

The second alternative, (51), requires a(β) — (β*)~ 1β2 and, for real β, either
β g — 1 or 1/3 g β. This contradicts the original ansatz, but the derivation of
(49) depended only on (38), not on the particular form of a(β). So a(β) = (β*)~ ιβ2

does give a solution of (37) outside the strong coupling regime. Unfortunately
it must be discarded for violation of the spectral positivity condition

Re(£>(z))^0, | z | = l , (55)

on the boundary value of D(z).
The solution determined by (50) gives a one placquette spectral density

2Re(#(z))- l , | z | = 1 which is strictly positive as long as - 1 < β < 1/3. Its
Fourier coefficients ( N " 1 tr(t/1l7*)k> go as (1 + z2~

3)ic~3/2exp[ - k(ln(z-2))]
for large k. At β = 1/3, where z2 = — 1, the spectral density acquires a zero at
z= — 1 and stops being smooth there, and the Fourier coefficients go as /c~5/2.
At β = — 1 the spectral density has two zeros, one at z = — 1 and the other at
z = 1. The second zero reflects the frustration caused by negative β.

5. The Two Placquette Model

This is a model of two independent unitary matrices. It can be thought of as a
piece of the full two dimensional lattice model or as the three placquette model
with one placquette, but no links, left out. The action (in terms of the independent
matrices) is

S(U1,U2)= - jSiVtrίC/^t/ j+adjoints) (56)

We sketch here a computation of the spectral distribution for the product matrix
UίU2, i.e., of

M(z)=(N-1tr(l-zU1U2r
1}. (57)

The N = GO spectral distributions for U1 and U2 are the same as for the unitary
matrix of the one placquette model, so

M{z) = \dVN~ι tr [(1 - zUVUV*y'] (58)
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where U has the spectral distribution found in sect. 2. Thus M(z) could in principle
be calculated directly, but there seems no convenient way to do so.

Instead we again look for a convenient set of correlation functions which
include those generated by M(z) and on which the Schwinger-Dyson equations
close. We use

M(w,z) = < ΛΓ * tr (1 - wUJ-\l - zU1 U2)~ι >. (59)

The Schwinger-Dyson equations are obtained by now familiar manipulations
of the expressions

< N~x tr X(l - wt/J- *(1 ~ zU^J- 1 > (60)
and

{N-1 tτX(l - wU^-^l - zU2Uί)~1}, (61)

after replacing Uί with etXU1. They lead directly to the results

β^:(2M(z)-l)2 = (l + 4β2z) (62)

β>±: = ψz~'{\{z 4-1)2 - 2yz + {z- \)[_\{z + I)2 - A ] 1 ' 2 } , (63)

where y- \-{2β)-\
In the strong coupling regime, β < \, the spectral density Re(2M(z) — 1), | z | = 1

is smooth and positive. The Fourier coefficients <iV~1tr([/1(72)
fc> go for large

k as /c" 3 / 2 exp[- fc(ln(4/?2))]. When β^\ the spectral density vanishes along
the closed arcRe(z) ^ — 1 + 2y2, and the Fourier coefficients go as k~3/2.

6. Discussion

Note first that the correlation functions of the one placquette model at N = oo
are completely determined by the Schwinger-Dyson equation (8) and the positivity
condition (12). The steepest descent technique is more powerful, however, because
the Schwinger-Dyson equations have nothing to say about the free energy.

The situation for the three placquette model is not so clear. Equations (40)-
(42) state that the joint generating function R(w, z) is determined by the one
placquette generating function R(z). From the rest of the Schwinger-Dyson
equations it can be argued all of the correlation functions can be calculated
once R(z) is known. But it is not clear what analyticity and positivity conditions
beyond (40)-(42) and (55) are needed to fix R{z) uniquely.

The strong coupling solution presented here, in (47)-(54), requires information
beyond the Schwinger-Dyson equations: the lowest order in the strong coupling
expansion at which each correlation function can begin, and analyticity of the
N = oo correlation functions in β near 0. Moreover, to actually find the solution
required an ansatz which does not seem at all obvious.

It might have been wondered whether the inter-placquette interaction in
the three placquette model (20), which renders the steepest descent technique
unusable, would have a qualitative effect on the phase transition. It seems not to.
The strong coupling solution for R(z) in the three placquette model looks much
like that in the one placquette model. The corresponding spectral density
2 ReCR(z))— 1, \z\ = 1 is analytic and positive for β < βc, starting constant at
β = 0 and becoming more and more biased towards eigenvalue z = 1 as β increases,
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until, at β = βc, a zero occurs in the density at z = — 1, and differentiability fails
there. Actually this was to be expected. The interaction between placquettes
strengthens the ordering effect of the action, so outgh to encourage the phase
transition to occur at an even smaller value of βc than in a model with independent
placquettes. This is exactly what happens: βc = |- in the three placquette model,
~ in the one placquette model.

The two placquette calculation gives the spectral distribution of the product
of two matrices whose individual spectral distributions are fixed but which are
subject to extreme relative disordering, as described in (58). It seems possible
that the additional disorder would produce a smooth spectral density even in
the weak coupling phase. But this does not happen. Whenever the individual
placquette matrices are forbidden a range of eigenvalues around — 1 the product
matrix is also the extra disorder is expressed only in a broadening of the range of
eigenvalues covered by the product. Because this model maximizes relative dis-
disorder among the placquette variables making up a loop variable, the result
suggests that the change in spectral properties seen in the one placquette model
will occur simultaneously for all loop variables in the general lattice model.

In all three models the strong coupling (β < βc) spectral densities are smooth
and positive, the fc-th Fourier coefficient going asymptotically to c(β)k~3/2 x
exp[— r(β)k]. (In the one placquette model c(β) = 0.) At β = βc,r(β) vanishes.
In the one and two placquette models, c(βc) is nonzero and the Fourier coefficients
go as k~3/2 for β ^> βc. But in the three placquette model c(βc) = 0 and the Fourier
coefficients go as k~5'2 at the transition point.

Considering the ordering influence of the lattice action in more than two
dimensions it is plausible that an order-disorder transition should always occur
at {g2N)c > 2. The three placquette example at least encourages this expectation.
And it is plausible that the strong coupling phase should be characterized by
spectral densities with exponentially decaying Fourier coefficients (corresponding
to generating functions R(z) analytic in disks of radii greater than 1.) But the
simple global analytic structures of the toy model generating functions at and
beyond the transition to the weak coupling phase seem tied to the fact that they
are solutions of a finite set of algebraic equations in a finite number of variables.
This does not seem likely to be the case for even slightly larger lattices.
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