
ANNALS OF PHYSICS 163, 318419 (1985) 

Nonlinear Models in 2 + E Dimensions* 

DANIEL HARRY FRIEDAN+ 

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 

Received February 10, 1984 

The general nonlinear scalar model is studied at asymptotically low temperature near two 
dimensions. The low temperature expansion is renormalized and effective algorithms are 
derived for calculation to all orders in the renormalized expansion. The renormalization group 
coefftcients are calculated in the two loop approximation and topological properties of the 
renormalization group equations are investigated. Special attention is paid to the infrared 
instabilities of the fixed points, since they provide the continuum limits of the model. 

The model consists of a scalar field # on Euclidean 2 + E space whose values d(x) lie in a 
fmite dimensional differentiable manifold M. The action is S(d) = Ae J dx tT-‘g&d(x)) 
a,@(x)a,@(x), where A-’ is the short distance cutoff and T-‘g, is a (positive definite) 
Riemannian metric on M, called the metric coupling. 

The standard nonlinear models are the special cases in which M is a homogeneous space 
(the quotient G/H of a Lie group G by a compact subgroup H) and g, is some G-invariant 
Riemannian metric on M. G acts as a global internal symmetry group. 

The renormalization of the model is divided into two parts: showing that the action retains 
its form under renormalization and showing that renormalization respects the action of the 
diffeomorphisms (i.e., the reparametrizations or transformations) of M. The techniques used 
are the standard power counting arguments combined with generalizations of the BRS trans- 
formation and the method of quadratic identities. 

The second part of the renormalization is crucial for renormalizing the standard models, 
since it implies the renormalization of internal symmetry. It is carried out to the point of iden- 
tifying the finite dimensional cohomology spaces containing possible obstructions to the 
renormalization of the transformation laws, and of noting the absence of obstructions when M 
has finite fundamental group and nonabelian semisimple isometry group. 

The renormalization group equation for the metric coupling is A-‘(a/an-‘) g,= -pii( 
&CT-‘g) = -ET-k, + R, + t~~,,,R,,w + G( T’). Rip, is the curvature tensor and R, = R,, 
the Ricci tensor of the metric g,. The p-function j,,(g) is a vector field on the inlinite dimen- 
sional space of Riemannian metrics on M. Two results on global properties of /I are obtained. 
When M is a homogeneous space G/H, the p-function is shown to be a gradient on the finite 
dimensional space of G-invariant metric couplings on M. And, when M is a two dimensional 
compact manifold, the b-function is shown to be a gradient on the infinite dimensional space 
of metrics on M. The rest of the results are concerned with lixed points. The fixed points are 
shown to correspond to the metrics satisfying a generalized Einstein equation, 
R, - ag,, = V,u, + V,v,, a = &l or 0, for v’ some vector field on M. Known solutions to these 

* Ph.D. thesis submitted to the Department of Physics, University of California at Berkeley, August 
1980. Distributed as LBL publication LBL-11517. Prepared for the U.S. Department of Energy under 
Contract W-7405ENG-48. 

t Present address: Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, 
IL 60637. 

318 
0003-4916/85 $7.50 
Copyright CI 1985 by Academic Press. Inc. 
All rights of reproduction m  any lorm reserved 



NONLINEAR MODELSIN 2 +&DIMENSIONS 319 

equations are discussed and some of their general properties described. In particular, it is 
shown that infrared instability occurs in at most a finite number of directions in the infinite 
dimensional space of metric couplings. 0 1985 Academic PI~SS. IX 
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I. THE LOW TEMPERATURE EXPANSION 

1. INTRODUCTION 

This is the first part of a study of the general nonlinear scalar model at 
asymptotically low temperature near two dimensions. It treats the renormalization 
of the low temperature expansion. The second part is an investigation of the 
topological properties of the renormalization group equations near zero tem- 
perature. A partial summary of both parts is to be found in [l]. 

The model consists of a scalar field 4 on Euclidean 2 + E space whose values c$(x) 
lie in a finite dimensional differentiable manifold M. The distribution of the fields is 

n 4(x) expC - S(4)], 

where n, C@(X) is the a priori measure on the fields and 

S(d) = n&j dx W’gi@(x)) d,&(x) Q#Q) (1.2) 

is the action. n ~’ is the short distance cutoff. 
The parameters of the model are: (1) T-‘g,, a (positive definite) Riemannian 

metric on M, called the metric coupling; and (2) d&x), a volume element on M 
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(independent of x), called the a priori volume element, which is taken to be some 
natural volume element, such as the metric volume element, associated with g,. 

The standard nonlinear models are the special cases in which M is a 
homogeneous space (the quotient G/H of a Lie group G by a compact subgroup 
H), C&$(X) is the unique G-invariant measure on A4, and g, is some G-invariant 
Riemannian metric on M. G acts as a global internal symmetry group. 

When H is a sufficiently large subgroup of G, the metric coupling is completely 
determined by the internal symmetry, up to multiplication by a positive real num- 
ber. The temperature T is then the only free parameter in the model. An example is 
the 0( N)-model A4 = SN - ’ = O(N)/O(N- 1). In general, the space of parameters of 
a standard model, which is the space of G-invariant metrics on G/H, is a finite 
dimensional noncompact manifold. 

The geometric character of the coupling of the standard nonlinear model was first 
noted by Meetz [Z]. Honerkamp [3] constructed a manifestly covariant, 
regularized perturbation series for the O(3)-model in four dimensional space-time 
by writing the model in terms of linear fields defined with respect to geodesic nor- 
mal coordinates on M. He noted that the technique applies to models without 
internal symmetry. Ecker and Bonerkamp [4] calculated one loop counterterms in 
a form appropriate to the general model. 

Polyakov [S] studied the renormalization of the standard O(N)-model at 
asymptotically low temperature in 2 + E dimensions. (See also [6].) At low tem- 
perature and over short distances the predominant fields are the small fluctuations 
about constants d(x) = m, so it is appropriate to renormalize perturbatively. The 
internal O(N) symmetry equates all constants, so it is only necessary to investigate 
fluctuations about any one of them. The O(N) symmetry of the action, and its 
approximate scale invariance near two dimensions, give the result that the dis- 
tribution of fields retains the form (l.lb(1.2) under renormalization. The renor- 
malized distribution depends on a renormalized temperature (and a renormalized 
field). The renormalization group acts on the fields and on the one parameter space 
of the temperature T. 

A first order perturbative calculation of the renormalization group coefficients 
finds an infrared unstable fixed point at a temperature of order E. The smallness of E 
justifies the use of perturbative technique to find the fixed point. From the point of 
view of Wilson [7], the unstable manifold of the renormalization group action at 
the lixed point describes a Euclidean quantum field theory or, equivalently, the 
universal scaling limit of a nearly critical extended statistical system. In two dimen- 
sions the fixed point is at zero temperature and the model is asymptotically free. 

Brezin, Zinn-Justin, and Le Guillou [S-lo] systematized Polyakov’s results on 
the O(N)-model in the language of perturbative quantum field theory. (See also 
[ 11 I.) The double expansion in T and E is found to be a renormalizable pertur- 
bation series, so that standard perturbative field theory algorithms can be applied 
to the calculation of renormalization group coefficients to all orders. 

The standard perturbative version of the model is used. Small fluctuations of the 
nonlinear field d(x) are represented as linear fields a’(x) by means of coordinates 
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about some point on the (N - 1 )-sphere M. Because of the homogeneity of M, all 
such points are equivalent. An O(N- 1) subgroup of the internal symmetries acts 
by linear transformations on O, the rest by nonlinear transformations. A special 
choice of coordinates is made in order to simplify the form of the nonlinear sym- 
metry. 

The distribution (l.l)-( 1.2), rewritten in terms of the linear fields, describes an 
(N- 1 )-component massless scalar field governed by an action consisting of the 
integral over space of an infinite power series in the linear field times a product of 
two of its derivatives: 

S(a)=ii’j~~fT~*g,(a(x))d,a’(x)d,~’(x) (1.3) 

g,i(u)=6ij+(1-u,v,)~‘u;uj. 

The expansion in T becomes a sum of Feynman diagrams. 

(1.4) 

Power counting determines that the renormalized perturbative action remains the 
integral of a power series in the linear field times two of its derivatives. The non- 
linear symmetries of the bare action give rise to quadratic identities on the renor- 
malized action [12]. The most general solution of these identities consistent with 
power counting is exactly the bare action, up to a renormalization of the tem- 
perature and a multiplicative renormalization of the field. 

The equivalence of bare and renormalized descriptions of the model implies 
renormalization group equations for the temperature and field, whose coefficients 
can be determined at each order in T and E from the ultraviolet divergences of a 
finite number of Feynman diagrams. In [12], the coefficients are calculated in the 
two loop approximation. 

The aim of the present work is to extend the results of Polyakov to the general 
nonlinear model, using an elaboration of the methods of perturbative field theory. 
Part I is concerned with the renormalization of the double expansion in T and E. 

The treatment of renormalization divides into two conceptually distinct tasks. 
The first task is to show that after renormalization the distribution of the fields 
retains the form (l.l)-(1.2). Linear fields are introduced to represent the fluc- 
tuations around the constant fields d(x) = m, using coordinates on M near m. In the 
absence of homogeneity all constants must be included. For each constant m, the 
distribution of linear fields is governed by an action of the form (1.3). Vertices are 
provided by the Taylor series expansion at m of the metric coupling in coordinates 
around m. Power counting determines that each distribution of linear fields retains 
its form under renormalization. The problem is to show that the renormalized ver- 
tices and linear fields associated with the various constants can be made to fit 
together as the Taylor expansions of a single renormalized metric coupling for a 
single nonlinear field. This is accomplished by expressing the conditions for com- 
patibility of the vertices as an invariance of the collection of distributions of linear 
fields under simultaneous change of m and cr. Resulting quadratic identities on the 
renormalized distributions of linear fields are solved to find a renormalized dis- 
tribution of nonlinear fields of the form (l.l)-( 1.2). The result is that, under any 
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renormalization scheme, the continuum limit A + co can be taken, order by order 
in T and E, when the bare metric and field of (l.lk(1.2) are expressed as cutoff 
dependent functions of a renormalized metric and a renormalized field. It follows 
that the renormalization group acts on the fields and on the metric couplings. Dif- 
ferent renormalization schemes give rise to equivalent renormalization group 
actions. 

Effective algorithms are derived for performing manifestly covariant calculations 
to all orders in T and E; and the coefhcients of the renormalization group equations 
are calculated in the two loop approximation. For the metric coupling, the result is 

n-1 a 
an&j= -P&T) (1.5) 

Bij(T-‘g)= --ETp’gii+ R,+fTR,,,Rjp,,+O(T2). (1.6) 

Rip,, is the curvature tensor and R, = Rip, the Ricci tensor of the metric g,. The 
field i(x) is renormalized within the space of order parameters: the nonnegative 
unit measures G(x) on M. The renormalization group equation is linear in the 
order parameter: 

A-’ & Q(x) = Y(g)* @(xl (1.7) 

y(T-‘g)= -fTViVi+O(T3) (1.8) 

where Vi is the covariant derivative for the metric g,. These equations are studied 
in Part II. 

The second task in the study of renormalization is to investigate the effects on the 
transformation properties of the model. The diffeomorphisms of M (i.e., the trans- 
formations or reparametrizations of 44) act on the fields and parameters of the 
model as a group of equivalence transformations. The diffeomorphisms which leave 
the parameters unchanged are global internal symmetries. The question is whether 
it is possible, given an arbitrary renormalization scheme, to find finite corrections 
which make the renormalization preserve the structure of the equivalence transfor- 
mations. This seems crucial to the interpretation of the renormalized model. In par- 
ticular, the preservation of internal symmetry is needed for the renormalizability of 
the standard models. 

The investigation of the renormalizability of the transformation laws is not 
carried to completion here, but stops with identification of the finite dimensional 
cohomology spaces which contain the possible obstructions. The next step, which is 
an examination of the extent to which the action of the renormalization group 
removes the obstructions, is not taken; nor is any interpretation offered for the 
pathologies associated with the obstructions to renormalizability of the transfor- 
mation laws. 

The construction of the renormalized model and the calculation of the renor- 
malization group coefficients require no conditions on the global properties of the 



NONLINEAR MODELSIN 2 +&DIMENSIONS 323 

manifold M. The discussion of the renormalization of the transformation laws, on 
the other hand, is limited here to the cases in which M is either a compact manifold 
or a noncompact homogeneous space. In the latter case, additional qualifying 
assumptions are made when convenient. 

The organization of Part I is as follows. Section 2 describes basic structural 
features of the nonlinear models: the parameters of the models; the transformation 
properties; the structure of the standard models; and the definition of correlation 
functions, the order parameter, and the generating functions. Section 3 sketches the 
construction of the regularized low temperature expansion. The technical details are 
given in Sections 4 and 5. Section 4 is a treatment of systems of coordinates on the 
manifold M. Section 5 discusses the representation of the small fluctuations by 
linear fields, describes the distributions of linear fields, and derives invariance 
properties. Section 6 treats the renormalization. It discusses the renormalization 
group in general, constructs the renormalized nonlinear model, and begins the 
investigation of the renormalization of the transformation laws. Section 7 sum- 
marizes rules for calculation, including special rules adapted to the standard 
models; and presents the results of several calculations, notably the two loop 
calculation of the renormalization group coefficients. Material specific to the stan- 
dard models is given in Sections 2.3, 4.8, 5.8, 6.5, and 7.2. 

The essential ingredients of Part I are manipulations of formal power series. 
Analytic niceties are either suppressed or ignored. Tensor analysis is done using 
index notation, which is regarded from the point of view of [13]. The indices 
(i,j, k ,..., p, q, r,...} are used for tangent vectors on M. The summation convention 
is used throughout. Reference [ 141 is a reference for basic facts and notation of dif- 
ferential geometry. 

2. STRUCTURE OF THE NONLINEAR MODELS 

2.1. The Distribution of Fields 

The form of the distribution of fields (l.l)-(1.2) is determined by Euclidean 
invariance, by the scalar character of the held 4, by the requirement that all interac- 
tions be short range and order inducing, and by certain assumptions of regularity. 

The a priori measure n, d&x) is, by itself, the most general Euclidean invariant 
distribution of fields in which the values of the field at different points in space are 
completely independent. It is the first term in an expansion in the range of interac- 
tion (having range zero). The full distribution of fields can be written as the a priori 
measure times the exponential of (minus) an action. Because only short range 
interactions are admitted, the action must be the integral over space of a local 
expression: a sum of products of spatial derivatives of the field. 

A derivative a,&‘(x) of the field, in the p direction at x, is a tangent vector to the 
manifold A4 at the point 4(x). Because 4 is assumed to be scalar, only products of 
even numbers of derivatives can occur in the integrand of the action; and the spatial 
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indices must be contracted in pairs with the Euclidean metric. The result, for each 
point x, is a partially symmetrized tensor at 4(x) in A4. This tensor must be con- 
tracted with a dual tensor in order to obtain a real number which can be integrated 
over space. The dual tensor must in general depend on d(x); but, by Euclidean 
invariance, it cannot depend explicitly on x. Thus the coupling associated with each 
term in the action is a tensor field on M. 

A term in the action containing no derivatives of the field takes the form 

A*+& dx h((qx)) s (2.1.1) 

where h is a real valued function on A4 (a tensor field of rank zero). h is the 
generalization of a constant external field. It can always be absorbed into the a 
priori volume element: 

&W+&(x) exiWd4(xM. (2.1.2) 

Moreover, the ratio of two volume elements, being a positive function on M, can 
always be written as the exponential of a function h. The range zero portion of the 
distribution of fields is parametrized equivalently either by a priori volume elements 
or by constant external fields. 

The action (1.2) is the most general possibility containing the product of two 
derivatives of the field. The two derivatives must appear in the form 
QW QW, h h w  ic is a symmetric two-tensor at d(x). It must be contracted 
against a symmetric quadratic form on tangent vectors at 4(x). The quadratic form 
should be nonnegative in order that the action be order inducing. A field of non- 
negative symmetric quadratic forms is a (possibly degenerate) Riemannian metric 
on 44. 

Contributions to the action containing a product of more than two derivatives of 
the field have naive length dimension 22 + O(E). Since true scaling behavior con- 
sists of naive scaling behavior plus corrections of order T, these contributions are 
suppressed under renormalization at low temperatures and small E. In the language 
of perturbative field theory, they are nonrenormalizable. In the language of 
statistical mechanics, they are irrelevant. 

The regularity assumptions are: (1) that the manifold in which the field takes 
values is smooth (infinitely differentiable); (2) that the a priori volume element is 
smooth and nowhere vanishing; and (3) that the metric coupling is smooth and 
nowhere degenerate. 

The temperature T in the coupling T- ‘gij is not a separate parameter. Multiply- 
ing T by a positive constant c while multiplying g, by c-l leaves the coupling 
unchanged. The temperature is written separately only to make the expansion 
parameter visible and appears only in the combination (Tg-‘)“. Except when an 
explicit expansion parameter is needed, the temperature will be absorbed into the 
metric, the coupling written simply g,. 
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The parameters of the general nonlinear model are the a priori volume element 
d&x) and the metric coupling g,. Two a priori volume elements are equivalent if 
their ratio is a constant, because the corresponding a priori measures differ only in 
their normalizations. 

It is convenient to select a particular a priori volume element d,d(x) for each 
metric coupling g,, and to parametrize the model by metric couplings and constant 
external fields h,. Two constant external fields are equivalent if they differ by a con- 
stant function on M. The distribution of fields becomes 

II 44~) ev- S(4) + Hd4)1 

H,(4) = A’+& 
s 

dx h,(d(x)). 

(2.1.3) 

(2.1.4) 

The obvious choice of d&(x) is the metric volume element associated with g, but it 
will be useful to allow for a more general choice. 

2.2. The Manifold M and Its Diffeomorphism Group 

The manifold M is taken to be finite dimensional, connected, and smooth. If M is 
not connected, then, because fluctuations between different connected components 
are negligible at low temperature, the model decomposes into a collection of 
independent nonlinear models, each based on one of the connected components. 
Therefore M might as well be assumed connected. 

In the construction of the renormalized low temperature expansion, which sees 
only small fluctuations of the nonlinear field, only the local properties of M are 
significant. Global conditions on M, such as compactness or completeness, are not 
needed. It is expected, however, that, for the model to be sensible (both pertur- 
batively and nonperturbatively), some global conditions are required. In particular, 
the global properties of M seem to be relevant to the existence of the infinite 
volume limit of the low temperature expansion, order by order in T. (Compare 
[HI.) Compactness should certainly be enough to give a sensible model. Of the 
noncompact manifolds, certain homogeneous spaces, at least, should have sensible 
low temperature expansions. The discussion of the renormalization of the transfor- 
mation properties of the model is limited to these cases because they are technically 
accessible. 

The diffeomorphisms of M (i.e., the transformations or reparametrizations) are 
the smooth maps of M to itself which have smooth inverses. They form a group D. 
The infinitesimal diffeomorphisms are the vector fields on M. A diffeomorphism !P 
acts on the fields by acting simultaneously on their values everywhere in space, tak- 
ing the field 4(x) to the field Y 0 d(x). It carries the distribution of fields to a trans- 
formed distribution. It also transforms volume elements and metrics on M, taking 
the metric g, and volume element dc$(x) at d(x) to the metric !P* g, and volume 
element !.P*dd(x) at !Po&x). 

59Sfl63/?-8 
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The transformed distribution of fields retains the form (l.l)-(1.2), the metric 
coupling and the a priori volume element replaced by the transformed metric and 
the transformed a priori volume element. It follows immediately that any dif- 
feomorphism of M which leaves the metric and volume element unchanged acts as a 
global symmetry of the model. 

When the model is parametrized by a constant external field h, (with respect to a 
special choice d&x) of a priori volume element for each metric coupling), the 
transformed distribution of fields corresponds to the transformed metric Y, g, and 
the transformed external field Y’,h, if and only if the choice of a volume element for 
each metric is natural; that is, 

~*dg4b) =&*,4(x) (2.2.1) 

for all diffeomorphisms Y. This certainly holds when d&(x) is the metric volume 
element for g. Henceforth d,+(x) is assumed natural in g. 

The transformed distribution of fields is entirely equivalent in its observable 
properties to the original. The manifold M is not itself directly accessible to obser- 
vation because there is no means of singling out a distinguished parametrization of 
the values of the field by points in M. The only observables are the spectral proper- 
ties of the Euclidean motions (and of the internal symmetries), and are not affected 
by the diffeomorphisms of M. 

The group of diffeomorphisms of M acts on the space of parameters of the model 
as a group of equivalence transformations. The space of parameters is, after selec- 
tion of a natural volume element for each metric coupling, the infinite dimensional 
space R of Riemannian metrics on M together with the space of real valued 
functions on M (modulo the constants). The true models are the equivalence classes 
under the action of the diffeomorphism group. The space R of equivalence classes of 
metrics is an infinite dimensional manifold except at the metrics with isometries, 
where there are singularities [16]. The true parameter space is a vector bundle 
(with singularities) over R, whose fibers are equivalent to the space of real valued 
functions on M (modulo constants). 

A covariant renormalization scheme is one in which the bare and renormalized 
parameters (and fields) transform in identical fashion, which is to say that the 
renormalization and diffeomorphism groups commute. A renormalization scheme is 
manifestly covariant if it is natural in the metric coupling and the a priori volume 
element (or external field). The manifestly covariant schemes developed below are 
natural in the metric alone. 

2.3. Standard Models 

The standard models are characterized by the property that the transformations 
of M leaving the metric coupling and a priori volume element invariant act tran- 
sitively on M. That is, for any pair of points in M there is a symmetry transfor- 
mation taking one point to the other. 

The isometries of a Riemannian manifold always form a finite dimensional Lie 
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group. The condition that the a priori volume element also be preserved determines 
a closed subgroup. Therefore the internal symmetry group is a finite dimensional 
Lie group G. The symmetries leaving fixed a single point m, in M form a closed 
subgroup H of G, called the isotropy (or “little”) group at m,. The map n: G + M 
which takes the transformation Y in G to the point Y(Q) in M identifies M with 
the quotient GfH, the space of right H-cosets in G. Varying the base point m, 
amounts to conjugating H by an element in G. The action of G on M is therefore 
determined by the conjugation class in G of the compact subgroup H. 

Since H leaves m, fixed, it acts by linear transformations on the tangent vectors 
to M at m,. This is called the isotropy action of H. Since H is a group of isometries 
of a Riemannian metric on M, and since the exponential map for such a metric 
identifies the tangent space at m, with a neighborhood of m, in H-invariant fashion, 
and since M is connected, it follows that any element in H which acts as the iden- 
tity on tangent vectors at m, is in fact the identity transformation of A4. H is 
therefore identified with a closed subgroup of an orthogonal group and must be 
compact. 

The Lie algebra of G is written g, that of R, h. H is a subgroup of G, so [h, h] is 
contained in h (where [ ., . ] is the Lie bracket in g). Since H is compact, there 
exists a linear subspace m complementary to h in g: 

g=m@h (2.3.1) 

such that the adjoint action of H on g (by conjugation) takes m to itself. On the Lie 
algebra level, [h, m] is contained in m. The letters {a, b, c. . . } are used for indices 
taking values in h and the letters {i, j, k. . . p, q, r. . . } for indices taking values in m. 
The nonzero structure constants of g are Cfib, C$= -C{,, Cf, and C;, where the 
structure constants are given, for example, by [II, wlk = u’w’ C$. 

The O(N)-model has G=O(N), H=O(N-1), M=SN-l, and m=RNP1. The 
adjoint action of H = O(N - 1) on m = R N-1 is the defining representation. The 
chiral SU(N)-model has G = SU(N) x SU(N), H= XI(N) (the diagonal subgroup), 
M= SU(N), and m = su(N). The adjoint action of H on m is conjugation. 

The tangent space to M at m, can be identified with the subspace m in g by 
means of the derivative den of the quotient map X: G + M at the identity e in G, 
because den(h) =O. An infmitesmal transformation r in m moves the point m, 
infinitesimally in M along the corresponding tangent vector den(u). The isotropy 
action of H on tangent vectors at m, is the same as its adjoint action on m. 

Since G acts transitively on M, all G-invariant tensor fields on 44, including the 
metric and volume element, are determined by their values at m,, and are in one to 
one correspondence, via den, with the H-invariant tensors on m. In particular, the 
invariant metric is an H-invariant inner product on m and the invariant volume 
element an H-invariant volume element on m. There is only one volume element on 
m (up to multiplication by a positive real number): le, A e2 A ... 1 in a basis {ei} 
for m. So the metric coupling is the only free parameter in a standard model. 

Because H is compact, it leaves the volume element on m invariant. Any non- 
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degenerate inner product on m can be averaged over H to make an H-invariant 
inner product. Therefore, for any G/H, H compact, there exists a standard model, 

Any positive multiple of a G-invariant metric is also G-invariant, so the tem- 
perature is always a free parameter of a standard model. Whether there are more 
parameters depends on the isotropy action of H. If (gl),i, and (g& are two H- 
invariant inner products on m, then (g;’ gz)j is an H-invariant symmetric linear 
transformation on m, whose eigenspaces reduce the representation of H on m. If H 
acts irreducibly, then g; l g, is always a multiple of the identity and the temperature 
is the only free parameter. Wolf [ 171 has classified all such isotropy irreducible 
homogeneous spaces. 

More generally, the isotropy representation of H contains k inequivalent 
irreducible representations in multiplicities n,, n2,... nk. The space Rc of G-invariant 
metrics on M is a product of k factors. The ith factor is the space of positive definite 
symmetric forms on a real vector space of dimension ni. It is a noncompact smooth 
manifold of dimension $zj (ni + 1). If some of these metrics have isometry groups G’ 
larger than G, then the G’-invariant metrics form a submanifold of the space of all 
G-invariant metrics. 

Inside the infinite dimensional manifold R of all metrics on M is the infinite 
dimensional manifold R cc, of all metrics which have (sub-) groups of isometries 
equivalent to G under conjugation by diffeomorphisms of M. The diffeomorphisms 
of M act as equivalence transformations on RCG,. Restricting to the finite dimen- 
sional manifold RG of G-invariant metrics eliminates most but not necessarily all of 
these equivalence transformations. For the standard models, preservation of the 
transformation laws under renormalization includes the preservation both of the 
internal symmetries and of the residual equivalence transformations. 

A general characterization of the residual equivalence transformations will not be 
given. The problem is of a cohomological character. For example, the space of 
infinitesimal equivalences at a given G-invariant metric g, is the first cohomology 
group of the Lie algebra g with coefficients in the full Lie algebra of infinitesimal 
isometries of g,. 

There is always, however, a natural Lie group of equivalence transformations on 
ii namely the group D, of diffeomorphisms of M which commute with all trans- 
fo;mations in G. Its Lie algebra is the space of all G-invariant vector fields on M, 
which is identical to the space of H-invariant vectors in m, equipped with the Lie 
bracket C$. 

When G is semisimple, the G-invariant vector fields exhaust the infinitesimal 
equivalence transformations by diffeomorphisms of M, because all of the first 
cohomology groups of’g are trivial. The space of metric couplings is then a finite 
dimensional noncompact manifold 8, on which a finite dimensional Lie group D, 
of diffeomorphisms of M acts as a group of equivalence transformations. The space 
R, of true parameters of the model is the quotient a,#,. R, is a manifold except 
at metrics with isometry groups larger than G (more precisely, larger than the 
generic isometry group of the G-invariant metrics). 

An example is the model M = G = G/{ } e in which M is itself a Lie group, H is 
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trivial, and the metric coupling is assumed left, but not necessarily right, G- 
invariant. The space Rc of G-invariant metrics is the space of positive definite sym- 
metric forms on m = g. It has dimension $z(n + l), where n is the dimension of G. 
All of m is H-invariant, so the residual transformations of M (those commutting 
with left multiplication) form the Lie group G (acting by right multiplication). The 
space R, of equivalence classes of G-invariant metrics has dimension 
$(a + 1) - n = $r(ti - 1) wherever it is nondegenerate. 

It will sometimes be convenient to assume that G/H is unimodular, meaning that 
all transformations in D, preserve the G-invariant volume element on M. For the 
infinitesimal transformations in D,, this is equivalent to the condition C$= 0 on 
the structure constants. If G is a unimodular Lie group (i.e., the left invariant 
volume element on G is also right invariant), then G/H is automatically 
unimodular. The compact and the semisimple Lie groups are all unimodular. 

2.4. Correlation Functions, the Partition Function, and the Free Energy 

The correlation function (#(xi) 4(x2) ... 4(xk)) of the nonlinear model is, for 
each k-tuplet (xi ,..., xk) of (distinct) points in space, a nonnegative unit measure on 
Mk. It is the probability distribution induced from (1.1) on the values of the field at 
the points xi ,..., xk. Equivalently, it is the average over distribution (1.1) of the 
point measure in Mk located at (4(x,),..., f$(xk)). 

A real valued function F on Mk is integrated against (4(x1) #(xz)...#(xk)) 
according to 

(6 (~(X,)“‘~(xk)))=z(o)-l ~~d~~+~-s(~)1 %w,..., #(-xk)) (2.4.1) 
x 

where Z(0) normalizes the distribution of fields. If F is nonnegative then the 
integral is also, so the correlation function is a nonnegative measure on Mk. If F= 1 
then its integral is also 1, so the correlation function is a unit measure. 

In particular, the order parameter (d(x)) is a nonnegative unit measure (a 
probability measure) on M. 

In the presence of an external source the distribution of fields is 

In d&4 expC -Sk4 + W$)I (2.4.2) 
.Y 

where the source term is 

H(q3)=A’+’ 
s dx W)(4(x)). (2.4.3) 

h is a space dependent external field. Its value h(x) at each point x is a real valued 
function on M. The partition function 

z=Snd~(x)expl-~(~)+H(~)l 
II 

depends on the external field and on the metric coupling. 



330 DANIEL HARRY FRIEDAN 

Adding an external field to the action is equivalent to making the a priori volume 
element d&x) vary with x. In the infinite volume limit it is feasible to make a dis- 
tinction between global (or thermodynamic) and local parameters: the a priori 
volume element, remaining constant in space, is the thermodynamic parameter; the 
external field, compactly supported or at least tempered in space, the local 
parameter. But renormalization depends only on short distance effects (and will be 
carried out at finite volume) so does not see the distinction. The form of the renor- 
malization of the range zero part of the distribution of fields is more transparent in 
the language of external fields (in fact, it is linear in the external field), so it is con- 
venient to fix an a priori volume element C+(X) = d&(x) for each coupling g, and to 
consider the spatially varying external field h to be the global and local parameters 
combined. 

The correlation functions are derivatives of the partition function with respect to 
the external field: 

a a 
(B(xl)...~(Xlr))=Z(O)Ldh(xl)...dh(xk)Z/h=~. (2.4.5) 

The dual to the space of functions on A4 is the space of measures on M; thus a 
derivative with respect to h(x) is a measure. The derivatives are always unit 
measures because the partition function changes trivially when a constant function 
on M is added to h(x). 

The free energy r is the Legendre transform of log Z: 

r=sup -log Z+/iZfE dx(h(x), Q(x)) . 
h s 1 (2.4.6) 

r is a function of the metric coupling and of the (spatially dependent) local order 
parameter CD, which at each x is a nonnegative unit measure Q(x) on M. The pair- 
ing between h(x) and Q(x) in (2.4.6) is the integral of a real valued function on M 
against a measure on M. The Legendre transform of r is, in turn, log Z. 

In the low temperature expansion, the supremum over external fields in (2.4.6) is 
achieved by evaluating 

-log z+ A*+& 
s 

dx(h(x), Q(x)) (2.4.7) 

at its critical point as a function of CD; that is, by inverting 

a 
@(X)=Z-ldh(x)z (2.4.8) 

to express h(x) as a function of Q(x), and then substituting for h(x) in (2.4.7). 
The partition function Z, or the free energy r, remains unchanged when the 

metric and the external field, or the order parameter, are transformed by the same 
diffeomorphism of M. They are functions, therefore, of the equivalence classes 
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under the action of the diffeomorphism group of M. The content of the model is 
summed up in the dependence of the partition function or the free energy on the 
global and local parameters. The true space of parameters is therefore the space of 
equivalence classes. 

The equivalence classes of metric couplings and spatially dependent external 
fields (modulo trivial external fields) make up a vector bundle (with singularities) 
over the equivalence classes R of metrics. The equivalence classes of metrics and 
local order parameters form a conical sub-bundle of the dual bundle. 

2.5. The Order Parameter 

The essential property of the order parameter is its averageability. The renor- 
malization group acts by averaging the variables of the model over small regions in 
space (and by an overall resealing of distances). Points in a manifold M can only be 
averaged if M is embedded in a space in which convex combination makes sense 
(for example, a vector space), and then the average of points in M will in general 
not remain in M. There are many embeddings of a given manifold A4 in a finite 
dimensional vector space, but none which is natural. Any such embedding involves 
arbitrary choices obscuring the character of the nonlinear model, which depends 
only on the intrinsic structure of the abstract manifold M. The only natural 
embedding is the one which places h4 inside the space of all unit measures on M 
itself, sending each point in M to the corresponding point measure. The order 
parameter then varies over all possible averages of point measures, which is to say 
over all the probability measures on 44. 

In a standard model (M the homogeneous space G/H) this picture can be con- 
siderably simplified. The internal symmetry group G acts on M, so acts by linear 
transformations on the real valued functions on M. Let V be a finite dimensional 
subrepresentation which separates points in M; that is, which, along with the 
products among its members, generates all the functions on M. Without loss of 
information, the values h(x) of the external field can be assumed to lie in I’. Each 
point m in M can be identified with a distinct point in the dual space V*: the linear 
functional which assigns to each function h in V its value h(m) at m. M is thus 
embedded in V*, and the order parameter takes its values there. The correlation 
functions have their values in tensor products of V*. In the O(N)-model, such a 
subrepresentation is given by the N linear coordinate functions on RN, restricted to 
the unit sphere M. 

When more than one G-invariant metric coupling exists, it is necessary to use a 
reducible subrepresentation V of functions on M as external fields in order to 
ensure, by appropriate choice of G-invariant inner product on I’*, that, for any G- 
invariant metric on M, the embedding of M in V* can be made an isometry. An 
isometric embedding is desirable because it allows the model to be written as a free 
field subjected to constraints. This formulation of the model suffers from possible 
redundancy in the parametrization of G-invariant matrics on M by inner products 
on V*. 
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The general manifold M possesses no distinguished generating subspace of 
functions, so all functions must be allowed as possible values of the external field, 
and all probability measures as possible values of the order parameter. 

An asymptotically small action of the renormalization group on the model has 
the effect of smearing the field c$( x w  ) h ose values are in M to produce a field Q(x) 
whose values are in the probability measures on M, close by the point measures. 
The renormalized distribution of fields is a distribution of the Q(x). The renor- 
malized action, as a function on this convex space of fields, has, presumably, a 
degenerate set of minima which is identical to the manifold M. (This is true of the 
minima of the free energy at low temperature in the mean field theory, which also 
requires for its formulation an averageable order parameter.) The renormalized 
nonlinear fields correspond to those CD whose values Q(x) lie in this copy of M. The 
fluctuations transverse to the space of renormalized nonlinear fields are integrated 
out of the renormalized distribution of the Q(x) without any loss of information 
associated with distances much larger than the cutoff k’. The issue becomes the 
form of the resulting renormalized distribution of nonlinear fields and the effect of 
the renormalization procedure on the action of the diffeomorphism group of M. 
These issues are addressed, in somewhat different language, in the discussion of the 
renormalization of the low temperature expansion. 

3. THE REGULARIZED Low TEMPERATURE EXPANSION 

3.1. Linear Fields 

In the low temperature expansion only asymptotically small fluctuations about 
the constant lields have any significance. In order to apply the standard techniques 
of perturbative field theory, some linear representation for the fluctuations is 
needed. That is, a neighborhood of the constant 4(x) = m in the space of nonlinear 
fields must be replaced by a neighborhood of zero in some linear space of fields. 
This is most conveniently done by choosing coodinates on a neighborhood of m in 
M. Then points in M near m are represented by vectors in the linear space of coor- 
dinates. The value 4(x) of the nonlinear field is represented by the vector ei(x), 
which is d(x) in coordinates around m. e is the linear field. 

The advantages in defining the linear field by means of coordinates are that (1) 
manifest Euclidean invariance is maintained (when the coordinates are independent 
of x), and (2) power counting is simplified by the fact that the nonlinear field is 
local and of zeroth order in the linear field. These two conditions exactly charac- 
terize the definition of the linear field by means of coordinates. 

Without loss of information, as far as the low temperature expansion is concer- 
ned, the distribution of nonlinear fields (2.4.2) is reexpressed in terms of the linear 
fields which represent the small fluctuations. The a priori measure n, d&x) 
becomes 

& = n do(x) exp[T(m, o)] (3.1.1) 
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where do(x) is the a priori volume element on M at the constant m (which is 
independent of g’(x)), and 

S(m, CJ) = A*+& s dxJ(m, a(x)) (3.1.2) 

is the logarithmic jacobian of the map from the linear field 0 to the nonlinear field 
4. j((m, o(x)) is the logarithmic jacobian of the coordinate map from a’(x) to d(x) 
(with respect to the appropriate volume elements). 

The action becomes 

?i(m, G) = A” j dx +T-’ g&m, c(x)) Q’(x) iQi(x) (3.1.3) 

where gY(m, G(X)) is the metric g, at the point oi(x) in coordinates around m. 
The external source becomes 

Z?(m, ~7) = A’+’ 
I dx h”(xHm, 4~)) (3.1.4) 

where h”(x)(m, o(x)) is the external field h(x) evaluated at a’(x) in coordinates 
around m. 

The distribution of the linear fields is 

20 exp[ -A(,, o)] 

A=S-R. (3.1.5) 

The low temperature expansion for the fluctuations around 4(x) = m is calculated 
using standard Feyman diagram technique on the functional integral 

i 2cr exp[ -A]. (3.1.6) 

The propagator and vertices come from expanding 3, R, and 3 in powers of (T. 
Since coordinates are used to provide the linear fields, this amounts to expanding 
the metric gJrn, u), the functions &(x)(m, Y), and the logarithmic jacobianJ(m, u) in 
powers of the coordinate ui. 

To achieve a manifestly covariant low temperature expansion, the coordinates 
should be such that the Taylor series coeffkients of gii, h”(x), and J are themselves 
manifestly covariant. That is, the linear space of coordinates around m should be 
the tangent space T,,, A4 to A4 at m; and the Taylor series coefficients should be ten- 
sors formed from the metric, the curvature and its covariant derivatives, and the 
external field and its covariant derivatives. 

One set of coordinates having this property are the geodesic normal coordinates 
defined with respect to the metric coupling g,. 

For the standard models it is convenient to use coordinates which are defined 
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with reference only to the internal symmetry group, not to any particular invariant 
metric coupling (when more than one exists). Geodesic normal coordinates defined 
with respect to the canonical connection on M are of this type. 

In Section 4, effective algorithms are derived for calculating manifestly covariant 
Taylor series expansions in normal coordinates to arbitrary order. 

The value of the functional integral (3.1.6) is at least formally independent of the 
choice of coordinates used to define it, so the construction of the general low tem- 
perature expansion should not require a particular choice of coordinates, even a 
manifestly covariant choice. 

3.2. Infrared Regularization 

At T near zero, the distribution of linear fields (3.15) approaches asymptotically 
the gaussian distribution 

S”,(m, c) = x4” f dx ;T-’ g&n, 0) Q’(x) c+J’(x). (3.2.1) 

This determines the propagator for cr to be that of massless scalar field (a spin 
wave). But the massless propagator is infrared divergent in two dimensions: 

(3.2.2) 

Therefore some kind of infrared regularization must be introduced. 
The renormalization of the model sees only short distance effects, so the form of 

the infrared regularization cannot be essential. However, certain features would be 
especially attractive. The infrared regularization ought to be applicable to the full 
nonlinear model (2.4.2) and not merely to the sum over small fluctuations, in the 
hope that the low temperature expansion is that of a (nonperturbatively) sensible 
theory (having a good infinite volume limit). There should also be at least a 
plausible scenario for removal of the regularization, order by order in T, leaving 
behind a well-behaved set of correlation functions (cf. [ 151). Finally, the infrared 
regularization should be specified without reference to a particular choice of coor- 
dinates (even a manifestly covariant one). 

By these criteria, the simplest forms of infrared regularization are unsatisfactory. 
A direct low momentum cutoff for the linear field, or the addition of a regulator 
mass 

f 
dx $T-’ a*g&nz, 0) d(x) d(x), (3.2.3) 

to the action are not applicable to the nonlinear field and depend on a choice of 
coordinates for their specification, changing form under change of coordinates. 
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One form of regularization which does respect the nonlinearity of the model is 
modifying the distribution (2.4.2) of nonlinear fields by including in the action a 
constant external field -&T-‘h,(qb(x)). When T is asymptotically small the non- 
linear field fluctuates only around the point m, in M which minimizes h,. The fluc- 
tuations are described by the distribution of linear fields (3.15). The external source 
Z? includes the 0( Tp ‘) constant external field. The leading, quadratic, term in the 
exponent of (3.1.5) provides a massive propagator for linear field, the masses being 
the eigenvalues of the Hessian of h, at m,. This is the form of regularization which 
was used in [9, lo]. 

Infrared regularization by means of a constant external field has three principal 
disadvantages. First, it requires choice of a function on M and, in general, there is 
no choice which is natural in the metric T-‘g,, is of order T-’ and can be guaran- 
teed to have a nondegenerate minimum. Second, it complicates calculation by 
separating the external field into two pieces, placing the quadratic part of one piece 
in the propagator as a mass term. Third, it singles out one point m, in M, which is 
not in keeping with the fact that, in two dimensions, the presence of spin waves in 
the model prevents the spontaneous emergence of order. (See Section 6.4 below.) 
The external field, being of negative length dimension, is a soft operator. Therefore, 
even in models in which order is imposed by a nontrivial external field, the short 
distances properties are those of the disordered state which sees all of the points in 
M. In a standard model all points in M are equivalent, so no harm is done by 
selecting one of them. But, in the general nonlinear model, the global structure of 
M is obscured by the constant external field. This is signalled by the persistence of 
infrared divergences in the correlation functions after h, is sent to zero. 

On the other hand, the constant external field infrared regularization is entirely 
suitable for separating infrared divergences from ultraviolet divergences in order to 
perform the renormalization. It is simply necessary to use a different external field 
to renormalize the distributions of linear fields about each of the constants. 

An alternative to the constant external field is the finite volume form of infrared 
regularization. The system is placed in a box, which for simplicity is taken to be 
square, of side L. Periodic boundary conditions are imposed in order to mimic the 
anticipated disordering effect of the spin waves. 

Finite volume regularization presents two complications. First, there is a loss of 
global spatial symmetry. The standard expectation is that this returns in the infinite 
volume limit. In any case, renormalization involves only the short distance property 
of local Euclidean invariance, which is not affected by the finiteness of the volume. 
The second complication is that, in the evaluation of Feynman diagrams, momenta 
are summed over a discrete set of values. This has no consequence for renor- 
malization. All of the primitive divergences of the Feynman diagrams are either 
quadratic or logarithmic. The quadratic divergences can be extracted using only 
operator theoretic properties of the propagator, without need for an eigenvalue 
expansion. Logarithmic divergences are calculated by approximating the finite 
volume propagator with the continuum massless propagator k-2. Corrections, 
which are O(L ~ ‘k- I), do not contribute to the primitive logarithmic divergences. 
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It seems to be possible, with periodic boundary conditions, to collect terms at 
each order in T so that, in the infinite volume limit, the bare propagator is, in effect, 
the subtracted (infrared finite) massless propagator. (Compare [15-J.) If this is so, 
then the discreteness of momentum space need never complicate actual calculation 
of infinite volume correlation functions. This would justify the use of periodic boun- 
dary conditions for the low temperature expansion. 

Under periodic boundary conditions, the distribution of fields (2.4.2) is 
dominated at low temperature by all of the absolute minima of the action (1.2). 
These are the constant fields, forming a copy of A4 inside the space of all nonlinear 
fields. Fluctuations around all of the constants participate in the low temperature 
expansion of the partition function Z: 

z= s Z(m) (3.2.4) 
M 

where Z(m) is the sum over fluctuations around the constant qS(x)=m. 
Each sum Z(m) is calculated using a linear field a’(x), defined by means of coor- 

dinates around m, to represent the fluctuations around the constant 4(x) = m. Such 
a choice of coordinates around each point in M is called a system of coordinates for 
M. Metric and canonical normal coordinates are examples. Systems of coordinates 
in general, and those two in particular, are discussed in Section 4. 

If each Z(m) were calculated by the functional integral (3.1.6), then the constant 
nonlinear fields would be overcounted, since they occur as constant fluctuations 
around all nearby constant fields. The degeneracy of the minimum of the action is 
reflected in the fact that there are zero modes in the inverse propagator for the 
linear field at each constant: namely, the constant linear fields oi(x) = u’. 

In each sum over fluctuations a gauge condition P’(m, rr) = 0 is needed to avoid 
the overcounting and eliminate the zero modes. A gauge function of the form 

P’(m, a) = L--(2+E’ 
s 

dxd’(m, a(x)). (3.2.5) 

maintains manifest Euclidean invariance and simplifies the power counting. p’(m, v) 
is, for each m, a vector valued function on the coordinate space at m. The simplest 
of gauge functions is 

P’(m, o(x)) = d(x). (3.2.6) 

The gauge condition is imposed by including a delta-function 6(P(m, 0)) in the 
distribution of linear fields (3.1.5). A Fadeev-Popov determinant must also be 
included to correctly reproduce the a priori measure. The gauge function has a 
finite number of components, so the determinant is of a finite dimensional matrix 
Fj(m, a): 

Qm, a) = L--(2+E) 
s 

dxflj(m, b(x)). (3.2.7) 
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A multiplier yi is used to enforce the gauge condition and a finite set of anticom- 
muting ghost variables give the Fadeev-Popov determinant. The distribution of 
linear fields and auxiliary variables describing the fluctuations around 4(x) = m is 

dy dc* A dc & exp[ -A”(m, O, y, C, c*)] (3.2.8) 

A”(m, g, y, c, c*) = S(m, O) - &m, a) - iyiPi(m, a) -c’Fj(m, a) CF. (3.2.9) 

The contribution to the partition function of the fluctuations around m is 

Z(m) = j dy dc* A dc & exp[ -&m, O,Y, C, c*)]. (3.2.10) 

,!? is given in (3.1.3), if in (3.1.4) and a0 in (3.1.1)-(3.1.2). Z(m) is a volume 
element on M at m, which is integrated in (3.2.4) to give the partition function Z. In 
Section 5 these constructions are described in more detail and a formula for 
p’(m, g) is derived. 

Both the constant external field and the finite volume forms of infrared 
regularization are used below. The simplicity of (3.1.5) in comparison with 
(3.2.8)-(3.2.9) is an advantage of the former. The arguments for renormalizability 
are correspondingly simpler. Below, when the relationship between the two 
arguments is sufficiently clear, only the simpler of the two is made explicit. 

3.3, Ultraviolet Regularization 

Ultraviolet regularization is needed to tame the short distance divergences 
occurring in the Feynman diagrams which give the low temperature expansion of 
the functional integrals (3.1.6) or (3.2.10). The ultraviolet regularization should be 
applicable beyond the low temperature expansion. Among available forms of 
regularization, only the lattice has this property. 

The action (1.2) makes no sense on the lattice. A nonlinear analogue of the finite 
difference operator must be found to take the place of the continuum spatial 
derivative 8,. One possible lattice action is 

S(4) = 1 tD*w)3 KY)) (3.3.1) 
(-T,.Vi 

where the sum ranges over unordered nearest neighbor pairs on a periodic, cubical 
lattice; and where D*(m,, m2) is the distance squared between the two points m, 
and m2 in M, calculated with respect to the Riemannian metric coupling g,. In 
place of D* might be used any function K(m,, m2) which is minimized when its two 
arguments are identical and whose second derivatives at the minima are the values 
of the metric coupling: 

1 a*K --- 
2dm; ati2 (m,,m2)l,,=,,=g,i(m,). (3.3.2) 
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If 01,2 are m1,2 in coordinates around m, then K(m,, m2) is 

R(m, ul, u2) =g&m, (u))(G~)~(Suy’+ O((SV)~) (3.3.3) 

where (u)=~(u,+02) and Su=u,-u,. The terms of order (6~)~ depend on the 
choice of K. 

The lattice action in coordinates around m is 

S(m, CT) = Aw2 C &Jrn, (o)J i?,a’(x) i?,&(x) 
t&P) 

+ terms containing more than two derivatives. (3.3.4) 

The sum is over points x and directions ,U in the lattice; n--I is the lattice spacing; 
(C >,, = $(a(~) + C(X + p)); and iYP is the finite difference operator in the p direction: 

api = A [a’(x + p) - a’(x)]. (3.3.5) 

At asymptotically low temperature the terms containing more than two 
derivatives are irrelevant to the continuum limit. Therefore the arbitrariness in the 
lattice action is of no consequence. 

The propagator of the finite volume lattice u field is the usual massless lattice 
propagator, the zero mode eliminated by the gauge condition. In Feynman 
diagrams, the momenta are summed over a periodic finite set {k,}: 

k,=(2xL-‘)n, 

n, = - &AL. .. -2, - 1, 0, 1, 2, . . . &4L 

c Ik,l ZO. 
P 

(3.3.6) 

To define the value of a diagram in noninteger dimensions, the E dependence must 
be isolated. This is done by proper time parametrization of the propagators, exactly 
as in the case of continuous unbounded momenta: 

1 
--I 

~2~I~(l-cos~-‘k,) 
Ir 

(3.3.7) 

Summing over the loop momenta leaves an explicitly s-dependent integral over the 
proper times, which can be evaluated at noninteger dimensions. There does not 
seem to be known a nonperturbative extension of the lattice regularization to non- 
integer dimensions. 

Among the forms of short distance regularization which are applicable only in 
the low temperature expansion, the most attractive are those which do not depend 
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upon the choice of coordinates on M. Dimensional regularization is one such. It is 
carried out by calculating the partition function Z order by order in T for a model 
based on a torus (periodic box) of side L and dimension 2 + E. Again, the dis- 
creteness of the values of the momenta due to finite volume does not impede 
isolation of the E dependence of the Feynman diagrams. The diagrams are evaluated 
at E sufficiently negative for the result to be well defined and then analytically con- 
tinued to E=O. 

Regularization using a cutoff in momentum space is also feasible, but depends for 
its specification on the choice of linear fields. 

4. SYSTEMS OF COORDINATES 

4.1. Introduction 

A system of coordinates is a set of coordinates around each point m in the 
manifold M. In this section a technical apparatus is developed for describing 
systems of coordinates in general. This apparatus is then used to find recursive 
procedures for calculating Taylor series coefficients of a Riemannian metric and 
other tensor fields in special systems of coordinates: Riemannian geodesic normal 
coordinates and canonical geodesic normal coordinates in particular. Equivalent 
procedures for calculating the Taylor series coefficients of a metric in Riemannian 
normal coordinates were derived by more direct arguments by Cartan [18]. The 
Taylor series coefficients provide manifestly covariant vertices for the Feynman 
diagrams of the low temperature expansion of the nonlinear model. The general 
technical apparatus is used in succeeding sections in the description of the 
Fadeev-Popov determinant and in the renormalization of the low temperature 
expansion. 

A natural linear coordinate space for a neighborhood of a point m in M is the 
tangent space T,,,M to A4 at m. With these as coordinate spaces, a system of coor- 
dinates is a collection of coordinate maps E m : T,,,M + M identifying, for each m, a 
neighborhood of zero in T,,,M with a neighborhood of m in M. The coordinate 
maps are assumed to lit smoothly together to give a single map E: TM+ A4 from 
the tangent bundle TM to M. In perturbation theory only formal power series 
expansions have significance, so domains of definition in the tangent spaces T,,,M 
are not made explicit, here and where relevant below. 

4.2. The Compatibility Operator D, 

A system of coordinates E: TM + M determines, for m’ sufficiently close to m, a 
transition function EL.’ 0 E m : T,,,M + T,.M. The infinitesimal version of the tran- 
sition functions is a first order differential operator Di acting on real valued 
functions h” on TM: 

d 
w’Dih(m, v)=;i; r=O h”(m(th E,& 0 E,,(v)), 
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where w  and u are tangent vectors in T,,,M, and m(t) is a curve in M with 

m=m(O) and 

Written in coordinates (mi} on M, Di takes the form 

&=&.- a 
&(m,V)--. av, (4.2.2) 

D, can be regarded as defining a locally flat, incomplete, nonlinear connection in 
the tangent bundle; it is the ordinary derivative on TM followed by horizontal pro- 
jection. The transition functions are the path independent parallel transport 
functions of this flat nonlinear connection. 

Dj has two defining properties. First, acting on functions on M, Di is identical to 
the ordinary derivative di. That is, if h"(m, u) = h(m), then 

D&m, u)= d@(m). (4.2.3) 

Second, Di satisfies the integrability condition 

D;=O, (4.2.4) 

where Df is defined by 

u'dD;= [II'D,, dDj]- [u, w]'D, (4.2.5) 

for u, w  vector fields on M and [u, w] their Lie bracket. With respect to coordinates 
{mi} on M, 

D;= [Di,Dj]. (4.2.6) 

Di. is the curvature of the nonlinear connection (represented as an operator on 
functions); DC = 0 expresses the local flatness. 

A function h"(m, u) on TM can represent, via the various coordinate maps E,, 
many distinct functions h, on neighborhoods in M: 

h,(m')=h"(m,E;'m'). (4.2.7) 

Di is called the compatibility operator because it measures the extent to which these 
functions depend on m. E is the expression in coordinates of a single function h on 
M, 

if and only if Dih" = 0. 

h”(m, u) = W,,,(u)), (4.2.8) 
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Any diffeomorphism Y: M+ M near the identity gives rise to a transformed 
system of coordinates ‘VO E. The transition functions and the compatibility operator 
do not change. Therefore, the compatibility operator can at most determine the 
system of coordinates up to such transformations by diffeomorphisms of M. In fact, 
integration of Di as a one form on M recreates the transition functions, and the 
transition functions clearly determine the system of coordinates exactly up to dif- 
feomorphisms of M. Moreover, any first order operator satisfying (4.2.3)-(4.2.4) is 
the compatibility operator for some system of coordinates. 

The additional data which are needed to specify completely the system of coor- 
dinates are the coordinate origins o(m) = E; l(m). A real valued function h on M is 
represented in coordinates E by the unique solution of the compatibility equation 
D$=O with initial conditions h”((m, o(m))=h(m). The obvious choice of origin in 
T,& is zero. But the ambiguity in the system of coordinates associated with a 
given compatibility operator will be important in the discussion of renormalization. 

A tensor valued function ii::: on TM is a function whose value at (m, u) is a ten- 
sor at m. The compatibility operator extends to act on these functions. For each m, 
i is regarded as a tensor field on the tangent space T,M. The transition functions 
are used to differentiate with respect to m: 

where 

wkDklj!:; =- i _ (E,$,o E,J* ij::: , 
t-0 

(4.2.9) 

m = m(0) and 

A tensor valued function q: : : (m, a) is the expression in coordinates of a single 
tensor field tj: : : (m) on kf, 

i(m, u) = E,*?(v), (4.2.10) 

if and only if i satisfies the compatibility equation Dii= 0 with initial conditions 

ij:::(m, o(m))=(d,(,,E,)i4...(d,(,,E,‘)5...tj:::(m). (4.2.11) 

The extended compatibility operator continues to satisfy the integrability condition 
D;=O. 

4.3. The Linear Connection 

It is useful to combine a system of coordinates with a linear connection in the 
tangent bundle TM. The linear connection serves two distinct purposes. The first is 
to provide a covariant derivative Vi, allowing Di to be written as Vi plus an 
operator which acts independently at each point m. This is a technical convenience 
which presupposes no special relationship between the system of coordinates and 
the linear connection. The second purpose is to define geodesic normal coordinates 

595/163/2-9 
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for the linear connection. Two types of connection are of special interest: the tor- 
sion free Levi-Civita connection when M is Riemannian, and the canonical connec- 
tion when M is homogeneous [ 143. 

A linear connection in TM determines a set of path dependent linear parallel 
transport functions between tangent spaces T,M and T,N. As in (4.2.1), the 
infinitesimal version of the parallel transport functions is a first order operator, the 
covariant derivative Vi, acting on real valued and tensor valued functions on TM. 
In coordinates (mi>, writing ak for a/auk, 

Vih”((m, u) = 
( 

$ - rjf(m) da, 
) 

Qm, 0) 

Viti(m, u) = 
( 

& - r:(m) vpa, 
> 

Ci+(m, v) 

+r,&(m)K+(m,u) (4.3.2) 

where rjt is the Christoffel symbol for the linear connection. If $::: (m, v) does not 
depend on v then Vk $: : : is the ordinary covariant derivative. 

Any tensor valued function i on TM has a formal Taylor series expansion: 

ii::: (m, v)= f -$ vki ... ukfl ak,. '. ak, iJ::: (m, v),,=,, 
n=O . 

(4.3.3) 

where the coefficients ak, . . . aknq::: (m, 0) are tensor fields on M. From (4.3.2) it 
follows immediately that 

V,d=O (4.3.4) 

and 

[v,,a,l =o. (4.3.5) 

Thus the Taylor series coefficients of Vii are given by the covariant derivatives of 
the coefficients of 2. 

Vc., defined as in (4.2.5), is 

V$(m, u) = -Rkp,,(m) vPakh”(m, u) (4.3.6) 

V;.Gk = -RRnpijvPc?niGk + RkpiiiGP. (4.3.7) 

Rkpii is the curvature tensor of the linear connection: 

uidwPRkpij= [u’vi, v’V,) wk- [u, o14V,wk (4.3.8) 

for U, u, w  vector fields on M. 
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Define a matrix valued function Q<(m, u) on TM by 

Di=Vi-Q<(Wly U) dj. ((4.3.9) 

Equivalently, 

(WY - Qh 0) w). (4.3.10) 

The expression on the left in (4.3.10) is a vector tangent to TM at (m, u). On the 
right is the same tangent vector decomposed into horizontal and vertical parts with 
respect to the linear connection in TM. 

Both the linear and the nonlinear parallel transport functions preserve the Lie 
brackets of vector fields on the tangent spaces T,,,M. It follows that D; is given on 
tensor valued functions by 

D;~=V,~~-Q~a,~+s"a,Q~ (4.3.11) 

Djif.‘.‘.’ =V,y.“.’ - [Q,, ilf.‘.‘.’ (4.3.12) 

where Ql at m is the vector field Q<a, on T,M and [Qj, 11 at m is the Lie bracket of 
this vector field with the tensor field i(m, u) on T,M. 

The integrability condition Dfl = 0 becomes, substituting (4.3.9) in (4.2.5), 

Q:a,Q;-Q;a,Q;-ViQ,“+VjQ;= T$Q;+Rkp,pP. (4.3.13) 

T”, is the torsion tensor of the linear connection: 

u’trjTk, = vv,wk - &Vjvk - [u, w]” (4.3.14) 

for u, w  vector fields on M. 
The derivative of E, at the origin o(m) = E;‘(m) is given by 

(do,,, E,; ’ )J = Q$m, o(m)) + Vioi(m). (4.3.15) 

Q depends on both the system of coordinates and the linear connection, but the 
particular combination on the right in (4.3.15) depends only on the system of coor- 
dinates. 

4.4. Normal Coordinates 

Given a linear connection on TM, normal coordinates around the point m are 
defined by 

Em(~)=~,m,.,(l) (4.4.1) 

where p(,, v,(t) is the geodesic leaving m with initial velocity v. By construction, the 
origin o(m) is at zero. 
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The velocity field is covariant constant along a geodesic, so, in the language of 
(4.3.10), 

(4.4.2) 

That is, 

dQi(m, v) = d. (4.4.3) 

Also, since p(,, “) (t) has velocity u at t = 0, 

Q(m, 0) = 1. (4.4.4) 

Conditions (4.4.3k(4.4.4) determine Q uniquely. The contraction of vi with both 
sides of Eq. (4.3.13) gives a matrix equation 

aQ+Q’-Q=QT+R. (4.4.5) 

The first order operator a is 

a=u’(a,-Vi). (4.4.6) 

The matrix valued functions T(m, u) and R(m, u) are 

Tj(m, u) = UkTij(rn) (4.4.7) 
kl i R;(m, v) = U U R klj(m). (4.4.8) 

Equation (4.4.5) has a unique solution Q$M, a) satisfying the initial condition 
(4.4.4). 

The Taylor series in normal coordinates of a real valued function h on M is the 
expansion of h”(m, u) = h(E,(u)) in powers of u. The compatibility condition Dih”= 0 
implies 0 = -ukDkz= ah’; 0. With initial condition h”((m, 0) = h(m), the formal 
power series solution is 

h”(m, u) = 2 -$ vkl . * . uknVk, . . . Vk,h(m). 
n=O . 

(4.4.9) 

The Taylor series coefficients of h” are the symmetrized covariant derivatives of h. 

4.5. The Vielbein Vj(m, v) 

A vector field wi on M is represented in normal coordinates by the vector valued 
function @,‘(m, u) which solves, from (4.3.11), 

0= -v’D,G=((a-l+Q)G, (4.5.1) 

fi(m, 0) = w(m). (4.5.2) 
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The vector valued function %‘(m, u) whose Taylor series coefficients are the sym- 
metrized covariant derivatives of w  is the solution of C% = 0 with initial condition 
(4.5.2). The two vector valued functions G and W are related by a linear transfor- 
mation: w  = VG, where the matrix valued function L’j(m, u) is the solution of 

aV= V(Q- 1) 

V(m, 0) = 1. 

a is applied to both sides of (4.5.3) and (4.4.5) is used to obtain 

(4.5.3) 

(4.5.4) 

a’v+(av)(l- T)- V(T+R)=O. (4.5.5) 

Equation (4.5.5) has a unique solution satisfying initial condition (4.5.4). 
It is possible to calculate the Taylor series coefficients of Q recursively using 

(4.4.4)-(4.4.5), but, because the equation is nonlinear in Q, this is an inefficient 
method; (4.5.4)-(4.5.5) is linear in V, so is more suited for practical calculation. Q is 
given by rewriting (4.5.3): 

Q=l+V-‘al’. (4.5.6) 

The tensor valued function i;::: (m, u) which represents in normal coordinates the 
tensor field tj::: on M is found by a direct extension of (4.5.1)-(4.5.3). First, the ten- 
sor valued function f(m, u) which solves LG(m, u) = 0, i(m, 0) = t(m) is found. Its 
Taylor series coefficients are the symmetrized covariant derivatives of t: 

Fj:::(m,u)= f $ukl-..uknVk, . ..Vkntj.:: (m). 
n=O * 

(4.5.7) 

Then 

$1: : = Vi 
P 

. ..iP.” Vq... 
4”J ’ (4.5.8) 

The Taylor series expansion in normal coordinates of any tensor field on M is thus 
obtained immediately, once the Taylor series expansion of Vj(m, u) is known. 

4.6, Metrics and Volume Elements in Coordinates 

In a coordinate system E, a metric g, is represented by the tensor valued function 
gii(rn, u) = Ez g&u). It satisfies the compatibility condition 

and the initial condition 

D,&k =o (4.6.1) 

gv(mT o(m)) = (d,,,,E,)Pg,,(m)(d,,,,E,)j4. 

When the origin is at zero, the initial condition is, by (4.3.15) 

(4.6.2) 

i&n, 0) = (Q-‘)j’(m 0) g,(mNQ-‘I;@, 0). (4.6.3) 
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When the coordinates are normal with respect to a linear connection in TM, 2 is 
given by (4.5.7)-(4.5.8). 

gp,(m, u)= f -$ uk”” uk”vk, “‘vkngpq(m). 
n=O . 

(4.6.5) 

In particular, when the metric g, is covariant constant, 

iT@, u) = VW, 0) g,,(m) vJf(m, 0). (4.6.6) 

A volume element dm on M is represented in coordinates by the tensor valued 
function &(m, u) = Ezdm(u), which satisfies the compatibility condition D,& = 0, 
with initial condition 

au(m, o(m)) = dm det d,,,,E,. (4.6.7) 

The ratio between au and dm is a positive real valued function exp j(m, u) on TM: 

au = dm exp j(m, u). (4.6.8) 

j(m, u) is the logarithmic jacobian of the coordinate map E, at (m, u) with respect 
to the volume element dm at m and at E,(u). 

au consists of a volume element on T,,,M for each m, so integration against au 
turns a real valued function g on TM into a real valued function j adi on M. The 
compatibility condition Diau = 0 implies the integration by parts formula 

(4.6.9) 

In perturbation theory the integrations are asymptotic expansions, so conditions on 
the support of h” are unnecessary. 

When the coordinates are normal with respect to a linear connection, au is given 
by (4.5.7-8): 

au = du det V(m, u) 

&(m, u) = f $ ukl . . . ukn V,, . . . Vkn dm. 
fl=O 

(4.6.10) 

(4.6.11) 

In particular, when the volume element is covariant constant, 

au = dm det V(m, u). (4.6.12) 

The logarithmic jacobian j(m, u) of the coordinate map E,,, at (m, u) is then 
tr log V(m, u). 
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4.7. Calculation of Taylor Series: Torsion Free Normal Coordinates 

The system of coordinates is assumed to be normal with respect to a torsion free 
linear connection in TM. An example of such a connection is the Levi-Civita con- 
nection of a Riemannian metric on M. 

The matrix valued function VJm, V) is expanded in powers of u with nonstandard 
coefficients: 

v=f’ . 
n=o(n+l)! 

y(n) (4.7.1) 

Vcn’ is homogeneous in u of degree n and P’(O) = 1. Equation (4.5.5) gives V(l) = 0 
and, for n > 1, the recursion relation 

V’“)=2VV’“~l’-V2V(n-2)+ v(n-2)R (4.7.2) 

where, in this context, V = u’v,. The matrix valued function R is defined in (4.4.8). 
The first few terms in the expansion are 

V=l++,R+&(2VR)+$,(3V2R+R2) (4.7.3) 

++,(4V3R+3V(R2)-[R,VR])+ ... 

log V=iR+$VR+ -&PR-&RZ 
> 

(4.7.4) 

+&(4V3R-2V(R2)- [R,VR,)+ ... . 

Note that tr R= -v’u’RG. 

Equation (4.5.6) gives 

+$,(2V3R-6V(R’))+ ... . (4.7.5) 

If g, is a covariant constant metric on M, then the linear connection, being torsion 
free, must be the Levi-Civita connection for g,. The curvature matrix is then sym- 
metric: R = g- ‘R*g. From (4.6.6), 

g-lg=l+$+Rf 
> 

+&(V3R+2V(R2))+ ... . (4.7.6) 



348 DANIEL HARRY FRIEDAN 

More explicity: 

g&m, U) = gu(m) + i VkV’ R&m) -I- A VkV’V”Vk&,,j(m) 

+ vkvfvnvp &VkV/Rinpj + & Ri/c/q R’rzpj 
> 

(m) 

. . . + . (4.7.7) 

4.8. Homogeneous Spaces 

In this subsection, A4 is a homogeneous space G/H and E is a G-invariant system 
of coordinates. That is, 

E,= Y-lOEvl,,,,o Y, (4.8.1) 

for all m in A4 and all Y in G. If t is a G-invariant tensor field on M, i.e., Y’, t = t for 
all Y in G, then its representation in coordinates F(m, v) = Ez t(o) is a G-invariant 
tensor valued function on TM: 

I( Y(m), Y,u) = Y, t(m, 0). (4.82) 

The canonical connection in TM is a natural linear connection defined using the 
group theoretic structure of the quotient G/H (see Section 2.3 and [14]). It can be 
defined by giving the operator Vi on tensor valued functions on TM. Vi is defined at 
the H-invariant base point m,: 

w’V&m,, v) = 2 
dt t=oe* 

--fw I(elwmO, er v), (4.8.3) 

where w  and v are vectors in m = TmOM. Vi at m, respects the action of H on T,,,0A4, 
so it extends to a G-invariant operator on all of TM. 

It follows immediately from (4.8.3) that G-invariant tensor valued functions on 
TM are annihilated by Vi. In particular, the torsion and curvature of the canonical 
connection are G-invariant and therefore covariant constant. Since G-invariant ten- 
sor valued functions are completely determined by their values on m = TmOM, they 
need only be studied there. 

The matrix valued function Q$m, u), defined with respect to the canonical con- 
nection and the system of coordinates E, is G-invariant, so VjQ,k =O. Equation 
(4.3.13) becomes 

or, 

Qj’a,Qi”-Q;a,Q;= T$Qf+ RkpvvP, (4.8.4) 

[Qij Qj] = TEQ, + Rkpg VP&. (4.8.5) 
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The torsion and curvature (at m,) are (see Section 2.3 and [14]): 

T;.= -C$ (4.8.6) 

R fik = -C,” C;,. (4.8.7) 

The vector fields - Qi and - RkpQ uPak on m generate the ideal m + [m, m] in g. 
The Qi are nonlinear vector fields; the rest are linear. Note that unimodularity of 
G/H is expressed in the condition 

C$=O, (4.8.8) 

(Ct, = 0 follows automatically from the compactness of H.) 
Canonical normal coordinates are described by the matrix valued function V;(u) 

on m satisfying (4.5.4k(4.5.5). In this context, a = z?ai. R(u) and T(u) are matrix 
valued functions on m defined by (4.4.7)-(4.4.8). Explicitly, 

T(u) w = -Co, w], (4.8.9) 

R(u) w = Co, Cu, wl,,l (4.8.10) 

where [u, w], is the component of the Lie bracket lying in m and [u, w],, is the 
component in h. Note that aT= T and aR=2R. 

Recursion relations for the Taylor series coefficients of VJu) are obtained by 
writing (4.5.5) in terms of the expansion (4.7.1): 

and, for n> 1, 

V(O) = 1 v(l)= T (4.8.11) 

V(n) = v’“- “T+ V’“-Z’R (4.8.12) 

The first few terms are: 

v=l+;T++,(T2+R)+&(T3+RT+TR)+ ... (4.8.13) 

log V=;T+$4(T2+4R)+0(~4). (4.8.14) 

In the special cases in which [R, T] =0, (4.5.4)(4.5.5) can be solved exactly: 

I/= e=“f(R + $T2) (4.8.18) 

where 
f(u)= u-‘j2 sinh(u1i2) (4.8.19) 

(4.8.20) 



350 DANIELHARRYFRIEDAN 

The Taylor series of Q is calculated using (4.5.6) and (4.8.13): 

+&IT-TR)+ ..*. (4.8.15) 

A G-invariant metric on M is determined by an H-invariant inner product g, on 
m. Infinitesimal H-invariance is 

0 = C);i gkj + gik C:j. (4.8.16) 

The representation of the metric in canonical normal coordinates is given by (4.6.6) 
and (4.8.13): 

g= v*gv 

(4.8.17) 

5. LINEAR FIELDS 

5.1. Introduction 

The space of fields d(x) taking values in the manifold M is itself a nonlinear 
manifold. For calculation in the low temperature expansion, a linear representation 
is needed for the fields near each constant 4(x) = m. Natural linear fields at m are 
the tangents to the manifold of nonlinear fields at the constant m, i.e., the fields CJ 
taking values c?(x) in the tangent space to M at m. The linear representation is a 
collection of maps E,,, from linear to nonlinear fields, defined near the zero linear 
field, taking the linear field B at m to the nonlinear field 4 = E,(a) which it 
represents. 

It is convenient to use linear representations which respect the spatial symmetry 
of the model, in order that the symmetry remain manifest in the low temperature 
expansion. It simplifies power counting to use representions which are local and 
zeroth order in the linear field. Any representation satisfying these two criteria is 
determined by a system of coordinates E on M: 

~tn(4(~)=%(4x)). 

5.2. The Compatibility Operator Bi 

(5.1.1) 

Each nonlinear field is represented by many linear fields, associated with different 
constants. A compatibility condition determines when a real valued function of the 
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linear fields represents a single function of the nonlinear fields. The compatibility 
operator Bi is defined to act on real valued functions G(m, 0) of the linear fields by 

(52.1) 

where 

m = m(0) and 

G(m, a) is the representation of a single function G(d) of the nonlinear fields, 

G(m, 0) = G@,Jo)), (5.2.2) 

if and only if 

BiG = 0. (5.2.3) 

The linear fields form a vector bundle over the constants. The compatibility 
operator is the infinitesimal expression of a flat nonlinear connection in this bundle 
whose path independent parallel transport functions are the transition functions 
E;,’ 0 E,,,. The flatness of the nonlinear connection is expressed in the integrability 
condition 

a,:=o. (5.2.4) 

Di. is defined as in (4.2.5). 

5.3. Linear Connections 

It is convenient to have use of_a linear connection in the bundle of linear fields. It 
provides a first order operator Vi which acts on real valued functions of the linear 
fields, as the infinitesimal form of linear parallel transport of linear fields along 
paths in the constants M. 

In calculation of the low temperature expansion it is convenient to use linear 
connections which respect the spatial symmetry and which are local and zeroth 
order in the linear field, thus which are determined by linear connections in TM. 
With respect to coordinates (mi> on h4, 

f’f is the Christoffel symbol of the linear connection on M in coordinates {mi}. The 
summation convention applies to the index x as well as to the ordinary indices. 

Given a linear connection in the bundle of linear fields the compatibility operator 
can be written in the form 

a 8, = Vi - Qi(m, 0) - aa (5.3.2) 
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where ei(m, a)(a/a u is a vector field on the space of linear fi_elds at m. When the ) 
linear representation is based on a system of coordinates and Vi is determined by a 
linear connection on M, then 

a 
bi = Vi - QJm, o(x)) -. 

a0q.g 

Q$m, a) is the matrix valued function on TM, defined by (4.3.9), which describes 
the system of coordinates with respect to the linear connection in TM. 

A linear connection in the bundle of linear fields is not essential to the represen- 
tation of nonlinear by linear fields. It merely provides, as in (5.3.2)-(5.3.3), a con- 
venient separation of the compatibility operator into a linear covariant derivative 
plus an operator which acts independently on each space of linear fields. 

5.4. Extensions to Tensor Valued Functions 

In extending these operators to tensor valued functions of the linear fields, two 
types of functions must be distinguished. 

Those whose values are tensors in the linear fields themselves are treated exactly 
as were tensor valued functions in Section 4.2. A vector valued function ofthis type 
is of the form p(x)(m, a), an example being a’(x) itself. The extension of Vi to such 
functions satisfies 

O;a’(x) = 0 (5.4.1) 

[Vi, a/ad(x)l = 0. (5.4.2) 

The second kind of tensor valued function takes its value at (m, a) in a tensor 
space of T,,,M. It is of the form Tj::: (m, CJ). In order to extend the operators Vi and 
bi to these functions, an auxiliary linear connection in TM is needed to transport 
the tensors of TM. 

This auxiliary linear connection in TM is in principle distinct from the linear con- 
nection in the bundle of linear fields which gives Vi, even when the latter derives 
from a single linear connection in TM. It is also distinct from a linear connection 
used to define normal coordinates. 

The operator Vi extends to: 

6, W(m, a) = ( a 
$-r;(m) oq(x)- aOqx) > 

Plm, u) + f&(m) W(m, a). (5.4.3) 

r,S. is the Christoffel symbol for the linear connection determining Vi, and fii is the 
Christoffel symbol for the auxiliary linear connection. 

The compatibility operator di extends to: 

(5.4.4) 
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If T(‘(m, 0) is a tensor valued function which depends only on m, i.e., a tensor field 
on M, then d, F and vi T both equal vi F, the ordinary covariant derivative with 
respect to the auxiliary linear connection. The extended operator satisfies 

8; fVk(m, a) = Rk,,(m) FVp(m, a). (5.4.5) 

k”,, is the curvature of the auxiliary linear connection. 

5.5. The Section, Source, and a Priori Measure 

In terms of linear fields at the constant m, the action and external source are 

,T(m, a) = S(EJa)) (5.5.1) 

R(m, a) = H(E’,(o)) (5.5.2) 

satisfying the compatibility conditions 

&L~,&o. (5.5.3) 

In a linear representation based on coordinates, 3 and w  are 

S(m, a) = A’s dx $T-’ g&m, (T(X)) a,a’(x) a,oj(x) (5.5.4) 

R(m, g)=A*+’ 
I dx h”(x)(m, 4x)), (5.5.5) 

where gii and h”(x) are the metric and external field in coordinates around m. The 
compatibility condition d,fl= 0 is equivalent to D,h”(x) = 0, and 8$= 0 is 
equivalent to Digjk = 0. 

The a priori measure db is represented in terms of the linear fields at m by 

&(m, a) = ,!?zd&cr). (5.5.6) 

It satisfies the compatibility condition 

b,& =o. (5.5.7) 

It can be written 

20 = da exp T(m, a) (5.58) 

where do is the measure d# at the constant 4 = m, and &m, a) is the logarithmic 
jacobian at CT of the linear representation Em. 

A spatially invariant a priori measure dd takes the form nT, d+(x), where d&x) is 
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the a priori volume element on M. When the linear representation is by means of a 
system of coordinates, then 

da = n do(x) (5.5.9) 
x 

qm, CT) = AZ+& 
s 

dxJ(m, a(x)). (5.5.10) 

da(x) is the a priori volume element d&x) at 4(x) = m. J(m, b(x)) is the logarithmic 
jacobian of the coordinate map E, at a’(x). 

& consists, for each m, of a volume element on the linear fields at m. Integration 
against &r turns a real valued function G(m, cr) of the linear fields into a real valued 
function j a&? on M. The compatibility condition Bi& = 0 implies the integration 
by parts formula 

(5.5.11) 

dcr also integrates tensor valued functions of the linear fields, producing tensor fields 
on M. The integration by parts formula is 

s a, fii T$...... = 6, s a0 TV...... . (5.5.12) 

5.6. The Gauge Condition 

This section and the next are concerned with technical aspects of the degenerate 
perturbation theory associated with finite volume infrared regularization of the low 
temperature expansion. 

The minima of the action consist of the constant fields b(x) = m. The low tem- 
perature expansion of the integral over nonlinear fields is calculated by integrating 
over the linear fields at each constant. To prevent overcounting, the integral over 
the linear fields oi(x) at the constant #(x) = m must avoid the constant linear field 
a’(x) = vi # 0, which represents d(x) = m’. Integration over the nonlinear fields is 
replaced by constrained integration over the linear fields: 

c d&(d) = c c a0 w( m, 6)) det F(m, 6) G(B,(a)) 
J Jm J 

where G(d) is any real valued function of the nonlinear fields, p’(m, a) is a vector 
valued gauge function, and Fj(rn, a) is a matrix valued function to be determined. 
det F is a Fadeev-Popov determinant which compensates for the distorting effect of 
the gauge condition. The b-function in (5.6.1) is the natural point measure at the 
zero in T,M with values in the volume elements at m. A more explicit notation 
would be dOmS(p), where d,m is an arbitrary volume element at m and S(P) is the 
standard b-function on T,,,M defined with respect to d,m. The product dOma 
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does not depend on the choice of d,m. The integration fin over m in (56.1) is 
integration against the volume element left by b(P). 

The gauge condition is enforced by means of a multiplier yj in TZM: 

6(P) = j dy exp( iy,pj). (5.6.2) 

dy is the natural volume element on TZM whose value is a volume element on M. 
That is, forfa real valued function on TZM, f dyf(y) is a volume element on M at 
m. 

To ensure that the gauge condition p’(m, a) = 0 selects from the collection of all 
linear fields near zero a faithful copy of the space of all nonlinear fields near the 
constants, Pi must satisfy the nondegeneracy condition: 

det Bi)iP’(m, 0) # 0. (5.6.3) 

The gauge function ought to respect the spatial symmetry of the model and, to 
simplify the power counting, should be local and zeroth order in the linear field: 

i3’(m, a) = L-(‘+‘) s 
dx$(m, a(x)). (5.6.4) 

A useful choice is 

p’(m, a)=L~‘2+E) dxJ(x). 
I 

(5.6.5) 

5.1. The Fadeev-Popov determinant 

The strategy for finding f”(m, a) is to fix an arbitrary constant m and to represent 
the linear fields at nearby constants m’ by the linear fields at m, using the nonlinear 
parallel transport functions EL.’ 0 Em. The auxiliary linear connection is used to 
transport vectors in TM. For convenience of exposition, coordinates {mi} are used 
on M. Only the first order in (m’ - m) is of interest, so path dependence of the 
auxiliary parallel transport does not matter. 

The vector valued gauge function P’(m’, a) becomes, for each m’, a function on 
the linear fields at m with values in T,nM. The a priori measures &(m’, G), because 
of their compatibility, are all represented by &(m, cr). For 4 and m’ both near m, 
equation (5.6.1) becomes 

I d#G(d) = jm, 1 &m, (T) 6(H(m’, a)) det F(m’, a) G(Emo). 

Since &(m, a) represents db in terms of the linear fields at m, 

(5.7.1) 

(5.7.2) 
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Therefore the Fadeev-Popov determinant is determined by the condition 

1 = I, m m’, 0)) det F(m’, a), (5.7.3) 

Since m is arbitrary and since D participates in the integral over fluctuations only 
if P’(m, C) = 0, $(m, g) need only satisfy (5.72) on the gauge slice P’(m, a) = 0. To 
first order in (m’ - m), 

i3’(m’, a) = H’(m, f~) + (m’ - my‘B,P(m, a). (5.7.4) 

So det F(m, a) is determined, on the gauge slice, by 

1= 
I 

d((m’ - my b,P’(m, c)) det F(m, 0). (5.7.5) 
m’ 

Therefore the correct Fadeev-Popov determinant is provided by 

Fj(m, a) = -bJj’(m, a). (5.7.6) 

When the linear representation is given by a system of coordinates, when Q is 
determined by a linear connection in TM, when the auxiliary connection is the 
same linear connection, and when the gauge function is (5.6.5), then, using (5.3.3), 
(5.4.1), and (5.4.4) to calculate (5.7.6), 

Fj(m, a) = L--(2+E) dxQj(m, a(x)). (5.7.7) 

F(m, a) is well defined by (5.7.6) even off the gauge slices P’(m, u) = 0, but its 
definition depends on the choice of auxiliary linear connection. On the gauge slices, 
however, the definition depends only on the linear representation of the fields, 
because when the auxiliary condition varies, the change in b,pj, being linear in is, 
vanishes wherever p does. 

The Fadeev-Popov determinant can be represented, for each m, as an integral 
over a finite set of anticommuting ghosts variables: 

det 4(m, CJ) = 1 dc* A dc &Fe:. (5.7.8) 

The ghost c is in T,,,M, c* in TZM. A function of c is an element of the Grassmann 
algebra ,4 *( T:M); a function of c* is an element of the Grassmann algebra 
A*( 7’,,,M). A monomial in the ghosts containing c r times and c* s times is said to 
have bidegree (I, s) and ghost number r - s. 

The volume element dc* A dc integrates a function of the ghosts to the trace of its 
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component of highest bidegree. Explicitly, in terms of a basis {CT } for TZM and 
the dual basis (ci} for T,M, temporarily abandoning the summation convention, 

dc* A dc=(dc: A dc’) (dc; A dc’)... (5.7.9) 

0 = j dc: A dc’ (CT or c’ or 1) (57.10) 

1 = j dc: A dc’ (ci ~7). (5.7.11) 

The volume element dc* A dc is natural. It does not involve an arbitrary choice of 
volume element on T,M or on Tz M. 

5.8. Redundancy Equations and BRS Invariance 

When infrared regularization is provided by a constant external field, the dis- 
tribution of linear fields at m is 

a0 exp[ -,T(m, a) + R(m, a)]. (5.8.1) 

The fact that this represents, for all m, the same distribution of nonlinear fields is 
expressed in the compatibility equations: 

b,ac = 0 (5.8.2) 

i&s=0 (5.8.3) 

B,lT=o. (5.8.4) 

The compatibility equations state that the vertices contained in the Taylor series 
expansions of 7, $ and fi at m determine those contained in the expansions for any 
m’ infinitesimally close to m. di satisfies the integrability condition 

q = 0. (5.8.5) 

When finite volume infrared regularization is used, the distribution of linear fields 
and auxiliary variables is 

dy dc* A dc & exp[ -a(m, a, y, C, c*)] (5.8.6) 

A(m, a, y, c, c*) = S(m, a) - R(m, a) 

- iyji3j(m, a) - c’Fj(m, a) c) (5.8.7) 

Fj(m, a) = - DjP(m, a). (5.8.8) 

An extension of (5.8.2)-(5.8.4) is sought which includes the multiplier and ghost 
contributions to (5.8.7). After Becchi, Rouet, and Stora [19], it is expected that 
there is an equation of the form s(A) = 0, where s is a first order operator which 

5951163/2-10 
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increases ghost number by one, which satisfies s2 = 0, and which includes, in some 
sense, a term ciBi. Formally, s is to be a vector field of ghost number one on the 
supermanifold described by the variables (m, CJ, y, c, c*). 

Bi is extended to act on the multiplier and ghosts by means of the auxiliary linear 
connection in TM. In coordinates {mi} this amounts to adding to expression (5.3.2) 
for Bi a term 

Ai 

( 

a a a 
rki Yjay,+“l*ac,*-ck~ ’ > 

(5.8.9) 

The extended bi satisfies 

&J=&?&jiyj=o (58.10) 

d;=fip,, ( c:&+yp$Lj$ . 4 yq ) 
cibi now makes sense, and 

(&j)’ = &+(b;- f+;d,). 

The BRS operator is defined to be 

a ,y=cifii-iy.- 
J aq 

i a iA. a 
+-p. c'~~~+~R;k(c~c~c~- 

2 lk a(iYj) 

(5.8.14) 

(5.8.11) 

(5.8.12) 

(5.8.13) 

where a and p are the curvature and torsion of the auxiliary linear connection. 
It follows immediately from the Bianchi identities 

that 

Moreover, 

s2 = 0. 

(5.8.15) 

(5.8.16) 

(5.8.17) 

s(S) = c’d,S = 0 

s(R) = c’B,A= 0 

(5.8.18) 

(5.8.19) 



and 

SO 

Also, 
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A”=sR+s(c’eqm,a)), (5.820) 

s(2) = 0. (5.8.21) 

s(20) = 0 (5.8.22) 

s(dc* A dc)=O (5.8.23) 

s(dy) = 0. (5.8.24) 

Finally, an integration by parts formula which will be used below is 

j 6% dy s(G) = c’?, [ i&r dy G. (5.8.25) 

5.9. Standard Models 

In this section, which is a continuation of Section 4.8, A4 is a homogeneous space 
G/H, and all structures are assumed G-invariant, except the external source n. 
Because of the G-invariance, the distribution of fields need only be examined at a 
single point m, in M. 

The linear connection in TM which determines Vi and also Vi is the canonical 
connection. The auxiliary linear connected determining Vi might be chosen the 
same, but, more generally, 

fii is an H-invariant tensor at m,. On G-invariant functions of the linear fields, bi 
is the vector field 

a 
- Qj(m, (T(X)) - v. 

ad(x) 
(5.9.2) 

The compatibility equations (5.8.2~(5.8.3) become the nonlinear symmetries 

[Qi, 20] = 0 (5.9.3) 

[&, S] = 0. (5.9.4) 

The integrability condition (5.8.5) becomes, using (4.8.5), the commutation relation 

C&i, $I= TsQk + RPqg O”(X) &. (5.9.5) 
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-& is extended to the auxiliary variables by adding to it the term (58.9). The 
commutation relation for the extended operator is, using (5.8.12), 

The BRS operator is 

. a s = CiQi - lyj q 

(5.9.6) 

All of (5.8.17)-(5.8.18), (5.8.20), (5.8.22)-(5.8.24) continue to hold. Equations 
(5.8.19) and (5.8.21) become 

s(A) = -c’[&,, A] (5.9.8) 

s(A) = s(R). (5.9.9) 

Note that the canonical connection on a Lie group has ffP& = 0. s (5.9.7) is then the 
original BRS transformation [ 193. 

6. RENORMALIZATION 

6.1. Generalities 

From the point of view of Wilson [7], renormalization means eliminating from 
the distribution of fields of a model all fluctuations on scales smaller than a cutoff 
distance n -‘, leaving an effective distribution for the remaining degrees of freedom. 
The effective distribution has the same properties as the original at distances much 
larger than n-r. 

The most general distribution of fields, including all possible short range interac- 
tions, is characterized by a point ,I in an infinite dimensional space of parameters. 
Appropriate powers of /1 are used to make I. dimensionless. Each effective dis- 
tribution is characterized by an effective parameter n(n). 1 is considered here to 
include a characterization of the local sources conjugate to the tields of the model, 
so that renormalization of the field is implied by renormalization of ,I. 

The invariance of the long distance properties of the model under simultaneous 
change of the cutoff /1 and the parameter 1 is expressed in a differential equation for 
the partition function: 

[ 

a a 
nd/l+lwz 1 Z(A, /I) = 0. (6.1.1) 
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p = fl(,I)(a@) is is a vector field on the space of parameters, called the b-function. 
The renormalization group equation (6.1.1) states that increasing the cutoff length 
from n -I to e’A - ’ while flowing along the vector field -p for a “time” t has no net 
effect on the long distance properties of the model. The effective parameter ,4(n) 
corresponding to the cutoff distance /i-l satisfies the ordinary differential equation 

A-’ &A= -B(A). (6.1.2) 

The vector field -/I is the infinitesimal generator of the renormalization group. The 
time t which indexes the action of the renormalization group is the logarithmic 
change of the cutoff length /i - ‘. 

Flowing along -b in parameter space has the effect on long distance properties 
only of decreasing all dimensionless characteristic lengths. That is, if r(L) is a 
dimensionless length in the model, so that n -‘r(J) is, for example, some 
correlation length, then it follows from the renormalization group equation (6.1.1) 
that when 1 flows to e-@(L) and /1 is replaced by e-‘/l the length L%(n) remains 
unchanged. Therefore, the dimensionless length obeys r(e-@(A)) = e-‘r(L). 

The model shows critical behavior at values of A, where some characteristic 
length p ~ ’ goes to infinity. The collection of such values of the parameter forms the 
critical surface. The divergence of the dimensionless length p-‘/i near the critical 
surface allows a scaling or continuum limit to be defined, in which p-l serves as the 
fundamental unit of length, measured against which the cutoff length disappears. 

Critical behavior is associated with instability in the renormalization group 
action (so called infrared instability). The renormalization group leaves infinite 
lengths infinite, but sends finite dimensionless lengths towards zero. Therefore two 
nearly identical values of the parameter, one critical and the other only near 
critical, go to entirely different fates under the renormalization group. Such 
behavior characterizes instability. 

The thermodynamic, or infinite distance, properties associated with a value ,I of 
the parameter are determined by the ultimate fate of k under the renormalization 
group. The abrupt change in this fate at the critical surface indicates that the critical 
behavior is associated with a phase transition. 

The fact that infrared instability in the renormalization group implies critical 
behavior is most easily seen in the case of a fixed point with nontrivial unstable 
manifold. (The unstable manifold of a fixed point consists of the points in 
parameter space driven to the fixed point by the renormalization group as t + -CO. 
The stable manifold consists of the points driven to the fixed point as t + +co.) 

A parameter ;1 near the stable manifold is driven by the renormalization group 
into the vicinity of the fixed point and then away along a trajectory which conveges 
towards the unstable manifold. Parameters near the fixed point are almost left fixed 
by the renormalization group, so the trajectory spends a long time there. As I 
approaches the stable manifold, the trajectory approaches a limit which consists of 
a path lying in the stable manifold teminating at the fixed point followed by a path 
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in the unstable manifold leaving the fixed point. If A’ is some point on the outgoing 
part of the limiting trajectory, then, as L approaches the stable manifold, the time it 
takes for the trajectory to reach a neighborhood of I’ grows without bound. 
Assuming some nonzero dimensionless length associated with A’, the corresponding 
length associated with I diverges at the stable manifold of the fixed point. The 
stable manifold is therefore a critical surface. 

The scaling or continuum limit of the model is characterized by a space of renor- 
malized parameters 1’. The renormalized partition function z’ is defined as a 
function of the renormalized parameter 1’ and of the macroscopic length scale ,L-’ 
by 

z’(p, Ar) = !‘f”, Z(A, l(p- ‘A, Ar)), (6.1.3) 

in which the bare parameter Iz is given as a function of 1’ and the ratio of scales by 
inverting 

/I’= (p-‘A)pQ). (6.1.4) 

The expression on the right in (6.1.4) describes the point in parameter space 
reached by flowing from 1 along -/I for a time log /.-l/1. 

By the renormalization group equation (6.1.1), Z(/1, A) is independent of/i, in its 
long distance properties, when 1 is given by (6.1.4). Therefore the renormalized par- 
tition function as a function of the renormalized parameter describes a continuum 
model. It follows from (6.1.1)-(6.1.4) that the renormalized partition function 
satisfies the renormalization group equation 

i 
p-g+P(Ar)$ 1 z’(p, ny=o. (6.1.5) 

There remains the problem of describing the appropriate space of definition of 
the renormalized parameter. The space of renormalized parameters, as they are 
given in (6.1.4), is the same as the space of bare parameters. But the renor- 
malization group is, strictly speaking, a semigroup, since there is no way to undo 
the elimination of degrees of freedom. The definition of the continuum model (6.1.3) 
requires that the renormalization group be run backwards an infinite amount of 
time. Pathological short distance behavior is to be feared unless the entire 
backwards trajectory can be exhibited inside the space of bare parameters. 
Therefore the renormalized parameter should lie in an unstable manifold associated 
with an infrated instability of the renormalization group. 

Equivalently, the continuum model should be defined by making the bare 
parameter approach a critical surface within the space of bare parameters, rather 
than by allowing the bare parameter to follow an arbitrary trajectory of the renor- 
malization group backwards into unknown territory. 

Suppose n(s) a curve in parameter space such that ;1(0) lies on the critical surface, 
r(s) being a dimensionless length associated with n(s) which diverges at s = 0. The 
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continuum limit is defined by sending s -+O with the cutoff ,4(s) =~T(s). By the 
renormalization group equation (6.1.1), the same continuum limit is obtained from 
A’(s) = e -‘ql(s)), A’(s) = e -‘A(s), f or any t < T(S). Letting t + co, as s + 0, brings 
J.(s) to the unstable manifold. Therefore, the directions of infrared stability in 
parameter space are irrelevant to the continuum limit. 

Recapitulating: the continuum of scaling limits of the model are described by the 
unstable manifolds associated with infrared instability of the renormalization group. 

In perturbative field theory, the renormalization traces a reversed course. First, 
the renormalized partition function is shown to be well defined in the continuum 
limit as a function of the renormalized parameter, when the bare parameter is made 
to depend appropriately on the renormalized parameter and the ratio of scales. 
Renormalization group equations then follow from the existence of the continuum 
limit. 

The perturbative field theory is given order by order in an expansion about a free 
held theory, that is, about a gaussian distribution of fields. Power counting limits 
the space of possibly relevant parameters: parameters describing nonrenormalizable 
vertices are ignorable. Power counting determines that the bare parameter 2 can be 
written as a function of a renormahzed parameter 1’ and the ratio of scales P-IA so 
that Z(n, A), when expanded in A’, has a sensible limit order by order in A’ as 
n + co. To lowest order, J is 1’ scaled by appropriate powers of pplA so that the 
renormalized distribution of fields is, at lowest order, independent of A. At higher 
order, 1 consists of cutoff dependent counterterms (containing powers of log p - ‘A ) 
needed to cancel the primitive divergences in the Feynman diagrams of the pertur- 
bative expansion. 

By power counting, the primitive divergences depend only on the short distance 
properties of the model. Therefore the perturbation theory can be made cutoff 
independent by means of counterterms which are independent of the infrared 
regularization. 

The space of renormalized parameters 2’ must be large enough to contain all 
counterterms permitted by power counting, because the distinction between renor- 
malized parameter and counterterm is arbitrary, up to cutoff independent reappor- 
tionments between the two. 

The continuum limit of the perturbation theory, which depends on p and A’, is 
defined by (6.1.3). Renormalization group equations follow from the equivalence of 
cutoff and continuum theories at distances much larger than the cutoff. Z(n, 2) is 
independent of p, so differentiating the expression on the left in (6.1.3) with respect 
to g, holding /i and A fixed, gives the renormalization group equation 

(6.1.6) 

where 

(6.1.7) 
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More precisely, for t = log p-‘/I, let n, be the map from renormalized to bare 
parameter which provides the continuum limit: 

Then 

Z’(p, lr) = A”-“, Z(A, Z7,‘(Ar)). (6.1.8) 

p(n’)= -g7;l)on,. 

=(n;l)*-gzI,. (6.1.10) 

Being dimensionless, the renormalization group coefficient /I’ can depend on p 
and /f only in the combination p-‘/l. But, at each order in A’, any term in 8’ which 
diverges when p-‘/l + cc can be isolated as a separate invariance of the model and 
discarded without affecting the validity of the renormalization group equations. 
Therefore the renormalization group coefficients are independent of p and n in the 
limit p-r/i + co. 

For properties associated with distances much greater than /i-r, the bare par- 
tition function is governed by a renormalization group equation of the form (6.1.1), 
the b-function being 

or, more precisely, 

The above constructions depend on expansions which have a chance of making 
sense only when both ,2 and 1’ are small. But 1 is given as a power series in 1’ with 
divergent coefficients. As the ratio of scales increases, A’ and 1 must be confined to 
smaller and smaller values. The perturbative renormalization group equations are 
at best asymptotic expansions of the nonperturbative equations. They are useful 
because the topological structure of a vector field such as the renormalization group 
generator, in the region of small values of the parameter, is exhibited in its 
asymptotic expansion. 

The topological properties of the renormalization group determine a posteriori 
the length scales at which the perturbative analysis is appropriate. When pertur- 
bation theory shows infrared instability in the region of small values of the 
parameter, the perturbative analysis is appropriate at short distances: it establishes 
the existence of the continuum limit and exhibits the short distance (6~~‘) scaling 
properties. When perturbation theory shows infrared stability, the perturbative 
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analysis can be used to find long distance properties ($p-‘), but cannot pick out 
the renormalization group trajectory which leads back to an infrared unstable fixed 
point, or even guarantee that such a trajectory exists. 

6.2. Power Counting for the Nonlinear Models 

The general program outlined in the previous section is now to be adapted to the 
nonlinear models. Two complications arise: (1) the degeneracy of the gaussian 
models at asymptotically small values of the parameter, and (2) the existence of a 
group of equivalence transformations on the parameters. 

This section describes the constraints on perturbative renormalization determined 
by power counting. The arguments are applicable to models on Euclidean 2 + E 

space for asymptotically small E, but for convenience only the case E=O is treated 
explicitly. For E # 0, the essential point is that the significant cutoff dependence of 
the Feynman diagrams consists of powers of logp--‘A and that, in the double 
expansion in T and E, the power of log p ~ ‘A occurring in each term of the expan- 
sion is controlled by the combined power of T and E multiplying the term, which is 
therefore the appropriate number by which to order the expansion. 

The parameters of the nonlinear model are the metric coupling and the (spatially 
dependent) external field. The perturbative expansion is in powers of the tem- 
perature. The model is to be renormalized by expressing the bare metric and exter- 
nal field as a renormalized metric and external field (scaled according to naive 
dimension) plus counterterms, so that the partition function (2.4.4), expanded in 
the renormalized temperature, is a cutoff independent function of the renormahzed 
parameters. Renormalization of the external field is equivalent to renormalization of 
its dual, the order parameter. 

The apparatus of perturbative renormalization cannot, however, deal directly 
with the nonlinear model. The theorems which support power counting arguments 
require a Feynman diagram expansion, which in turn is derived from a functional 
integral over linear fields. Therefore the perturbative renormalization must take 
place in the collection of distributions (3.1.6) or (3.2.8)-(3.2.9) of linear fields. It is 
necessary first to renormalize the individual distributions of linear fields, and then, 
as a separate matter, to show that the collection of renormalized distributions of 
linear fields is equivalent to a single renormalized nonlinear model. 

It might seem that infrared regularization by means of a constant external field 
-iTp’h, avoids the second issue by eliminating all but one distribution of linear 
fields from consideration. However, h, is a soft operator whose effect is negligible at 
the short distances which are of concern in the renormalization. h, should be con- 
sidered a device by which one distribution of linear fields at a time is singled out for 
renormalization. Each distribution is renormalized in the presence of an 
appropriate external field. The issue of the compatibility of the resulting collection 
of renormalized distributions remains. 

The parameters of the distribution of linear fields at m, (3.1.5) or (3.2.8t(3.2.9), 
are the Taylor series coefficients of Sll and h(x), and, in (3.2.g)-(3.2.9) also the coef- 
ticients of pi and 7;. The Taylor series coefficients of g, g, J, p, and 3 are the 
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couplings associated with the vertices of the Feynman diagram expansion. The 
logarithmic jacobian J” of the coordinate map is not an independent parameter, 
because the a priori volume element from which it derives is fixed in association 
with the metric coupling. The variability ofJ is absorbed into that of h”. 

The distribution of linear fields at m is renormalized by expressing the bare ver- 
tices as (naively resealed) renormalized vertices plus counterterms, so that the 
functional integral (3.1.6) or (3.2.10) at m is a cutoff independent function of the 
renormalized couplings. The renormalized vertices take the most general form 
prescribed by power counting for the counterterms. 

Of the variables in (3.2.8)-(3.2.9), only the field Go has short distance fluc- 
tuations. Power counting reveals that the primitively divergent diagrams involving 
(T contain arbitrary numbers of the dimensionless vertices from the expansion of 
S(m, a). These are the vertices containing two derivatives of oi(x). The rest of the 
vertices of (3.2.8~(3.2.9) contain no derivatives of 0. They have length dimension 
-2. By power counting, at most one of them can occur in a primitively divergent 
Feynman diagram. 

The diagrams containing only vertices from 3 are quadratically divergent. The 
primitive divergences of such diagrams consist of integrals over space of two kinds 
of local expression in a’(x): polynomials in a’(x) multiplied by n2; and polynomials 
in oi(x) multiplied by LJ,o’(x) $~j(x). These have exactly the form of the vertices 
occurring in the expansions of S and fi. Since any number of vertices from 3 can be 
present in these diagrams, the coefficients of the primitive divergences are 
polynomials in the Taylor series coefficients of the metric gu. The order of the 
polynomials can grow without bound as the number of loops increases. 

The remaining primitively divergent diagrams contain exactly one vertex not 
from the expansion of 3, and are logarithmically divergent. A primitive divergence 
of such a diagram is the integral over x of a polynomial in rri(x) multiplied by a 
coefficient from the expansion of one of J(m, o(x)), &m, (T(X)), iyjpj(m, C(X)), or 
cjT$rn, a(x)) CT. These primitive divergences have exactly the form of fl, iyj pj’, and 
cj&,?. The Taylor series coefficients of the metric occur nonlinearly, while those of 
J, h”, D, and 7 occur at most linearly. 

The power counting argument appropriate to (3.1.5) is identical to the above, 
simply omitting mention of p” and7 

The renormalized distribution of linear fields at m therefore takes the same form 
as the bare one: 

20 exp[ -A’(m, CT)] (6.2.1) 

or 

where 

dy dc* A dc C?O exp[ -A”‘(m, CT, y, c, c*)], (6.2.2) 

20 = n &o(x) exp[ -F(m, o)] (6.2.3) 
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T(m, 0) = ,a*+’ 
s 

dxr(m, a(x)) 

A’(m, a) = P(m, a) - Rl(m, a) 

Ar(m, u, y, c, c*) = P(m, a) - F(m, a) 

- iy,(P)‘(m, a) - c!(P)Jm, a) c* 

S(m, 6) = gic j dx ;T-’ g;(m, a(x)) kT,tr’(x) d,oj(x) 

Rl(m, a)=~*+’ 
s 

dx h”‘(x)(m, a(x)) 

(pr)‘(m, CT) = L-‘” +&) 
s 

d.u@‘)‘(m, c(x)) 

(P)J(m, G) = L-“+‘) j dx(Tr)$m, (T(X)). 
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(6.2.4) 

(6.2.5) 

(6.2.6) 

(6.2.7) 

(6.2.8) 

(6.2.9) 

(6.2.10) 

The renormalized parameters at m consist of the coefficients of the Taylor series 
expansions (in powers of U) of &(m, a), h;(x)(m, a), ( j’)‘, and (f’)j(m, u). 7 is not 
an independent renormalized parameter but is determined by the fixed relationship 
between 2, and S’. Any discrepancy between the counterterms for the J vertices 
and ,T becomes an inhomogeneous counterterm for g, that is, a counterterm of the 
form of an external field, but not linear in I% 

The bare parameters for each m are expressed in terms of the ratio of scales p-‘n 
and the renormalized parameters at m, so as to give a well defined renormalized 
partition function 

Z’(m)= lim Z(m), (6.2.11) 
., + 1x> 

which depends only on f~ and the renormalized parameters at m. 
For each constant m, gii at m depends nonlinearly on & at m. h”, p, and 7 at m 

depend nonlinearly on ,@li at m and at most linearly on h”‘, T, and f at m (respec- 
tively). 

Power counting alone puts no restrictions on the renormalized vertices. Each 
term of each of the formal power series &, F, ~7, and 7 at m is an independent 
parameter. 

6.3. Renormalization of the Compatibility Conditions 

The power counting arguments apply independently at each constant m. But the 
bare parameters describing the various distributions of linear fields not indepen- 
dent. For example, the vertices contained in $m, C) and &(m, CT) for a given m 
determine those for any m’ infinitesimally close, because any small fluctuation 
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around the constant 4(x) = m is also a small fluctuation around 4(x) = m’. To con- 
sistently describe a renormalized nonlinear model, the renormalized perturbative 
parameters must contain an equivalent redundancy. That is, the collection of renor- 
malized distributions of linear fields (6.2.1) or (6.2.2) must be the expression in 
some “renormalized” system of coordinates of a renormalized distribution of non- 
linear fields of the form (3.15) or (3.2.8F(3.2.9). If this were not the case then the 
space of parameters for the model would have grown enormously: from metrics and 
external fields to independent Taylor series of metrics and external fields at each 
point in M. 

The redundancy in 3, in i? and in the a priori measure &r is expressed as an 
invariance under a first order differential operator bi, described in Section 5.2. 
When infrared regularization is provided by a constant external field, the renor- 
malization of the nonlinear structure of the model follows from the renormalization 
of the invariance of the collection of bare distributions of linear fields under fii. For 
finite volume infrared regularization, the collection of bare distributions of linear 
fields (3.2.8)-( 3.2.9) is invariant under a single anticommuting transformation of the 
BRS type, described in Section 5.8, which connects distributions at different values 
of m. The renormalization of the nonlinear structure follows from the renor- 
malization of the BRS invariance. 

The line of argument is an elaboration of that of [S-lo]. An effective action is 
delined for each distribution of linear fields as the sum of one particle irreducible 
Feynman diagrams. The invariance properties of the collection of distributions of 
linear fields are used to obtain quadratic identities on the collection of effective 
actions. At lowest order these identities state the original invariance properties. The 
primitively divergent pieces of the effective actions satisfy the same quadratic iden- 
tities. Therefore the renormalized distributions of linear fields can also be made to 
satisfy the identities. The quadratic identities are solved to obtain the result that the 
renormalized distribution of linear fields is the expression of a renormalized dis- 
tribution of nonlinear fields in terms of a renormalized system of coordinates, and, 
for finite volume infrared regularization, of a renormalized gauge function. The 
argument is presented in parallel for both forms of infrared regularization. 

The sum of connected Feynman diagrams for the distribution (3.15) or 
(3.2.8)-(3.2.9) is generated by 

lV(m, p) = log j a0 exp[ -A(m, CT) + (p, u)] (6.3.1) 

or 

wtm, P, P, C, c*) = log 1 d7 a CT x exp[ -A”(m, CJ, y, c, c*) + (p, CJ) + iyj#]. (6.3.2) 

pi(x) is a local source conjugate to C?(X): 

(p, CT) = A2+’ j dx p,(x) a’(x). (6.3.3) 
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The auxiliary variables of (3.2.8k(3.2.9) can be kept as parameters for purposes of 
renormalization, because integration over them is finite dimensional and cannot 
introduce additional divergences. They are global objects coupled only to the large 
distance fluctuations of the local field. But it is convenient to introduce a conjugate 
variable p’ for the multiplier yj and to integrate out yj, in order to remove the zero 
modes from the integral over g. It is not convenient to integrate out the ghost 
variables, because of the trilinear and quadrilinear terms in the BRS operator 
(58.14). 

The effective action p, comprising the sum of one particle irreducible diagrams, is 
given by the Legendre transform of @: 

m + ml4 = (cl, G.) (6.3.4) 

or 

Qa, Y) + mtPL, PI = (I4 g, + QjJ+ (6.3.5) 

where p and p in (6.3.4)-(6.35) are given by inverting 

a 
iyj = - r;t. 

aPj 

(6.3.7) 

In (6.3.5) the dependence on m, c, c* is suppressed. Note that, for finite volume 
regularization, ti and r transform as logarithms of volume elements on M (see 
Section 5.6). 

The generating functions are calculated in a perturbative expansion about the 
gaussian distribution 

l$W+m { - ‘1 A dx ;T-l x [g&m, 0) a,da,d+ A2h”,,Jm, 0) 0’~‘) (6.3.8) 
x 

or 

dy n da(x) exp {-A’ j dx $Tp1 gv(m, 0) a,a’a,,aj 
I 

+ iyjL-2pE 
s dx(8h 0) +&(m, 0) a’Yx) 

(6.3.9) 

where KJrn, 0) is the hessian of the constant external field and FJrn, 0) is the first 
derivative of the gauge function p(m, a(x)) at ci(x) = 0. 

The consequences of the redundancy equations are derived first for constant 
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external field regularization. As in (5.3.3), the compatibility operator is written in 
terms of a linear connection in TM as 

a 
Bi = vi - Q@z, a(x)) 7. aaqx) 

The integration by parts formula (55.11) yields 

(6.3.10) 

=- I &r{exp[-S+W+(p,a)] 

x I dx Qh 0)) tic'(x) > 

or 

(6.3.1 I ) 

(6.3.12) 

The pairing (Q{, -a/%(x)) is defined as follows. The expression on the right in 
(6.3.12) requires integration of power series in a’(x). Such integrals are generated by 
differentiation with respect to the Taylor series coefficients of E(x) occurring in p. If 

h”((m,u)= c ~ykl...“*.i;(X)k,...k” (6.3.14) 
n=O . 

and 

Q{(m, 0) = 1 +, Vk’ ’ ’ ’ Vkn Qxk, _. .k,, 

n=O . 
(6.3.15) 

then define 

Pairings of a/&(x) with other functions of a’(x) are defined similarly. 
The Legendre transform of (6.3.13) is the quadratic identity 

BgF’=o 

where 

jj;q- @, - ar _a. ( -1 ah(x) adfx) 

(6.3.16) 

(6.3.17) 

(6.3.18) 
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At lowest order -dF/lah”(x) = 1 so (6.3.17)-(6.3.18) is then the original redundancy 
equation. 

The standard argument by induction in the order of perturbation theory gives the 
quadratic identity on the renormalized distribution of fields (6.2.1): 

fig’ = 0 (6.3.19) 

&=%-(Q’H(o(+--& 

(Q’X(dx)) = (Q:, - &) 

(6.3.20) 

(6.3.21) 

Power counting and Euclidean invariance give that (Q’)i(a(x)) is a power series in 
g’(x), containing no derivatives of (T’(X), with coefficients independent of x. 
Therefore (6.3.19) implies the separate identities 

jj$’ = &A’ = 0. (6.3.22) 

The operator (B’)$ defined as in (4.2.5), satisfies, by (6.3.22), 

(D);. I? = 0. (6.3.23) 

(dr)i does not differentiate with respect to m, because v$ does not; that is, (Br)i- 
acts independently on each space of linear fields. But for each m individually, 
F(m, C) can be chosen arbitrarily. Therefore (6.3.23) implies the renormalized 
integrability condition 

@Y,;= 0. (6.3.24) 

Now define 

D;=Vi-(Qr){(m, u)-$ (6.3.25) 

as a first order operator on functions on TM. Equations (6.3.19)-(6.3.24) imply 

(D');=O (6.3.26) 

D;&x)=O (6.3.27) 

Djg;=O. (6.3.28) 

It follows immediately, using the results of Section 4.2, that 0; is the com- 
patibility operator for a renormalized system of coordinates E' on M, that & is the 
expression in that system of coordinates of a metric g; on M: 

g’@, 0) = (%)*gg(uX (6.3.29) 
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and that h”‘(x) is the expression in the renormalized coordinates of a function h’(x): 

h”‘(x)(m, 0) = h’(x)(Em(x)). (6.3.30) 

The renormalized distribution of nonlinear fields, represented in the renormalized 
coordinates by the collection of renormahzed distributions of linear fields, is 

(6.3.32) 

H’(d) = p*+& j dx h(x)‘(#(x)). (6.3.33) 

As discussed in Section 4.2, the system of coordinates E’ is determined by 0; only 
up to transformations by diffeomorphisms Y of M (near the identity): 

E’+ Y 0 E’. (6.3.34) 

Therefore the renormalized metric g” and the renormalized external field h’(x) are 
only determined up to the transformations 

g’, k’(x) + Y* g’, h(x) 0 !I- l. (6.3.35) 

The relationship between g(x) and h”‘(x) is, by power counting, a linear one: 

h”(x) = 2,(m) h”‘(x) + h”,(m). (6.3.36) 

For each m, i?,,(m) is, to any finite order, a differential operator on functions on 
T,,,M and El(m) is a real valued function on T,,,M. Both depend on the cutoff and, 
nonlinearly, on g’. The renormalized compatibility conditions imply 

h(x) = Z/$‘(x) + h, (6.3.37) 

Z,(m) = EZ&Y,,)* (6.3.38) 

E,(m) = Ezh,. (6.3.39) 

Z, is, to any finite order, a differential operator on real valued functions on A4 and 
h, is a real valued function on M. 

The inhomogeneous term h, in (6.3.34) takes the form 

hl=h,,6+(~-1/i)~*-&hl,r. (6.3.40) 

h,., is a finite contribution to the renormalized external field. h,,, contains the coun- 
terterms for whatever quadratic divergences appear, given the choices d,&x) and 
d&(x) of a priori volume elements. The dependence of hr., on the cutoff is in the 
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form of powers of log p -‘A. h, is trivial for the standard models because there is no 
nonconstant invariant function on a homogeneous space M. 

To lowest order, 

and 

T-lg,j=(pLIA)-E[(T-‘g);+O(~)] (6.3.41) 

Zh=(~-l/l))~E[l +0(P)]. (6.3.42) 

The counterterms of order p in (6.3.41)-(6.3.42) are nonlinear in T-‘g’ and 
depend on the cutoff through powers of log p ~ ‘A. 

Loop counting constrains in the usual fashion the powers of T, log ,D ~ l/1, and E 
occurring in the counterterms. As the number of loops increases, more of the ver- 
tices play a role in the primitive divergences, so the primitive divergences come to 
depend on more and more derivatives (in M) of the parameters. 

For finite volume regularization, the argument proceeds in essentially the same 
fashion. The integration by parts formula (5.8.25) and induction on the order of the 
perturbative expansion give the quadratic identity on the renormalized vertices 

f( A”‘) = 0 (6.3.43) 

where .rr is identical to s (5.8.14) except that & (6.3.20) takes the place of Bj. There 
is also a linear identity 

a -A"'= -(pry 
a(iyj) 

(Y)’ acts independently at each m, and (s~)~(A”‘) = 0, so 

(Sy = 0. 

From (6.3.43))(6.3.46) it follows that 

with 

(6.3.44) 

(6.3.45) 

(6.3.46) 

(6.3.47) 

(6.3.48) 

595/163/2-l] 
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Therefore the renormalized distribution of linear fields (6.2.2) is the expression of a 
renormalized distribution of nonlinear fields (6.3.31 k(6.3.33) in terms of a renor- 
malized system of coordinates E’ and a renormalized gauge function ir’. From this 
point the argument is exactly as in the case of constant external field infrared 
regularization. 

6.4. Renormalized Group Equations 

The equivalence between bare and renormalized descriptions of the distributions 
of nonlinear fields is used to derive renormalization group equations. The renor- 
malized partition function is given by 

Z’(p, g;, h’) = Jiirn Z(4 g,, A). (6.4.1) 

where the full dependence of Z and z’ on parameters has been made explicit. The 
limit is taken with the bare parameters functions of t = log p ~ ‘A and of the renor- 
malized parameters: 

g = g(t9 8’) (6.4.2) 

h=Z,(t, g’)h’+h,(t, g’). (6.4.3) 

The freedom to change origins in the coordinate spaces defining the linear fields 
gives the freedom to insert an arbitrary diffeomorphism of A4 in the transformation 
from renormalized to bare parameters. 

The renormalization group equation for the bare partition function is 

(6.4.4) 

(6.4.7) 

The B-function, b= /?( g)(a/ag), is a vector field on the space of Riemannian 
metrics on M. y(g) is, for each metric coupling g, a linear operator on real valued 
function on M. 6(g) is, for each metric g, a real valued function on M. The com- 
bination y”(g) h(x) + 6(g) is an inhomogeneous linear vector field on the space of 
external fields, which depends on the metric coupling. This pair of vector fields, on 
metric couplings and external fields, is (the negative of) the generator of the renor- 
malization group. It is the object which, in the general discussion of the previous 
section, was called the B-function. 
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The inhomogeneous term in the renormalization group equation for the external 
field is an inconvenience which can be eliminated by an appropriate choice of bare 
and renormalized a priori volume elements. To see this, write h1 = h,,, + h,,,, as in 
(6.3.40), and express hl,b as a function of t = log p - ‘/i and g. Then 

(6.4.8) 

The argument now goes by induction in the order of perturbation theory. The 
renormalization group coefficients are independent of the cutoff. Therefore, at each 
order, the most divergent part ht,: of h,Jt, g) satisfies 

But the lowest order contribution to the operator in brackets in (6.4.9) is the naive 
scaling value -2 of 7, implying that h$ = 0. Therefore A,*6 must be independent of 
t. As a function of g alone, it can be absorbed into the bare a priori volume 
element, thereby eliminating the inhomogeneous coefficient from the renor- 
malization group equation for the bare external field. An exactly parallel argument 
shows that h,,, can be absorbed into the renormalized a priori volume element, 
eliminating the inhomogeneous coefficient from the renormalization group equation 
for the renormalized external field. 

Thus the renormalization group equation for the external field identifies a unique 
choice of volume element, given pertubatively order by order in T (and E), with 
respect to which the external field is renormalized homogeneously. Homogeneous 
renormalization of the external field is the signal that the a priori volume element is 
chosen so that setting h = 0 in fact means the absence of an effective external field. 
With respect to any other choice of volume element, h = 0 leads to nonspontaneous 
ordering of the model. In the standard models this issue does not arise, because the 
distinguished, or neutral, volume element is fixed completely by the internal sym- 
metry. 

The distinguished bare volume element depends on the form of ultraviolet 
regularization. To lowest order, it is the metric volume element for g,. In dimen- 
sional regularization there are no quadratic divergences, so the distinguished 
volume element remains the metric volume element to all orders. On the lattice, 
however, a one loop calculation gives the distinguished bare volume element 

dT-lgq5(x) = dD,-1,q5(x) exp g R + O(T*) 1 (6.4.10) 

where 44(x) is the metric volume element and R is the scalar curvature of g,. 
Henceforth it is assumed that the a priori volume elements are fixed at their 

respective neutral values. The renormalization group equations are then 
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[ r~+B’(g’)~+~(g’)h.(x) ?- 
ah’(x) 1 z’=o 

[ 

a 
p~+P’(g’)~+y’(g’)*@‘(x)- 

ap w aw(.q 1 
l-’ = 0. 

(6.4.11) 

(6.4.12) 

(6.4.13) 

(6.4.14) 

The renormalized order parameter W(x) is the conjugate variable to the renor- 
malized external field, and is related to the bare order parameter by 

W(x) = (p - ‘n)2+sz$@(x) (6.4.15) 

so @’ = @ + O(T). The renormahzed free energy F’(p, g, @) is the Legendre trans- 
form of log Z’, as in (2.4.7k(2.4.8). 

The coeffients of the renormalization group equations are given by 

where 

(6.4.17) 

n,(g’, h’) = (g, h). (6.4.18) 

More concretely, 

p(P)=;~d g 

y’(g)= ; Zh (I > 0 Z, 
d 

B’(g’)= 2 -hs) ( > 
jT’(g’)=Z,’ 0 ($wb&) Zh 

r=(2+.5)+y” 

yr = (2 + E) + y”‘. 

(6.4.16) 

(6.4.19) 

(6.4.20) 

(6.4.21) 

(6.4.22) 

(6.4.23 ) 

(6.4.24) 
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y(g) and yr( g’) are linear operators on real functions on M. y(g)* and y’( g’)* are 
the adjoint operators on measures on M. The former annihilate constant functions 
on M; their adjoints generate semigroups which preserve probability. 

The effective parameters satisfy the renormalization group equations 

n-1 a pi g= -P(g) (6.2.25) 

A-’ &h(x)= -y”(g)@) 

A-’ &$w=Yk)*@o (6.2.27) 

-I a 
P- ap - * g' = -B'(g') (6.4.28) 

P 
-1 $ h’(x) = -7’( g’) h’(x) (6.4.29) 

P 
-1 

$ W(x) = y’( g’)*@‘(x). (6.4.30) 

Recall that flowing along ( - /?, - j%) is equivalent to decreasing all dimensionless 
lengths: dimensionfui lengths remain constant while the unit of length n -’ 
increases. 

The ambiguity in the relationship between bare and renormalized parameters, 
due to the freedom to choose arbitrarily the origins of the coordinate spaces, 
implies that the renormalization group coefficients are only defined up to 
infinitesimal diffeomorphisms: 

B(gL?(g)+B(g)- t-u(g), gl,y”(g)--o(g) (6.4.31) 

where u(g) is a vector field on M, and [II, g] is the Lie bracket, giving the effect on 
the metric g of the infinitesimal diffeomorphism u. 

/3 is a vector field on the space of Riemannian metrics on M. For each metric g, 
b(g) is an infinitesimal variation of g, i.e., a symmetric tensor field on M. To 
emphasize its tensorial character, /? is written pij( g). 

The couplings associated with the vertices of the Feynman diagrams are the par- 
tial derivatives of the metric and the external field in coordinates. Constraints on 
the form of the renormalization group coefficients follow from the fact that only a 
finite number of vertices participate in each order of perturbation theory. At order 
T’- ‘, which takes into account diagrams containing k loops, pii( T- ‘g) is a local 
nonlinear expression in g, which contains 2k derivatives of the metric. y( T- ‘g) is, 
to order Tk, which takes into account diagrams of k loops, a differential operator 
on real valued functions on M of order p, which is a local nonlinear expression in 
the metric, depending on q derivatives of the metric, where p + q = 2k. 
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6.5. Renormalization of the Transformation Properties 

This section discusses the renormalization of the action of the diffeomorphism 
group of M on the parameters of the model. For technical reasons, the discussion is 
limited to the cases in which M is a compact manifold or a homogeneous space. 
For the sake of simplicity, the discussion takes place in the context of constant 
external field infrared regularization. Only the infinitesimal diffeomorphisms are 
treated, although it should be possible to extend the arguments to deal with the full 
group of diffeomorphisms. The discussion is carried only to the point of iden- 
tification of the finite dimensional cohomology spaces containing the potential 
obstructions to renormalizability. 

In the case M compact, the problem divides into two stages. The first question is 
whether models which are equivalent under an infinitesimal diffeomorphism of M 
go to renormalized models which are also equivalent under some diffeomorphism of 
M. A negative answer clearly indicates some sort of pathology in the renor- 
malization of the model. Given an affirmative answer to the first question, the 
second one arises: Is it possible, by some finite modifications of the renormalization 
procedure, to make the renormalization covariant? A covariant renormalization is 
one for which models which are equivalent under a diffeomorphism of M are renor- 
malized to models which are equivalent under the same diffeomorphism of M. That 
is, a covariant renormalization is one which commutes with the diffeomorphism 
group of M. 

The renormalization of the equivalence relations is described by means of a set of 
quadratic identities on the renormalized action. Suppose u’ to be an infinitesimal 
diffeomorphism of M, i.e., a vector field on M. Let u”’ be its expression in coor- 
dinates around m. Then, for ti defined by (6.3.1), 

(6.5.1) 

or 

CQ 81; + Cu, h(x)1 &} m= -(z-g) Pi(X). (6.5.2) 

The Legendre transform of (6.5.2) implies the transformation law for the renor- 
malized action: 

a a 
Cc 81 ag + Cu, h(x)1 ah(x) 

a 
AI’= (Wm, 4~)) - aaqx) ~2’ (6.5.3) 

where 

(v”‘)‘(m, a(x)) = (9, - -$$). (6.5.4) 
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Equation (6.5.3) is equivalent to 

[u, g] $= [v”‘(m), 2’1 

and 

aP a@) I?4 d~+bAWlah(x)= u m [-‘( ) _ g(m), g’] 

(6.55) 

where z7'(m)=(C')'(m,u)(~/iY i, d “‘( ) u an u m is an arbitrary power series infinitesimal 
isometry of g’ at m, which can freely be subtracted from G’(m) because it has no 
effect on (6.5.3). 

Equation (6.5.4) is rewritten, using (6.3.29), 

(6.5.7) 

where 

v'(m)=(Ek), C'(m)-[Iv, g]$Er, . 
i 1 

The vector field u has been renormalized to a collection of power series vector fields 
u’(m) at the points m in M, defined up to addition of power series infinitesimal 
isometries u'(m) of g’ at m. 

This issue now is whether there is some choice of u'(m) which makes the u’(m) 
the power series expansions of a single vector field v* on M. Differentiating (6.5.7) 
with respect to m gives 

[IO’(m), s’l = 0, (6.5.9) 

so d,u’(m) is a closed one form on A4 with values in the power series infinitesimal 
isometries of g’. 

If there exists a field u'(m) of power series infinitesimal isometries such that 
d,u’(m) = did(m), then u’= u’(m) - u'(m) is independent of m, so is a well-defined 
vector field on IV. The obstruction, if any exists, to finding u’(m) is a cohomology 
class in the first cohomology of M with coefficients in the power series infinitesimal 
isometries of g’. 

If there is no obstruction, then (6.5.7), and (6.5.6) rewritten using (6.3.30), 
become 

(6.5.11) 
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Equations (6.5.10)-(6.511) state that bare parameters equivalent under an 
infinitesimal diffeomorphism u go to renormalized parameters equivalent by an 
infinitesimal diffeomorphism ur. Therefore the obstructions to renormalization of 
the equivalence relations lie in the first cohomology of M with coefficients in the 
power series infinitesimal isometries of the metric g’. 

When the fundamental group n,(M) of M is finite, i.e., when the simply connec- 
ted covering space of M is compact, then this cohomology space is zero. ur(m) is 
constructed on the covering space by integration of d,u’(m). It is then projected 
down to h4 by averaging over the fundamental group. 

It will be noted in Part II that all known infrared unstable fixed points of the 
renormalization group equations have rc,(M) finite, but that there are infrared 
stable fixed points for which the cohomology space of possible obstructions to 
renormalizability of the equivalence relations is nontrivial. 

Assuming that the equivalence relations are renormalizable (for example, if 
n,(M) is finite), there remains the issue of the renormalizability of the group 
theoretic structure of the equivalence transformations. The transformation proper- 
ties are renormalized if, for all infinitesimal diffeomorphisms u, 

[ID, ‘!?I fg= c4 8’1 (6.512) 

[u, g] $ + [u, h] g = [u, K-J. (6.513) 

This is discussed in terms of the renormalization group equations. From 
(6.5.10)-( 6.5.11), the renormalization group coefficients satisfy 

cu, PI- CT 81 g= CT(u), 81 

[u, 71 - co, $71; = T(u) 

where T is a linear transformation, depending on g, from vector fields to vector 
fields. The renormalization is covariant if T = 0. 

As discussed in Section 6.3, the renormalization group coefficients are only 
defined up to modification of the form 

(P(g), P( ET)) -+ (B( 8) - CM ET), SIT T(g) - 4 &?)I> (6.5.16) 

where, for each metric g, w(g) is a vector field on M. The problem is to find w(g) 
so that the modification (6.5.16) eliminates T in (6.5.14)-(6.5.15). 

p lies in the tangent space T$ to the space of metrics at g. The vertical subspace 
V,i? consists of tangents k, of the form k = [w, g]. T,a splits, in D-invariant 
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fashion, into the vertical subspace and a horizontal subspace H,w orthogonal in 
the inner product on 7’$ 

(k, k) = j qrn k,k, (6.517) 

where $rn is the metric volume element for g. 
Standard elliptic operator theory for compact manifolds gives a smooth decom- 

position of p into horizontal and vertical parts [ 161. The freedom to modify b as in 
(6.516) is used to discard the vertical part. Now, since the horizontal subspaces go 
into each other under diffeomorphisms of M, the expression on the left in (6.5.14) 
must be a horizontal tangent vector. But the expression on the right is obviously a 
vertical tangent vector. So both are zero. Thus, by a suitable g-dependent transfor- 
mation of M, the renormalization of the metric coupling can always be made 
covariant. It also follows that, for all u, T(u) is an infinitesimal isometry of g. 

The remaining problem is to make covariant the renormalization of the external 
field; that is, to find w(g) such that, for all Y, 

u’w= T(u) (6.518) 

where v. w  is defined by 

(6.5.19) 

From (6.5.15) follows the cocycle condition 

v,.T(v,)-u,.T(u,)-T([v,,u,])=O. (6.5.20) 

If T(u) = 0 for all infinitesimal isometries of u of g, then (6.5.20) becomes the 
integrability condition for (6.5.18). So the problem reduces to solving (6.5.18) for v 
restricted to lie in i, the Lie algebra of infinitesimal isometries of g. For v in i, 

u.w=[v, w], (6.5.21) 

so the obstruction, if it exists, is a cohomology class in the first cohomology of the 
Lie algebra i with coefficients in its adjoint representation. 

Since M is compact, i is the Lie algebra of a compact group: the direct sum of an 
abelian Lie algebra a and a semi-simple Lie algebra k. A semi-simple Lie algebra 
has no nontrivial first cohomology groups, so the cohomologically nontrivial T are 
all linear maps from a to i. The cocycle condition states that, for v in a, T(u) must 
commute with all of i. Therefore the first cohomology space, which is the space of 
possible obstructions to covariant renormalization of the external field, is exactly 
a@a*. 
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The case M a homogeneous space G/H must be handled somewhat differently. 
The compact homogeneous spaces are subsumed in the previous case. So the 
techniques are directed at the noncompact homogeneous spaces. It does not seem 
feasible to renormalize the metric everywhere on M, because of the lack of control 
at infinity. In particular, the elliptic operator theory used to obtain the covariance 
of the B-function is not available. An alternative is the usual treatment of the stan- 
dard models: fluctuations are examined only at one typical point m, in M. The 
arguments are sketched. 

The first problem is to show that the homogeneous space structure is preserved 
under renormalization. In place of the compatibility conditions are the nonlinear 
symmetries described in Section 5.9. These give rise to quadratic identities on the 
renormalized distribution of linear fields. The solution of the identities is a dis- 
tribution of fields invariant under a deformation of the nonlinear representation of 
g on the a’(x). 

The question becomes whether there is a nonlinear transformation of the field 
a’(x) which undoes the deformation of the representation of g. The deformation is 
described by a one-cocycle on g with values in the power series vector fields on 
T,,,,,M. It is removed if it is cohomologically trivial. 

Note that h acts linearly on T,,M, so the vector fields on TmoM which represent 
h vanish at the origin. The deformation of g need not preserve this property, so 
gives a linear map T from h to m. The cocycle condition on the deformation 
becomes a cocycle condition on T, with respect to the isotropy representation of h 
on m. It can be shown that if T can be eliminated then the entire deformation can 
be removed. Therefore the possible obstructions are cohomology classes in the first 
cohomology of h with coefficients in m. It follows from the fact that h is the Lie 
algebra of a compact group H that this cohomology space is a* @m,, where a is 
the abelian factor in h and m, is the subspace of h-invariant vectors in m, i.e., the g- 
invariant vector fields on M. 

Assuming that the symmetry is preserved under renormalization, it remains to 
renormalize the residual equivalence transformations D, (see Section 2.3). This part 
of the argument proceeds as in the compact case. The first step is to attempt to 
renormalize the equivalence relations. The second is to use the geometry of the 
space &. of G-invariant metrics to make fi covariant under the equivalence trans- 
formations, and then to attempt to make the external field renormalization also 
covariant. 

The analogue of the local isometry obstruction to renormalization of the 
equivalence relations is an obstruction in the first cohomology class of mo, the Lie 
algebra of D,, with coefficients in the space of all residual infinitesimal equivalences 
if G-invariant metrics (see Section 2.3). 

The obstruction to covariant renormalization of the external lield turns out to be 
a cohomology class in the first cohomology of m, with coelhcients in its adjoint 
representation, where m, is the subalgebra of m leaving the metric g invariant. 
Therefore the obstruction is possible if and only if m, has a nontrivial abelian fac- 
tor. 
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7. CALCULATION 

7.1. Rules for Calculation 

This section summarizes effective procedures for manifestly covariant calculation 
to all orders in the renormalized low temperature expansion, using the results and 
constructions of the previous sections. The procedures are discussed in less than the 
full generality those results and constructions allow; the more general procedures 
are left implicit. Infrared regularization is assumed to be by a constant external field 
or by finite volume, but details are given mainly for the latter. Metric normal coor- 
dinates (Section 4.7) are used for the general model and canonical normal coor- 
dinates (Section 4.8) for the standard models. Details are given mainly for dimen- 
sional regularization with renormalization by minimal subtraction. 

The object is to calculate the renormalization group coefficients and the renor- 
malized partition function 2’ (6.4.1) order by order in T as a function of the renor- 
malized metric coupling T- ‘g; and the renormalized external field h’(x). The 
functional integral (2.4.4) for the partition function is rewritten in terms of the 
linear field a’(x), as in (3.1.6) for constant external field regularization or as in 
(3.2.10) for finite volume regularization. Both require choice of a system of coor- 
dinates. Finite volume regularization also requires choice of a gauge function and 
an auxiliary linear connection in TM (see Section 5.4). 

The bare metric coupling is written as the naively resealed renormalized metric 
coupling plus counterterms: 

A”T-‘g,=peT-l(g~)+O(Tk+‘)) (7.1.1) 

g!P’= g! B rl’ (7.1.2) 

Similarly, the bare external field is written as the naively resealed renormalized 
external field plus counterterms: 

A*+%(~)=p~+~(h(~)(x)+ O(T’k+‘))) (7.1.3) 

h(O)(x) = h’(x). (7.1.4) 

The central problem is to find the counterterms as functions of g’ and h’(x). 
The a priori volume element is, to lowest order, the metric volume element. Both 

bare and renormalized a priori volume elements are to be adjusted, if necessary, at 
each order in T to ensure that the external fields are renormalized homogeneously 
(see Section 6.4). Dimensional regularization eliminates all quadratic divergences, 
i.e., divergences proportional to ,4*+’ vanish in the continuum limit for E < -2. So 
the a priori volume element is not an issue; in fact it plays no role in the 
calculations. The external field is renormalized homogeneously as long as no finite 
inhomogeneous counterterms are added to the external field. Minimal subtraction, 
in particular, allows no finite counterterms at all. 
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For the general model the coordinates are taken to be metric normal coordinates 
for the renormalized metric. For the standard models canonical normal coordinates 
are used. The gauge function is, for simplicity of calculation, (3.2.5)-(3.2.6). The 
auxiliary linear connection is the Levi-Civita connection for the renormalized 
metric in the general case and the canonical connection (Section 4.8) in the stan- 
dard case. 

The coordinates, gauge function and auxiliary connection are held fixed as the 
low temperature expansion is renormalized. As a consequence, the Fadeev-Popov 
matrix y$m, c(x)) (Section 5.7) also stays fixed. By (5.7.6) (5.3.3), and (5.4.2) 

T;Ti(m, a(x)) = (Q7jh 4-x)) (7.1.5) 

where Q” is the matrix valued function defined in (4.3.9) and given in normal coor- 
dinates by (4.5.6), (4.7.5) and (4.8.15). 

As each order in perturbation theory for the functional integral (3.1.6) or (3.2.10) 
over the linear field is renormalized, the system of coordinates and, possibly, the 
gauge function also undergoes renormalization (see Section 6.4). But the renor- 
malized comparibility conditions (Section 6.4) guarantee that the collection of 
counterterms for (3.1.6) or (3.2.10) can be reduced to counterterms for the 
functional integral (2.4.4) over the nonlinear field, by using the renormalized system 
of coordinates. A new set of counterterms for (3.1.6) or (3.2.10) can then be con- 
structed by returning to the original system of coordinates and gauge function. 

The couplings for the vertices of the Feynman diagram representation of the 
functional integral (3.1.6) or (3.2.10) are provided by the Taylor series expansion in 
coordinates of the renormalized metric plus counterterms (7.1.1) and of the renor- 
malized external field plus counterterms (7.1.3), by the expansion of the logarithmic 
jacobian J(m, v) (absent for dimensional regularization), and by the expansion of 
yj(m, V) (in finite volume). Formulas (4.5.6), (4.6.4), (4.4.9) and, (4.6.10)-(4.6.11) 
give these expansions in terms of the expansion of one quantity, the vielbein 
V’Jm, v), which is calculated recursively using (4.7.2) or (4.8.12). 

The gauge function (3.2.5)-(3.2.6) produces an especially simple propagator for 
a’(x). From (6.3.9) the propogator is 

G”(x, y) = T(( g’) - ‘)” G,(x, y) (7.1.6) 

where G, is the finite volume (real space) propagator for a scalar field in which the 
constant fields have been projected out. The volume element n, da(x) restricted to 
the zero modes is the metric volume element, so integration over the multiplier y 
using the metric volume element for di leaves the propagator (7.1.6) and gives 
Zr(m) equal to the metric volume element dm times the Feynman diagram expan- 
sion generated by the action 2. 

Since the techniques of calculation are all manifestly covariant, it is only 
necessary to calculate at a single point m in an arbitrary n-dimensional manifold M. 
The results of the calculation, which are expressions in the curvature tensor and 
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other covariant objects, are immediately transferable to all points in any n-dimen- 
sional manifold. (It seems to be the case that with normal coordinates the dimen- 
sion n never appears explicitly in calculation, in particular never appears explicitly 
in the renormalization group coefficients.) 

The calculation procedure is now described recursively. Z’ is assumed known to 
order Tk. To order 70, 

Z’=jdmexp $+’ 
[ J 

dxh’(x)(m) . 
1 

(7.1.7) 

To calculate Z’ to 0( Tk) requires knowledge of g,, (k), hCk’(x) and the expansion of 
VJm, u) to O(uzk). In order to calculate Z’ to O(Tk”) using (3.1.6) or (3.3.20) it is 
necessary to find V to O(V~~+~ ), which is easily done using (4.7.2) or (4.8.12), and 
to find the O(Tk’ ‘) counterterms 

gi?L gg+l)-g;? (7.1.8) 

hlkl(X)=+k+ll (x) - h’k’(X). (7.1.9) 

The first step is to calculate counterterms for the divergences in the Feynman 
diagrams generated by the action (3.1.5) or (3.2.9) for the linear field (r. The metric 
and external field in coordinates are written as the resealed renormalized metric and 
external field plus counterterms: 

/i&T- ‘& = p&T- ’ [ g!$) + O( Tk + ’ )] (7.1.10) 

A2+E~(x)=pz+e[j&k)(~)+ O(T’k+l))] (7.1.11) 

where gtk) and ECk’(x) are the expressions in coordinates of gCk’ and htk’(x). 
Superficially it appears as if counterterms are needed at 0( Tk’ ‘) for all of the 

vertices given by the expansions of s(m, G) of A(m, a) in powers of u. But the 
renormalized compatibility conditions (6.3.20)-(6.3.22) imply that only enough 
counterterms need be calculated to determine grk+” and /z[~+‘~(x). For this it is 
enough to calculate counterterms for the two point vertex 

i dx ggm, 0) d,o’(x) q$r’(x) (7.1.12) 

and the zero point vertex 

s dx h;(x)(m, 0). (7.1.13) 

The counterterm for (7.1.12) is minus the part of the primitive divergence in the 
one particle irreducible two point function of C?(X) which is quadratic in the exter- 
nal momentum. By the induction assumption the divergences are 0( Tk’ ‘) relative 
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to the lowest order contribution. With dimensional regularization there are no 
quadratic divergences, so on dimensional grounds the only divergence in the two 
point function must be quadratic in the external momentum. The diagrams which 
provide the primitive divergence have two external legs and contain only vertices 
from the expansion of 3 (Section 6.3), so the coefficient of the divergence is a sym- 
metric tensor at m formed from the Taylor series coefficients of the metric coupling 
at m, which in turn are formed from the metric, its curvature tensor and the 
covariant derivatives of the curvature, all at m. The corresponding counterterm for 
$(m, 0) is written H?>(rn 0). !I 

The counterterm fk (7.i.12) is minus the primitive divergence in the one particle 
irreducible zero point function. Again, by the induction assumption this is O( Tk+ ‘). 
On dimensional grounds the primitive divergence is proportional either to a Taylor 
series coefficient of the external field at m or to n *+’ The latter does not occur with . 
dimensional regularization. 

The diagrams which provide the part of the primitive divergence proportional to 
the external field have no external legs and one vertex from the expansion of A; the 
rest of the vertices are from the expansion of 3. The coefficient of this part of the 
primitive divergence is a real number formed by contracting a covariant derivative 
of h’(x) at m with the metric coupling, its curvature tensor and covariant 
derivatives of the curvature, all at m. 

The diagrams which give the quadratic primitive divergences have no external 
legs and vertices all from the expansion of 3 except for at most one from the expan- 
sion of the logarithmic jacobian 7. The coefficient of this divergence is a real num- 
ber formed from the metric, curvature and covariant derivatives of the curvature at 
m. 

The counterterm for p(x)(m, 0) is written LCk> (x)(0,0). By the above discussion, 

Jick)(x)(m, 0) = [Z <k>R(x)] [m, 0) + h”l<k)(m). (7.1.14) 

Zck> is a differential operator in a’(x) (independent of x) with constant coefficients 
formed from the metric, its curvature tensor and the covariant derivatives of the 
curvature at m. i?:“)(m) is a real number formed from the metric, curvature and 
covariant derivatives of curvature at m. With dimensional regularization it is 
absent. 

By (4.4.9) and (4.6.3), the counterterms g’ik>(m, 0) and Kck>(x)(m, 0) for the 
linear fields determine the counterterms gFl(m) and hrkl(x)(m) for the nonlinear 
lieIds: 

hckl(x)(m) = Jick>(x)(m, 0) (7.1.15) 

and 

@+‘)(m) = QiP(m, O>I:i~)(m, 0) + &$>(m, O)l Q%, O), (7.1.16) 
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where, by the renormalized compatibility condition (6.3.21)), 

Qf’(m, 0) = (Q’)f(m, 0) + Z@‘(Q’)f(m, 0). 

so 

(7.1.17) 

gr’(m) = g,:k’(m, 0) + Z(“>(Q’);(m, 0) gLj(m) 

+ g’,(m) gck’( Qr),P(m, 0). (7.1.18) 

Since the counterterms for the external field are linear in the renormalized exter- 
nal field they can be written 

Vk’(X) = Z~kvz’(x) (7.1.19) 

z-k + 1) = z$’ + zikl (7.1.20) 

Zj,“’ = 1. (7.1.21) 

Note that (7.1.19) differs from (6.3.37) in that here Zh does not contain the rescal- 
ing factor (CL ~ ‘A) ~ *-‘. Zp) is a linear differential operator, natural in the renor- 
malized metric, of order at most 2k. Homogeneous renormalization, if necessary by 
adjustment of the a priori volume element, has been assumed. By (7.1.14)-(7.1.15), 
Zh”] is given by 

z~k’hr(x)(m) = z<k3?(x)(m, 0). (7.1.22) 

So, srnce the Taylor series coefficients of a function in normal coordinates are the 
covariant derivatives, Zi”l at m is Zck> at m with covariant derivatives substituted 
for partial derivatives. 

Once the counterterms gck3 and hckl(~) are known, the renormalization group 
coefficients can be calculated to order Tk’ ’ (relative to the lowest order con- 
tributions). For cutoff forms of ultraviolet regularization the formulas were given in 
Section 6.4. They are presented here for dimensional regularization with minimal 
subtraction. The renormalization group coefficients give the change in g’ and h’(x) 
needed to keep p’gCk’ and JJ’+~ (k) h (x) fixed when making an infinitesimal 
logarithmic variation of p: 

-(k) - a 
Y - -(2 + E) - (Zl;k)) - l p - Zik’. 

ag 

(7.1.23) 

(7.1.24) 

The r-superscripts have been suppressed because the renormalization of the bare 
parameters is of no interest. 
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The finiteness of the renormalization group coefficients at E + 0 implies that they 
are determined by the simple poles in E of the counterterms: 

/j(k)= --Eg+ g2@ g(k.l)L gw) 

-(k)= -(2+&)+ gL!@.” Y 
ag . 

(7.1.25) 

(7.1.26) 

The residue of g , (k) Zp), gck], and Zikl are written gCk,‘), Zp*‘), gCk.ll, and Zik,‘l. 
Once the renormalization group coefficients are known to 0( Tk+ ‘), the full 

counterterms at 0( Tk’ ’ ) are determined by (7.1.23t(7.1.24). (See, for example, 
[20].) Therefore it is only necessary to find the primitive divergences which are 
simple poles in E in order to find the full set of counterterms. With these counter- 
terms, the Feynman diagram expansion of (3.1.6) or (3.2.10) gives the partition 
function Z’ finite to order Tk+l. 

7.2. Renormalization Group Coefficients 

This section summarizes the application of the procedures of Section 7.1 to the 
calculation of the renormalization group coefficients in the two loop 
approximation, using dimensional regularization and minimal subtraction. Metric 
normal coordinates define the linear fields. To eliminate factors of 27r, T is replaced 
by 27cT. The r-superscripts are suppressed. 

The primitive divergences in one loop diagrams give 

T- ‘gi(‘)(rn, 0) = -k R&m) (7.2.1) 

K(‘>(x)(m, 0) =k T( 8-l)” u,v,h(x)(m). (7.2.2) 

The operator Z(O) is therefore 

and 

Zip)= 1 +k T( g-l)” u,u,h(x)(m). 

Using the expansion (4.7.5) for Qj, 

Z<‘>(Q)$m, 0) = -k T(g-‘)@ R;(m). 

(7.2.3) 

(7.2.4) 

(7.2.5) 
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So, by (7.1.18), 

T-‘gP’= -AR.. rJ E ‘I’ (7.2.6) 

By (7.1.25)(7.1.26), the one loop renormalization group coefficients are 

py’( T- ‘g) = --ET- ‘g, + R, (7.2.7) 

y”‘( T-‘g) = -(2 + E) - ‘TV-U. 2 i f. (7.2.8) 

In the next order it is easily seen that there are no simple poles in the counter- 
terms for (7.1.13), so 

zc1.11 = 0 
h (7.2.9) 

and 

g[‘.‘l(*) = &T<‘J’(m, 0) (7.2.10) 

where g(‘.r) (m, 0) is the residue of g<‘>(m, 0) at E = 0. 
Calculation of the simple poles in the two loop Feynman diagrams for the two 

point function gives 

T - ‘&$‘~‘)(m, 0) = -&T2(R,,, + Ri,,) Rjpqr(m) (7.2.11) 

where contraction is with g,. The first Bianchi identity, (5.8.15) with Tik = 0, implies 

Ripqr Rjpqr = $ipqrRipqr. (7.2.12) 

Therefore 

T-‘g$‘,‘>(m, 0) = -~T2Rjpq,Rjpqr(m). (7.2.13) 

By (7.2.10), 

T- lgil,ll = - iT2RipqrRjpqr(m). 

From (7.2.9), (7.2.14), and (7.1.25)(7.1.26), 

(7.2.14) 

p!?) = p!!) + ;TR. R rJ Y ‘P4’ JPP’ 
(m) 

’ (7.2.15) 

Y (2)- (1) 
-Y . (7.2.16) 

The two loop results are therefore (1.6, 8). 
Algebraic equations for the two loop /?-function are obtained from (1.6) by 

expressing the metric curvature R& in terms of the metric g, and the canonical cur- 
vature and torsion, here written R and p, and given in (4.8.6)-(4.8.7) 

595’163’2.12 
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where 

(7.2.18) 

When M is a locally symmetric space G/H, these equations reduce to 

&(T-‘g)= -c+; T+c,T2 T-‘g, ( ) 
n* + 4(dim A)(dim H-n) 

Cl = 
8n(dim H-dim A) . 

(7.2.19) 

(7.2.20) 

a is + 1 or - 1 depending on whether G is compact or noncompact; n is the dimen- 
sion of M; and A is the abelian factor in H. For M= S” = SO(n + l)/SO(n) this 
reproduces the result of [lo]. 

II. THE RENORMALIZATION GROUP EQUATION 

1. INTRODUCTION 

This is the second part of a study of the general nonlinear scalar model near two 
dimensions. In the first part, the model was described and its low temperature 
expansion renormalized. This part is an investigation of the topological properties 
of the renormalization group equations near zero temperature. 

The fields d(x) of the model are functions from 2 + E dimensional Euclidean space 
to a finite dimensional differentiable manifold M. The coupling of the model is 
given by a (positive definite) Riemannian metric g, on M. The action is the energy 
integral 

S(b) = I dx ;T- ‘g, a,&(x) a,#(~). (1.1) 

The renormalization group is a one parameter group of transformations of the 
space a of Riemannian metrics on M, which describes the change in the effective 
coupling as the scale of distance in Euclidean space is increased. Finding its orbit 
picture is the crucial first step towards understanding the model. The large distance 
properties of the model are determined by the long time properties of the renor- 
malization group, the simplest of which are seen at attractive fixed points. Critical 
behavior (and the possibility of defining a continuum limit) is associated with 
instability in the long time properties, the simplest form of which is seen near fixed 
points with nontrivial unstable manifolds. 

The infinitesimal form of the renormalization group is the renormalization group 
equation 

g g, = -B&+ g) 
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where p is a vector field on 8, called the b-function. The tangent vector /I(g) to the 
space of metrics at g is the symmetric tensor field pti( g) on M. 

/I( T- ‘g) is calculated by techniques of perturbative quantum field theory as an 
asymptotic expansion in the positive real number T, called the temperature. Effec- 
tive algorithms for calculation were derived in Part I. To the second nontrivial 
order, the result is 

P&T-‘g)= -ET~‘~~+R~+$TR;+O(T~). (1.3) 

R$ is the curvature tensor of the metric g,, R, = Rij is the Ricci tensor, and Ri 
stands for Rlpy,Rjpy,. 

Results on the properties of the /?-function can be interpreted when E = 0 and also 
in the fictitious regime EMO. The latter is used as an approximation for the case 
E = 1, which cannot be studied directly by perturbative techniques. The interesting 
properties of p are those which depend smoothly on E and whose quantitative 
features can be expanded as asymptotic series in E. 

/I is, to all orders in T, a natural function of the metric, in the sense that 

KY* g)= ‘y*B(g) (1.4) 

for all diffeomorphisms Y of M. More concretely, /? is, to every finite order, a 
polynomial in the curvature tensor and its covariant derivatives. It follows that the 
renormalization group preserves symmetry. 

Of special interest are the models in which A4 is a homogeneous space G/H, H 
compact, and g, lies in the space R, of G-invariant metrics on M. Since it preserves 
symmetry, the renormalization group acts on R,. 

The renormalization group commutes with the diffeomorphism group D acting 
on R, so it acts on the space R = R/D of equivalence classes. In fact, only the 
equivalence classes are meaningful in the physical interpretation, so /I is defined 
only up to replacements 

B(g)+Ks)- Co(g), 812 (1.5) 

where u(g) is, for each metric g, a vector field on M defined up to infinitesimal 
isometries (Killing fields) of g, and satisfying 

u(Y*g)= Y*o(g) (1.6) 

(up to Killing fields) for all diffeomorphisms Y. 
When M is a homogeneous space G/H, a natural analogue of D is D,, the group 

of diffeomorphisms of A4 which commute with G. D, acts on R,, the equivalence 
classes being R,. The vector fields u(g) occurring in (1.5)-( 1.6) are taken to be G- 
invariant, i.e., in the Lie algebra of D,. It is possible, at least when G is not 
semisimple, that there exist equivalence relations between G-invariant metrics that 
are due to diffeomorphisms of M which are not in D. This possibility is 
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systematically ignored. In situations where it is realized, the treatment here will be 
incomplete. 

The result (1.3) was calculated using dimensional regularization with minimal 
subtraction. There are other ways to calculate, none preferred. The b-functions 
calculated by different techniques are related by conjugations under transformations 
of R which commute with D, in the absence of the obstructions discussed in Sec- 
tion 6.5 of Part I. The properties of the renormalization group which are of interest 
are the invariants under these transformations 

The manifold M is assumed to be compact and/or homogeneous. General 
statements below are implicitly qualified by this assymption. If M is a noncompact 
homogeneous space, then it is assumed also to be unimodular, meaning that all 
invariant vector fields on M preserve any invariant volume element. Unimodularity 
must be assumed because almost all of the description of /? presented here requires 
for its justification integration by parts on M. When M is compact, the integral of a 
function f over M with respect to the metric volume element is written j f: The 
integration by parts formula states that J Viui= 0 for any vector field ri on M, 
where Vi is the covariance derivative associated with the metric. When M is 
homogeneous, any invariant function f on M must be constant. f f will mean 
simply the value off at any point. Unimodularity is exactly the condition needed to 
give the integration by parts formula 1 Viui = 0 for all invariant vector fields. 

The space R is described in [ 11. A reference for basic differential geometry is [2]. 
Tensor analysis is done here in index notation. For an explanation, see [3]. The 
aim of this presentation is to survey the accessible general features of the problem 
as an aid to further exploration. The issue of the existence of the renormalization 
group flow is not dealt with. Details are for the most part left to the reader. 

The organization of Part II is as follows. Section 2 derives the fixed point 
equations, describes the known solutions and begins the discussion of topological 
properties near fixed points in terms of the linearization of /L Section 3 examines 
the special case M a homogeneous space; Section 4 the special case M a two dimen- 
sional manifold. In both cases the p-function is shown to be a gradient. Section 5 
continues the discussion of the fixed points, based on Bochner estimates for the 
linearization of the B-function. 

2. FIXED POINTS (I) 

2.1. The Fixed Point Equation 

The renormalization group equation is, following (1.4)-( 1.5), 

; g= -B(g)+ Cu(g), 81 (2.1.1) 

where v(g) is an arbitrary vector field on M (satisfying (1.5)). The fixed points of 
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the renormalization group are (the equivalence classes of) the metrics g, at which fi 
is tangent to the orbit of the diffeomorphism group: 

0 = -B(g) + Co(g), 81 (2.1.2) 

for some vector field u(g) on M. The perturbative expansion (1.3) for B( TP ‘g) can 
only be used reliably to locate fixed points at Two. 

A simple way to exhibit the small T structure of the B-function is to parametrize 
the general metric on M in the form Tp ‘g,, where g, is a metric of some fixed total 
volume (or, in the noncompact homogeneous case, of some fixed invariant volume 
element). The renormalization group equation (2.1.1) becomes 

$ g,= -+,- (&) g,- [v,(g), dij) 

-T2&-(&REkj ) g,-- Cu1(gh slii +O(T3) (2.1.4) 

where R = R,, is the scalar curvature, RG stands for R,, Rjk,,,,, n is the dimension 
of M, Y( T- ‘g) is expanded as uO( g) + To,(g) + 0( T2), and (f) is defined as 
JfIsL h . t g 1 t k t e m e ra s a en with respect to the metric volume element for g,. 

Of interest are the metrics left fixed by the renormalization group when E = 0, and 
also those left fixed when E ~0 which depend smoothly on E and approach E = 0 
fixed points as E + 0. By (2.13), the E = 0 fixed points are at T= 0. The metrics 
Tp ‘g at T = 0 form a part of the boundary of the space of all nondegenerate 
metrics. Every metric at T = 0 is a fixed point, but not all are limits of renor- 
malization group trajectories. At issue is the behavior of the renormalization group 
flow near the T=O metrics. 

If dT/dt were O(T), then the orbits of the renormalization group would approach 
the T= 0 surface transversally at each g,, so that each point on the T= 0 surface 
would be a true point. But when dT/dt = O(T2), as is the case in (2.1.3), the 
situation is quite different. This can be seen heuristically in an analogue equation in 
two variables: 

$(Kx)=(~T~+O(T~),~(X)T+O(T~)). (2.1.5) 

The integral curves (T, x) of (2.1.5) are given for small T by 

log( TT,- ‘) = a sf$ (2.1.6) 

As T + 0 (or becomes $ To) x is driven either to initinity or to a zero of J: 
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The true fixed points at T = 0 are the metrics at which (d/&) g, = O( T’). They 
are the solutions of the nonlinear differential equation 

R,- ;R g,- [v,, g&=0 
( > 

(2.1.7) 

for some vector field Q. Explicitly excluded from consideration here are fixed points 
“at co,” the analogous of T = 0, x = co in (2.1.5). (But see the example in Sec- 
tion 3.3 below.) A fixed point at cc is one which lies on the boundary of the T= 0 
metrics. 

A solution of the fixed point equation (2.1.7) which has (R) #O can be seen to 
survive as a fixed point whatever the higher order corrections to the p-function. But 
if (R) = 0 then dT/dt = 0( T3) and the existence of a fixed point depends on the 
possibility of eliminating the 0( T*) contribution to (d/dt) g, in (2.1.4) by perturb- 
ing the solution of (2.1.7) by an amount o(l), so that the O(T) term in (2.1.4) can- 
cels the 0( T*) term. This will be possible unless the (R) = 0 solution of the fixed 
point equation lies in a manifold of solutions, so that perturbing along the manifold 
has no effect on the O(T) term in (2.1.4). In this case, the O(T*) contribution in 
(2.1.4) projects onto the manifold of (R) = 0 solutions to (2.1.7). The vanishing of 
the projection is an auxiliary nonlinear equation which must be satisfied by the 
fixed point metric. 

A certain amount is to be learned about this problem by examining the 
linearization of the b-function at an (R) = 0 solution. In particular, it is learned 
that the manifold of solutions is finite dimensional, so that the auxiliary fixed point 
equation is finite. The linearization for (R) = 0 solutions is discussed in Section 2.4 
and again in Sections 5.2 and 5.3. 

The (R) = 0 solutions face no more conditions beyond the auxiliary fixed point 
equations. If dT/dt were O(p) then (R:,) would vanish, implying flatness: 
R,, = 0. Flat metrics are uninteresting from the point of view of perturbative renor- 
malization and are henceforth ignored. 

The topological properties of the renormalization group flow near a fixed point 
are examined in Sections 2.4 and 2.5 using the linearization of the B-function. The 
behavior in the T-direction, however, can be seen immediately in (2.1.3). Near a 
solution of the fixed point equation (2.1.7) the behavior of the temperature is 
described qualitatively by 

<R)fO 
(2.1.8) 

(R)=O. 

When E = 0, dT/dt vanishes at T = 0 to first or second order. This is called 
asymptotic freedom. It is ultraviolet asymptotic freedom when (R) 2 0 because at 
short distances (t + -cc) the effective temperature (slowly) approaches zero. The 



NONLINEAR MODELS IN 2 + & DIMENSIONS 395 

T= 0 models are free (gaussian) field theories. When (R) = 0 the approach to 
freedom is especially slow. The fixed points with (R) < 0 are asymptotically free in 
the infrared, the effective temperature approaching zero at long distances. 

The E # 0 fixed points are exhibited also in (2.1.8). Besides the T= 0 fixed points 
(whose infrared stability or instability is determined by the sign of E) there are fixed 
points: (1) at T = O(E), unstable in the T-direction, when (R) and E are positive; 
(2) at T= 0( I&I), stable in the T-direction, when (R) and E are negative; and (3) at 
T= O(E”~), unstable in the T-direction, when E is positive and (R) = 0. For all 
three types of fixed point, the existence of a nontrivial manifold of solutions of the 
fixed point equation (2.1.7) gives rise to auxiliary fixed point equations, because the 
projection onto the solution set of the higher order contributions to the p-function 
are now O(?) instead of 0( Tk), T asymptotically small, and have nontrivial effect 
as long as any degeneracy in the solution set remains. 

2.2 Solutions of the Fixed Point Equation 

In this subsection are collected some general results on properties of the solutions 
of the fixed point equation (2.1.7) and general descriptions of the known examples. 
First, the fixed point equation is rewritten so that the solutions are normalized by 
curvature instead of volume: 

R, - ag, = V,v, + Vjvi, a= fl, or 0. (2.2.1) 

When a # 0, the resulting normalization is (( l/n)R) = a. When a = 0, (R) = 0 
provides no normalization, so the additional assumption (( 1/2n) Rj,) = 1 is made 
to normalize the metric. 

The solutions to 

R,-ag,=O (2.2.2) 

are called Einstein metrics. They have long been of interest in geometry and general 
relativity. (See, for example, [&lo].) The solutions to 

R,-ag,=Vivj+Vjvi#O (2.2.3) 

might be called quasi-Einstein metrics. vi is determined only up to addition of 
infinitesimal isometries, or Killing fields, which are the wi satisfying V,w, + Vjw, = 0. 
vi can be fixed by requiring j v’w’= 0 for all Killing fields uti. It then follows 
immediately that vi is invariant under the isometry group of g,. 

A vector field wi is a Killing field if and only if, for all vector fields ui, including wi 
itself, 

0 = ; j (ViUj + yiui)(viwj + V,w,) 

= s ui( -V,V,w,- Rp-V,.V,w,). 
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But Vjwj = 0, so the Killing fields are exactly the solutions to 

o= -vjvjwi- R$vj (2.2.4) 

which also satisfy 0 = Vi wi. 
The next five propositions are concerned with the properties of a quasi-Einstein 

metric, i.e., a metric g, together with a vector field vi satisfying (2.2.3). 

PROPOSITION 2.1.1. vi satisfies (2.2.4) but Viui= $(R--n) #O. 

PROPOSITION 2.2.2. The scalar curvature R is not constant. 

PROPOSITION 2.2.3. A4 is not homogeneous. 

PROPOSITION 2.2.4. The constant a can only be + 1 and the scalar curvature 
satisfies R > 0 [lo]. 

PROPOSITION 2.25 If R 2 n - 2 then the first betti number vanishes (H’(M) = 0). 

A theorem of Myers [ 111 gives the fundamental result on Einstein matrices with 
a= 1: 

THEOREM 2.2.6. If R, - g, = 0 then A4 is compact. 

Since the universal covering space of A4 has the same local geometry as M, it also 
is compact. Therefore the fundamental group z,(M) is finite. 

Einstein metrics with a = 0 (Ricci-flat metrics) which have b, # 0 are locally the 
product of a bI dimensional flat manifold and an n - bl dimensional Ricci-flat 
manifold [ 123. The metrics on the factors can be scaled independently without loss 
of Ricci-flatness, so there is always a degenerate solution set of the fixed point 
equation. When the two loop term in the /I-function is taken into consideration, the 
ratio of the scales of the two factors is seen to diverge under the renormalization 
group. This is an example in which the auxiliary fixed point equation has no 
solution. Therefore only the Ricci-flat metrics with b, = 0 are of interest. From 
Eq. (2.2.4) it is apparent that on such manifolds all Killing fields are covariant con- 
stant, so give also harmonic one forms, so, since b, = 0, must be identically zero. 

The theorem of Cheeger and Gromoll [13] implies that, for a = 0 Einstein 
manifolds, z,(M) is linite. Aleksevskii and Kimel-Feld [ 14) have shown that the 
only homogeneous a = 0 Einstein manifolds are the flat ones. 

Einstein metrics with a = -1 have no infinitesimal isometries, because (2.2.4) 
cannot be solved. (Note that for M= G/H noncompact homogeneous this is the 
statement that there are no G-invariant Killing fields.) 

In summary, the types of fixed point metric are, with references to the known 
examples: 
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THE (-) TYPE EINSTEIN METRICS: R, + g, = 0. These are noncompact 
homogeneous spaces or. compact manifolds without Killing fields. The 
corresponding fixed points are stable in the T-direction (asymptotically free at long 
distances). 

The known noncompact homogeneous examples are the symmetric spaces of 
noncompact type (see [ 151). The known compact examples are: (1) the compact 
locally symmetric spaces of noncompact type (which are noncompact symmetric 
spaces modulo discrete groups of isometries), and (2) the Kahler-Einstein metrics 
of Yau [ 16, 171. The latter exist on all Kahler manifolds with negative first Chern 
class. 

THE (0) TYPE EINSTEIN (RICCI-FLAT) METRICS: R,= 0. The constraint b, = 0 is 
imposed. M is compact without Killing fields and is not homogeneous. The 
corresponding fixed points are unstable in the T-direction (asymptotically free at 
short distances, with an especially slow approach to the gaussian limit). If there is a 
degenerate solution set, an auxiliary fixed point equation on the solution set must 
be solved. 

The only known examples are the Kahler-Einstein metrics of Yau [ 16, 173 on 
Kahler manifolds with vanishing first Chern class. 

THE ( + ) TYPE EINSTEIN METRICS: R, - g, = 0. These are compact, with rc,(M) 
finite. The corresponding fixed points are unstable in the T-direction 
(asymptoticaliy free at short distances). 

Any compact homogeneous space G/H for which the isotropy action of H is 
irreducible has, up to a scale, only one G-invariant symmetric tensor field, so is 
necessarily an Einstein manifold. These spaces have been classified by Wolf [18]. 
All but the noncompact symmetric spaces are of (+ ) type. 

Many other homogeneous examples are known [19-22 J. The first non- 
homogeneous example was found by Page [23]. A number of others are now 
known [24]. 

THE QUASI-EINSTEIN METRICS: R, - g, = viol + vjvi # 0. These are not 
homogeneous. R 20 and is not constant. The corresponding fixed points are 
unstable in the T-direction (asymptotically free at short distances). 

No examples are known. (But see Section 5.5 below.) 

2.3. Linearization of the P-Function at a Fixed Point 

The aim here is to calculate enough derivatives of the a-function to establish, in 
the generic case, the existence of a true fixed point and the topological character of 
the renormalization group action nearby. In less favorable cases, the aim is to iden- 
tify threats to the existence of the fixed point and the additional information needed 
to complete the portrait of the renormalization group action. 

For the Einstein metrics, the renormalization group equations (2.1.3)-(2.1.4) are 
a suitable starting point. The metric coupling is written T- ‘(g, + k,), where g, is 
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an Einstein metric (R,- ag,= 0) and k, is a small perturbation (leaving the 
volume fixed). The standard formula for the derivative of the Ricci tensor with 
respect to the metric gives [25-271 

dT 
dt= --ET+aT2+bT3+0(p, T3k, T2k2) 

-$k,= -T[;Ap(k)q-;D,6*(k),-D,(L,(k))] 

(2.4.1) 

-T2 ;R;.-bgu-D,(v,)o 
[ 1 

+ O(T’, T2k, Tk’) (2.4.2) 

where 

Ap(k)c = -V&k,- 2L(k), (2.4.3) 

L(k), = Ri/cj/kk/ (2.4.4) 

(6*k)i = -v’(k, - +kkk gJ (2.4.5) 

D,(v)u= [u, g]ii=v;v,,+vjvj (2.4.6) 

dv,(k)‘=$ ,_ u;( g + sk). 
3-O 

(2.4.7) 

duo should be chosen to be a convenient first order differential operator from sym- 
metric tensor fields to vector fields, natural in g. ur is a vector field on M, also 
natural in g. The obvious choice for dv,(k) is -&j*(k), giving 

$ku= -;TAB(k)-T2Sq+O(T3,...) (2.4.8) 

S,= fR;- bgii- D&I& (2.4.9) 

A, is an elliptic operator with positive symbol. Therefore its spectrum is discrete 
and, of its eigenvalues, only a finite number have real part nonpositive. By con- 
struction, if k is of the form D,(w), then 

iCAp( D,a*(k)],= [w, R,-ug,] =O. (2.4.10) 

Therefore A, maps Range(D,) to Range(D,). The k-directions in Range(D,) are 
tangent to the orbit of D, so are immaterial. (See [ 11.) Also, k,= g, is an eigen- 
value of A, which is discarded because it represents a change of volume; it is a 
variation of g, in the T-direction. 

The space of symmetric two tensors k, has a natural inner product . 

(k, k) = s k,k, (2.4.11) 
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with respect to which d, is essentially self-adjoint. Therefore all of its eigenvalues 
are real, Also, the orthogonal complement Range( to Range(D,) is taken to 
itself by d,. The space of significant k-directions is the complement to g, in 
Range(D If A, has no zero eigenvalues on the space significant k-directions, 
then, by the inverse function theorem, the Einstein metric corresponds to a true 
fixed point, which at most changes position slightly in response to higher order 
corrections. A neighborhood of the fixed point can be represented as the product of 
a stable manifold and a finite dimensional unstable manifold. 

If A, does annihilate some significant k,, then a more complicated situation is 
possible. The nature of the complications depends on the terms of order Tk’ in the 
/J-function. The k, on which A, is zero might be tangents to a nontrivial manifold 
of solutions to the fixed point equation, in which case the O(T*) corrections are 
capable of eliminating the fixed point entirely (or of sending it to cc ). When E = 0, 
this is possible only for a = 0, but when s # 0, it is possible for any of the values of 
a. (Although, when E # 0, a # 0, the fixed point is only eliminated by effects at O(E).) 

It is also possible that the null k-directions are not tangents to curves of actual 
solutions of the fixed point equations. The terms in (2.4.8) of higher than first order 
in k might not be eliminable by a perturbation of the metric. 

Answers to the following questions are to be sought in the linearization of the fl- 
function. 

(1) Are there significant null vectors for A,? 

(2) How many significant negative eigenvalues does A, have? That is, how 
many additional directions of instability are there, beyond possibly the T-direction? 

(3) What are the values of the topological invariants of the fixed point: the 
significant eigenvalues of A, and the invariants of (2.4.1)? 

The rest of this section lays groundwork for studying these questions. Some more 
detailed information is assembled in Section 6. 

The following gives a standard decomposition of the space of symmetric tensor 
fields. 

PROPOSITION 2.4.6. The space S’ of slimmetric two tensor fields splits into 

S2 = (Range(D,) + H,) 0 H,,, (2.4.12) 

where 

H, = {fg,: f a function on M) (2.4.13) 

H,,= (k,:kj;=O,Vjkij==O). (2.4.14) 

H,, is clearly orthogonal to both Range(L),) and H,. Use of the Einstein condition 
yields 

A&&) = C( -v,v, - 2a)fI gu- (2.4.15 ) 
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Therefore A, takes each of Range(D,), H, and H,, to itself, and can be studied 
independently on each of them. 

It remains to check whether Range(D,) and H, can intersect. 

PROPOSITION 2.4.7. Given the Einstein condition, the intersection of Range(D,) 
and H, consists of the variations of the metric by infinitesimal conformal transfor- 
mations 

{ 
vivjf=s fgv: (-VkVk-&a)f =O). (2.4.16) 

In particular, when a d 0, the intersection is always trivial. 

PROPOSITION 2.4.8. For M a compact Einstein manifold, -V,Vk - (n/(n - l))a, 
acting on functions modulo constants, is nonnegative. 

PROPOSITION 2.4.9. Zero eigenvalues of -V,Vk - (n/(n - l))a, which correspond 
to conformal vector fields on M, are possible only when M is the sphere s” with the 
standard metric [28]. 

The significant spectrum of A, can now be described as: 

(1) The spectrum of ( -V,V, - 2a) on functions, not including the eigenvalue 
-2a, which corresponds to the T-direction, or the eigenvalue -(n - 2)/(n - l), 
which corresponds to conformal transformations; and 

(2) the spectrum of A, on H,,. The unstable directions, besides possibly T, 
correspond to negative eigenvalues of A, on H,, and to eigenvalues of the 
Laplacian on functions in the range 

A- < -v,v, < 2. 
n-l 

(2.4.17) 

The one loop marginal directions correspond to zero eigenvalues of A, on H,, and 
to the eigenvalue 2 of the Laplacian on functions. Some more detailed information 
on these spectra is given in Section 5. 

The foregoing discussion treated only the Einstein solutions to the fixed point 
equation. The quasi-Einstein fixed points have, by appropriate choice of vO( g) in 
(2.1.4), the linearization 

-$kO= -; TA(k),+O(T2, Tk2) 

where 

A(k),i = A,s(k)ii + hk(Vikjk + V,k, -V,k,) 

+ CDg(V)ikkkj + Dg(V)jkkkiI. 

(2.4.18) 

(2.4.19) 
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The operator A is elliptic with positive symbol, so has discrete spectrum and only 
a finite number of finite dimensional eigenspaces on which its real part is non- 
positive. By construction, it preserves Range(D,). The eigenspaces in Range(D,) 
and the eigenspace proportional to g, are discarded. Again, only a finite number of 
unstable or one-loop marginal directions are possible. Note that A is not necessarily 
a symmetric operator, so complex eigenvalues are possible. Because no examples of 
quasi-Einstein manifolds are known, and because the operator A is technically 
more complicated than A,, the linearization problem for quasi-Einstein fixed points 
is not discussed further. 

3. HOMOGENEOUS SPACES 

3.1. Introduction 

The p-function (1.2) is a natural vector field on the space of metrics, so the renor- 
malization group which it generates preserves isometries. In particular, it carries G- 
invariant metrics on the homogeneous space M= G/H to G-invariant metrics. In 
the first part of this section it is shown that the B-function (1.2), restricted to the 
space ii, of G-invariant metrics on the unimodular homogeneous space G/H, is a 
gradient vector field, up to O(T*) corrections. As a consequence, the possibility of 
interesting global topological structure in the renormalization group is severely 
limited. The second subsection presents b explicitly for a simple example in which 
R, is a two dimensional space. 

Recall, from Section 2.3 of Part I, that H is compact, that the Lie algebra g of G 
splits into the Lie algebra h of H and a complementary subspace m, that H acts 
linearly on m by conjugation, and that the G-invariant tensor fields on M are in 
one to one correspondence with the H-invariant tensors on m. The representation 
of H on m reduces to a sum of k irreducible representations of multiplicities 
nl”‘nk. The space of G-invariant metrics on M is the product 

R,=&x ... xak, (3.1.1) 

where & is the noncompact manifold of positive symmetric forms on a vector 
space of dimension ni. fit is therefore a real algebraic manifold of dimension 

dim(&) = f i n,(n, + 1). 
i=l 

(3.1.2) 

3.2. The /l-Function as a Gradient 

The vector field /I is expressed as the gradient GcD of a potential function @ on 
& with respect to a certain Riemannian structure on &. The b-function is 
meaningful only as a vector field on the space R, of equivalence classes of G- 
invariant metrics under diffeomorphisms of M, so both potential function and 
Riemannian structure should be invariant under the action of the diffeomorphisms 
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on &. Recall from section 1 that, in this context, diffeomorphisms of M means dif- 
feomorphisms which commute with G. 

A natural metric on fiG is 

(k, k)* = k,k, (3.2.1) 

where k, is a tangent vector to &, i.e., an H-invariant symmetric tensor on m. 
Contractions are taken with g,. Clearly this Riemannian structure on ii, is 
invariant under diffeomorphisms of M. 

The zero loop term -sg in the expansion (1.2) of B(g) is the gradient, with 
respect to the metric (3.2.1), of 

a()( g) = -2E log(d,m/d,m) (3.2.2) 

where d,m is the metric volume element for g, and d,m is any fixed G-invariant 
volume element on M. The ratio is a constant. Q0 is invariant only under dif- 
feomorphisms of M which preserve d,m. For an unimodular spaces, this is all of 
D G. 

The one loop term R, in (1.2) is the gradient of 

Ql(g)= -R. (3.2.3) 

(See [21].) The scalar curvature R is G-invariant, therefore constant, so (3.2.3) 
makes sense. The derivative of the scalar curvature R with respect to the metric is 

&R(k) = -R,k, -V,V,k,, + V,V,k,. (3.2.4) 

The term -VkV,kii vanishes because kii is G-invariant, so constant. The term 
V,V,k,, vanishes because of the unimodularity of M. Therefore, R, is the gradient 
of -R with respect to the metric (3.2.1). 

The full two loop approximation to the j-function, (1.2), is the gradient of a 
potential @ = a0 + Q1 + G2, where 

@A g) = - dR,,R,,, 

with respect to a modified metric on ii, 

(k, k)T-Ig = T’k,k, 

(3.2.5) 

Explicitly, 

+ T3(k,k,R,,-k,k,,R,j~ +VikjkVikjk) + O(P). (3.2.6) 

ET-&+ R,+~TR~,=%(T-~~). (3.2.7) 

This follows from a direct calculation using standard formulas for the derivative of 
the curvature tensor with respect to the metric. 
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It is a trivial observation that 

or 

; Q(g) = -(kz$ ii@),, (3.2.8) 

implying that Cp must decrease along the orbits of the renormalization group. It 
follows that the only subsets of ii, left fixed by the renormalization group are the 
critical sets, where V@ = /I = 0. 

This observation is strictly useful only when T can be taken small enough that 
the O(T*) corrections are of no consequence. This will be possible when the critical 
sets are isolated points; more precisely, where the zeros of the two loop 
approximation to /I are isolated. If the two loop fixed points are degenerate, then 
the renormalization group shows gradient-like behavior except in an asymptotically 
small neighborhood of a nontrivial critical set. Then higher order terms in fi come 
into play. When E = 0, the qualitative topological properties of the renormalization 
group are not affected by the corrections beyond two loops, so only gradient-like 
behavior is possible. 

3.3. An Example 

The familiar nonlinear models all have M = G/H an isotropy irreducible space. 
That is, H acts irreducibly on m, so that the space ii, of G-invariant metrics is one 
dimensional, described completely by the temperature. To obtain some idea of the 
possibilities available in more complicated homogeneous models an example is 
examined here in which i\, is two dimensional. 

A4 is taken to be the group manifold SO(N), but the symmetry group is not 
assumed to be the full SO(N) x SO(N) of left and right multiplication. G is taken to 
be SO(N) x SO(N- 1) and H the diagonal SO(N - 1) subgroup. m is the Lie 
algebra so(N), on which H acts by conjugation. The representation of H on m 
decomposes into the standard representation on RN-’ and the adjoint represen- 
tation on so(N- 1). A vector in m is presented as a pair (u, W) where u is in RN- ’ 
and W is in so(N-- 1). 

8, consists of the H-invariant inner products on m, which are of the form 

g((u, W), (f-4 W))=$/uIZ++tr(W’W). 
1 2 

(3.3.1) 

The metrics with T, = T, are the b&invariant metrics on SO(N). 
SO(N) should be seen here as a bundle over the quotient SNP1 = SO(N)/ 

SO(N- 1) with fibers the SO(N- 1) cosets. The metric g on SO(N) is a multiple 
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T; ’ of the standard metric on the SNP ’ cosets combined in the natural way with a 
multiple T; ’ of the standard metric on SO(N- 1). T, is the temperature governing 
fluctuations from coset to coset; T2 is the temperature governing fluctuations within 
each coset. 

The metric (3.2.1) on ii, is, in this case, 

((k, > kd, (k,, k)),,,,, = (N-1)[T;2k;+t(N-2) T;*k$]. 

(k,, k2) is an infinitesimal variation of (T,, T2). The scalar curvature is 

R=$(N-l)(N-2)[T,+$(N-3) T,-aT,-‘q] 

and 

log(d,m/d,m) = - +(N- l)[log T, + ;(N- 2) log T,]. 

The one loop renormalization group equations are 

$TI= -ET,+;(N-2)7: 
( 

l-;T;‘T, 

$T2= +T2+;7j(N-3+T;*T;I). 

To exhibit the topological structure it is convenient to change variables to 

l<r<l Tz- T, 
I=T,+ 

- 

“=&-$TI+~,), 0 < s. 

The renormalization group equations become 

$= -SF,(r) 

ds 
-& = --ES + s2F2(r) 

where 

F,(r)=a,l-r,(&) 

F2(T)=~(1+T)-l(l-~)(l+31)+~r r- 
( A>. 

(3.3.2) 

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 

(3.3.7) 

(3.3.8) 

(3.3.9) 

(3.3.10) 

(3.3.11) 

(3.3.12) 
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The cases N> 3 and N= 3 are qualitatively different. The flow in (r, s) space is 
pictured, for N> 3, E > 0, in Fig. 1; for N> 3, E = 0, in Fig. 2; for N = 3, E -+ 0, in 
Fig. 3; and, for N = 3, E = 0, in Fig. 4. The lines I = 0 describe the SO(N) x SO(N) 
invariant models. 

First consider the case N > 3, E > 0. There are two low temperature phases, gover- 
ned by the stable gaussian fixed points at r = 0, s = 0 and r = 1, s = 0, separated by a 
critical surface, which is governed by the once unstable gaussian fixed point at 
r = l/(N - 2) s = 0. There are also critical surfaces governed by the nongaussian 
fixed points at r=l, s=4((N-2)/(N-3)) E and r=O, s=%E, separated by the 
multi-critical fixed point at r= l/(N-2) s=8((N- l)(N-2)/(N-3)(N+ 1))~. 

There are also two phases in the region: T, + T, immediately above the critical 
surface. One phase is driven to the line r = 0 at long distances, the other to the line 
r = 1. The nongaussian fixed point at r = l/(N- 2) is therefore a quadri-critical 
point. 

The three low temperature phases are all characterized by a manifold of pure 
equilibrium states equal to A4 itself. They differ in the symmetry properties of the 
free energy governing the fluctuations about these states. The line r=O is the 
SO(N)x SO(N)/SO(N) model. The line r= 1 is the SO(N- 1) xSO(N- l)/ 
SO(N - 1) model, because the limit T, -+ 0 freezes the field into one of the 
SO(N- 1) cosets. As the temperature is increased along the line r = 0 it is expected 
that the system disorders completely at the critical point s = 8s, the space of 
equilibria becoming a single point. On the other hand, at the critical point on the 
line r = 1 the system should disorder only within one coset, because the temperature 
T, governing fluctuations among the cosets remains zero. The space of equilibria 
above the critical point should be the space of cosets, L?‘-‘. Between this partially 
disordered phase at r = 1 and the completely disordered phase at r = 0 there should 
be a phase boundary ending at the quadri-critical point. 

Note that no analogous partial disordering takes place at T, = 0 (r = -1). The 
curvature of the natural connection in the bundle SO(N) + SN-’ does not permit 
the system to disorder among cosets while remaining ordered within each coset. 
Sending Tz + 0, starting on the high temperature side of the critical surface in 
Fig. 1, in an attempt to bring order within the cosets only, actually results in order- 
ing the system completely. There is no way for the system to spontaneously choose, 
in a continuous fashion, one point in each coset. 

In the case N > 3, E = 0, pictured in Fig. 2, the critical surfaces have collapsed to 
T= 0, only the high temperature phases surviving. 

The continuum limits of the model are described by the unstable manifolds: the 
region 0 < r < 1, 0 <s in Figs. 1 and 2. The boundary r = 0 is the one parameter 
space of SO(N) x SO(N)/SO(N) models. The boundary r = 1 is the one parameter 
space of SO(N - 1) x SO( N - l)/SO(N - 1) models, the rest of the degrees of 
freedom having been frozen. In two dimensions (E = 0), the limit r -+ 0 produces two 
length scales, one for the fluctuations within cosets and another much larger one for 
the fluctuations between cosets. 

When N = 3 the phase structure is simpler; there are only the completely ordered 

595;16312-13 
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I: tT,-T,itT,+T,,- ' 

FIG. 1. Renormalization group flows for the anisotropic SO(N) x SO(N- 1) model in 2 + E dimen- 
sions (see Part II, Sections 3.3). The broad lines are phase boundaries (critical surfaces). N> 3, E > 0. 

I: lT2-T,) IT,+T,r' 

FIG. 2. Renormalization group flows for the anisotropic SO(N) x SO(N - 1) model in 2 + E dimen- 
sions (see Part II, Section 3.3 1. The broad lines are phase boundaries (critical surfaces). N r 3, E = 0. 

s'T,+T2 

0 
-I 0 

I = IT,-T,) (T,+T,l-' 
*I 

FIG. 3. Renormalization group flows for the anisotropic SO(N) x SO(N - 1) model in 2 + E dimen- 
sions (see Part II, Section 3.3 ). The broad lines are phase boundaries (critical surfaces). N = 3, E > 0. 

0 
-I 0 -1 *I 

I =(12-T,) 'T2*T,, 

FIG. 4. Renormalization group flows for the anisotropic SO(N) x SO(N - 1) model in 2 + E dimen- 
sions (see Part II, Section 3.3 ). The broad lines are phase boundaries (critical surfaces). N = 3, E = 0. 
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and completely disordered phases. Note that, in two dimensions, the line r = 1 is the 
line of fixed points of the SO(2)/{ } e or XY-model. They are all renormalization 
group unstable against unfreezing of the fluctuations among the SO(2) cosets in 
SO(3). 

The existence of Y = 1 fixed points in Figs. 1, 2, and 4 is suggestive. These are “at 
co” in the language of Section 2.1. They are on a part of the boundary of the space 
of metrics which is not in the interior of the T= 0 surface. Here the interior of the 
T= 0 surface is the region s = 0, - 1 <r < 1. The boundary of the space of metrics 
on a manifold M is a complicated object. It is not clear how to investigate in 
general the behavior of the renormalization group in the neighborhood of the 
boundary. 

4. Two DIMENSIONAL MANIFOLDS 

A4 is assumed in this section to be a compact two dimensional manifold. The one 
loop a-function for A4 is shown to be a gradient. 

Two properties of two dimensional Riemannian manifolds are used. First, the 
symmetries of the curvature tensor imply that it is entirely made up of the scalar 
curvature: 

R,q = iR( gip gjq - giq g,p) (4.1) 

R, = +Rg,. (4.2) 

Second, every metric is conformal to a metric g; of constant scalar curvature: 

giJ = &t;, (4.3) 

wherefis some real valued function on M; and R” the scalar curvature of g” is con- 
stant. The scalar curvature of g is 

g = e -“(R’ + A ‘f ), (4.4) 

where 

A”= -V;V; (4.5) 

is the laplacian for g’. 
The renormalization group equation, up to two loops, is 

-$T-lg)a= E-; TR- f T2R2 
> 

T- ‘g,, + 0( T3)). 

Therefore the two loop approximation to the /?-function is tangent to the conformal 
class. There is no reason to suppose that this remains true at higher order; terms 
like V,RV,R might well appear. However, to exhibit the topological properties of 
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the renormalization group, it will only be necessary examine the one loop 
approximation. Then it does make sense to discuss the action of the renor- 
malization group on the functions f, holding g’ fixed: 

4 ;it= -P(f) (4.7) 

B(f) = --E + +R (4.8) 

= --~+$e~'(R'+d'f). (4.9) 

The natural metric (2.3.11) on ii induces a metric on the space 8’ of functions f: 

(k, k),= j d,m k2 (4.10) 

where k is a function on M, an infinitesimal variation off, and d,m is the metric 
volume element for g. 

The zero loop term --E in /? is the gradient of 

@P,(f) = --E J dgm (4.11) 

=--E d”mef 
I 

(4.12) 

where d’m is the metric volume element for g’. The derivative of @, is 

df@o(k) = --E 1 d,m k, (4.13) 

so, in the metric (4.10), 

+D*= -&. 

The two loop term +R in P(f) is the gradient of 

The derivative of Q1 is 

@,(f)=ijtimf(R’+$d’f). 

d/fjl(k) = $ j d’m (R’ + d’f)k 

so the gradient with respect to (4.11) is 

a@, =$ep-‘(Rc+Acf) 

= $R. 

(4.14) 

(4.15) 

(4.16) 

(4.17) 
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The one loop renormalization group equation is, writing @ = GPO + @r, 

df/dt = -ki (4.18) 

It remains to show that the potential @ is invariant under the conformal group C 
of diffeomorphisms Y of M preserving the conformal class of g’. These dif- 
feomorphisms satisfy 

(4.19) 

where, for each Y in C, h, is a real valued function on ikl. C acts on the functions f 
by 

YCe’&) = ew( Y,f) Y* g; = exp( Y*f + h,) g; (4.20) 

or 

Yf= Y'.+.f+h,. (4.21) 

Clearly QO is C-invariant, so the problem is to calculate @,( Yf) for Y in C. 

PROPOSITION 4.1. @,(Yf)=Ql(f)+Ql(h,). 

PROPOSITION 4.2. p: Y + @,(h,) is a representation of C in the additive group of 
real numbers. 

PROPOSITION 4.3. p vanishes on C,,, the connected component of the identity in C. 

THEOREM 4.4. @, is C-invariant. 

Propositions 4.14.2 are direct calculations. Proposition 4.3 follows from the fact 
that the derivative of p at the identity is zero, by direct calculation. Theorem 4.4 
follows from proposition 4.3 and the fact that, for compact two dimensional 
manifolds, C/C, is finite dimensional. 

It has now been shown that the one loop B-function as a vector field on each 
conformal class of metrics (modulo conformal transformations) is a gradient. This 
is not exactly to say that /? is a gradient on the space of metrics (modulo dif- 
feomorphisms), because the gradient on @ on the larger space of all metrics has a 
component which changes the conformal class. Since the one loop B-function 
preserves the conformal class its topological properties can be studied class by class, 
so the result obtained is sufficient. It is not clear that an improved result, giving j3 
as a gradient on the space of all metrics, is possible. This point and the nontriviality 
of the potential function @ suggest that the p-function on metrics (modulo dif- 
feomorphisms) for the general manifold M might well not be a gradient. 

Attention is now directed towards the critical points of the potential @. These are 
the constant functions x corresponding to the constant curvature metrics them- 
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selves. The hessian of @ at a critical point is easily seen to be positive definite except 
in the f-directions produced by infinitesimal conformal transformations. In the 
significant f-directions, therefore, the fixed points are infrared stable. The remaining 
questions are: is the space of inequivalent constant curvature metrics nontrivial; 
and, if so, how do higher order corrections to p project onto it. 

The two dimensional compact manifolds are: the sphere S2, the real projective 
space RP* consisting of the sphere with antipodal points identified, the torus T*, the 
Klein bottle, and the surfaces of genus greater than one. The sphere and the real 
projective space each has exactly one constant (positive) curvature metric (up to 
overall scale). The constant curvature metrics on the torus and Klein bottle are all 
flat metrics. The manifolds of genus greater than one all possess manifolds of 
inequivalent constant (negative) curvature metrics. These manifolds of metrics have 
dimension 6g + 3c - 6, where g is the genus (the number of handles) and c is the 
number of crosscaps in M. 

The perturbative expansion of the p-function is formed entirely from the cur- 
vature and its covariant derivatives. But for a constant curvature metric g’ there are 
no covariant derivatives. Therefore, to all orders in T, 

&J T- ‘g’) = f( T) g;. (4.22) 

It follows that no perturbative corrections can remove the degeneracy of the fixed 
points for the manifolds of genus greater than one. 

The metrics of constant negative curvature on a given manifold M are all locally, 
but not globally equivalent. They all have infinite, nonabelian fundamental groups. 
As discussed in Section 6.5 of Part I, perturbative renormalization cannot reliably 
distinguish among such metrics. It is to be expected that nonperturbative effects 
enter significantly into the renormalization. 

5. FIXED POINTS (II) 

5.1. Introduction 

This section is a miscellany of results on the fixed points described in section 2, 
based on study of the linearization (2.4.8) of the /?-function. Except in Section 5.6, 
only Einstein fixed points are discussed. Some of the results are to be found in 
[29, 301, but those on Kahler-Einstein metrics do not seem to be in the literature. 

Two results are most notable. The first is that the linearized one loop B-function 
at every known (- ) type Einstein metric has only nonnegative eigenvalues. This 
implies infrared stability except possibly in the finite number of one loop marginal 
directions. The second is that for every known (0) type Einstein metric there is, to 
one loop, except for the infrared instability in the T-direction, only infrared stability 
and marginality. 

Section 5.2 presents basic estimates of the Bochner type for the Laplacian -V,V, 
on functions and for A, on H,, for Einstein and Kahler-Einstein metrics. The 
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general strategy is to bound the differential operator d, from below by a manifestly 
nonnegative differential operator plus a zeroth order, algebraic operator from the 
curvature tensor of the metric. Bounds for this algebraic operator are then obtained 
point by point on M, for the known (0) and (- ) type Einstein metrics. Section 5.3 
discusses the one loop marginal directions (zero modes of ds) for these metrics. 
Section 5.4 presents a number of general facts and sample calculations for (+ ) type 
Einstein metrics. Section 5.5 contains a number of comments on quasi-Einstein 
metrics, concentrating on the Kahler ones. 

5.2. Bochner Estimates 

The first proposition of this section estimates the Laplacian on functions (modulo 
constants) for Einstein-Kahler metrics. It improves the Bochner estimate for 
Einstein metrics given in Propositions 2.4.8-2.4.9. A KahlerrEinstein metric is one 
satisfying 

Ra6 - agO6 = 0 (5.2.1) 

R,, = Ra6 = 0. (5.2.2) 

PROPOSITION 5.2.1. For g, a Kahler-Einstein manifold, 

-V,V, - 2a 3 0 (5.2.3) 

on functions modulo constants. Equality is achived only on functions satisfying 
V,V,f =o. 

The next four propositions estimate A, on Hrr, the first for Einstein metrics in 
general, the rest for Einstein-Kahler metrics. A, is defined in (2.4.3)(2.4.4). H,, in 
(2.4.14), L in (2.4.4). 

PROPOSITION 5.2.2. For g, an Einstein metric, A, on H,, satisfies 

A,> -a-L (5.2.4) 

with equality only for k, satisfying V,k,, = Vqkpi; and 

A,>2a-4L (5.2.5) 

with equality only for k, satisfying 

V,k,, + V,k, + V,k,, = 0. 

In the next three propositions g is a Kahler-Einstein metric go6. The space of 
real, traceless symmetric two tensors on M splits into the real hermition traceless 
tensors 

k,, = ko6 = 0, k,,=O (5.2.6) 
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and the real anti-hermitian tensors 

k,, = k,, = Gh, ka6 = krib = 0. (5.2.7) 

A, preserves these subspaces. Therefore, if k is an eigenvector of A, in H,,, then so 
are k,s and kn6, The vanishing of the divergence of k is 

V,k,,- + V,-k,, = 0. (5.2.8) 

PROPOSITION 5.2.3. If k is real, anti-hermitian and symmetric, but not necessarily 
divergence free, then 

2 / V&s,V,k, d j- MA,k), (5.2.9) 

with equality only for the k,, satisfying V,k,, = V,k,,.. 

The object is to find under what conditions A, has nonpositive eigenvalues, so 
attention is now restricted to the subspace H,,” of H,, on which A, is nonpositive. 
By the previous proposition, the anti-hermitian part of a tensor field in H;,” must 
be divergence free. Therefore so must be the hermitian part. H$ splits into 
Hr,@ H, where H, consists of the hermitian, traceless divergence free tensor fields 
in H,-,” and H, consists of the anti-hermitian divergence free tensor fields in H$‘. 
A, respects the splitting. 

PROPOSITION 5.2.4. On traceless divergence free hermitian tensor fields, including 
those in H,, 

A,> -2a (5.2.10) 

with equality only for ka6 satisfying V, k,, = V,k,,; and 

Asa2a-4L (5.2.11) 

with equality only for ka6 satisfying V,kb, = -Vbkar. 

PROPOSITION 5.2.5. On divergence free anti-hermitian tensorfields, including those 
in H,, 

A,20 (5.2.12) 

with equality only for V,kbr = Vbk,,., 

A, > -2(a + L) (5.2.13) 

with equality only for V,k,, = 0, and 

A, > 6(a - L). (5.2.14) 

with equality only for V,kh, + V,k,, + V,k,, = 0. 
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The Bochner estimates are now used to eliminate the possibility of one loop 
infrared instability for the known (-) and (0) type Einstein metrics. 
Propositions 2.4.8 and 2.4.9 imply that for these metrics the only significant non- 
positive eigenvalues of A,, if any, occur in its action on H,,. 

Recall that, given the restriction to compact or homogeneous spaces, the only 
known (- ) type Einstein metrics are the locally symmetric manifolds of noncom- 
pact type (which can be compact manifolds) and the KahlerrEinstein metrics of 
Yau. The next two results, on the locally symmetric manifolds, can be found in 
[29]. The B-function for Riemannian manifolds which are locally the product of 
Riemannian manifolds is trivially determined from the j-functions for the factors, 
so it is assumed here that the Riemannian manifold M is locally irreducible. 

PROPOSITION 5.2.6. For M a 1ocall.v irreducible, locally symmetric manifold (and 
therefore necessarily Einstein with a = + 1 ), 

a<L< -a if a=-1 (5.2.15) 

-a<L<a if a= 1. (5.2.16) 

THEOREM 52.7. If M is a compact manifold which is locally irreducible, locally 
symmetric of noncompact type (a = -l), and of dimension greater than two, then A, 

on HTT is positive. 

A metric which is locally equivalent to an Einstein metric is obviously Einstein, 
so Theorem 5.2.7 implies that the metrics to which it refers have no locally 
equivalent metrics infinitesimally close. Therefore the obstruction to renor- 
malizability of equivalence relations discussed in section 6.5 of Part I cannot occur, 
even though n,(M) is not necessarily finite. 

The remaining known ( - ) or (0) type Einstein metrics are Kahler. The following 
result is an immediate consequence of (5.2.10) and (5.2.12). 

THEOREM 5.2.8. For M an Einstein-Kahler manifold of ( - ) or (0) type, A, 2 0 on 
H TT ’  

It will be shown below that, in the Einstein-Kahler cases, A, does in general have 
zero modes in H,,. For a complete portrait of the renormalization group action 
near a fixed with one loop marginality (zero modes), a better than linear 
approximation to the one loop p-function is needed, in addition to higher order 
corrections. The next section will identify the zero modes, but the discussion will 
not be carried further. 

It is suggestive that the (- ) type fixed points, which occur in dimensions 
2 + E < 2 and which are the only known fixed points for which perturbative renor- 
malization cannot be relied on to renormalize equivalent models equivalently, show 
no infrared instability at all in the one loop approximation. 
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5.3. Zero Modes for Known (- ) and (0) Type Einstein Metrics 

By Theorem 5.2.7, only the Kahler-Einstein metrics of Yau among known (- ) 
and (0) type Einstein metrics can have zero modes. By Propositions 5.2.4 and 5.2.5, 
the zero modes consist of: (1) the symmetric antihermitian tensor fields kab satisfy- 
ing 

V, k,, = 0, Vc&, = V&a, (5.3.1) 

and, for (0) type Einstein metrics only, (2) the hermitian tensor fields ka6 satisfying 

k,, = 0, V&c,6 = 0, and V,k,,=VbkaE. (5.3.2) 

PROPOSITION 5.3.1. The number of independent hermitian zero modes for (0) type 
Einstein metrics is p’.‘, the primitive Hodge number of degree (1, 1). 

The anti-hermitian zero modes for both types of metric are related to the defor- 
mations of complex structure. Inequivalent infinitesimal changes in complex struc- 
ture on M are represented by harmonic (0, 1)-forms with values in the complex 
tangent bundle, i.e., the k; satisfying 

V,k; - Vsk; = 0, V,k; = 0, (5.3.3) 

These can be regarded as anti-hermitian two tensors, not necessarily symmetric. 

PROPOSITION 5.3.2. For Einstein-Kahler metrics, the space of inequivalent defor- 
mations of complex structure split into two subspaces: (1) the symmetric anti-her- 
mitian tensors kab satisfying (5.3.1), and (2) the harmonic (0, 2)-forms. The later exist 
only for (0) type metrics, and then are actually covariant constant (0,2)-forms. 

Let z be the natural map from H’(T), the deformations of complex structure, to 
H’(O), the second cohomology of the sheaf of holomorphic functions. (See [31] for 
definitions.) 

PROPOSITION 5.3.3. For ( - ) type metrics, z = 0. For (0) type metrics, z is surjec- 
tive (onto), and H*(O) is represented by the covariant constant (0,2)-forms. The num- 
ber of anti-hermitian zero modes for (-) and (0) type Einstein metrics is twice the 
complex dimension of the kernel of z. 

In the case of the (- ) type metrics, the total number of zero modes 

2 dimc(Ker r) = 2 dimc(H’( T)) (5.3.4) 

is a local constant. The subspace of complex structures on M is a manifold [31]. 
Yau’s theorem [16, 173 guarantees exactly one Kahler-Einstein metric for each 
complex structure. Therefore the zero modes are tangent to a true manifold of one 
loop fixed points. 
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In the case of the (0) type, or Ricci-flat, metrics, the zero modes are counted by 

dim.(H’,‘) - 1 + 2(dim,(H’(T)) - dim,(@,*)). (5.35) 

They include infinitesimal changes in the cohomology class of the fundamental form 
and infinitesimal changes in the complex structure. Small perturbations of the com- 
plex structure remain Kahlerizable [31]. Yau’s theorem guarantees existence of a 
unique Ricci-flat Kahler metric for each cohomology class of the fundamental form 
and for each Kahlerizable complex structure. But it is not known, in general, if all 
infinitesimal changes of complex structure can be extended to finite changes, i.e., 
whether the zero modes are actually tangent to a manifold of one loop fixed points. 
If there is a nontrivial space of one loop (0) type fixed points, then to find the true 
fixed points it is necessary to solve the auxiliary fixed point equations which arise 
from projecting the two loop term in the /?-function onto the space of one loop 
fixed points. (See Section 2.1.) 

5.4. (+ ) Type Einstein Metrics 

The general results on instabilities and zero modes for ( + ) type Einstein metrics 
are meager. In this section only the simplest examples are discussed, 

The one loop unstable and marginal directions are: (1) the functions on which 
n/(n - 1) < -V,V, < 2, and (2) the symmetric tensors in H,, on which 0 < d,. The 
marginal directions are those for which equality occurs. By Proposition (5.2.1), 
there are no instabilities of the first kind of Kahler-Einstein metrics. 

PROPOSITION 5.4.1. For Kahler-Einstein manifolds of ( + ) type, the dimension of 
the eigenspace of real valued functions on which -V,V, = 2 is the complex dimension 
of the space of holomorphic vector fields on M [32]. 

Of Kahler-Einstein fixed point metrics, only the (+ ) type can have nontrivial 
holomorphic vector fields. Those that do automatically have the one loop marginal 
directions described in Proposition 5.4.1. When E = 0, as discussed in Section 2.1, 
these are true marginalities. 

PROPOSITION 5.4.2. For locally symmetric ( + ) type Kahler-Einstein manifolds 
with nonzero holomorphic vector fields, the two loop contribution to the /I-function, 
projected onto the space of zero modes described in the previous proposition, gives 
infrared stability when E > 0. 

This is a direct calculation. 
A manifold of constant sectional curvature is a Riemannian manifold with cur- 

vature tensor 

Rijp, = & ( gip g/q - giq gjp). (5.4.1) 
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The sectional curvature is positive if R > 0, in which case M is the sphere s” divided 
by a discrete group of isometries. M is automatically (+ ) type Einstein. 

A Kahler manifold of constant holomorphic sectional curvature is a Kahler 
manifold for which the non-vanishing part of the curvature tensor is 

The holomorphic sectional curvature is positive if R > 0, in which case M is the 
complex projective space CP”‘* divided by a discrete group of isometries. M is 
automatically ( + ) type Einstein. 

PROPOSITION 5.4.3. For mantfolds of constant positive sectional curvature, Ag > 0 
on H,,. 

PROPOSITION 5.4.4. For Kahler mantfolds of constant positive holomorphic sec- 
tional curvature, A, > 0 on H,,. 

PROPOSITION 54.5. For M= S”, the Laplacian on functions has eigenvalues 

-V.V.=r(r+n--) 
I I n-l ’ 

r = 0, 1, 2 ,... . 

There are no eigenvalues in the range n/(n - 1) < -V,V, < 2 which would provide 
unstable or marginal directions. 

Therefore the S” fixed point is unstable in the T-direction and stable in the rest 
~271. 

PROPOSITION 5.4.6. For M = CP”12, the laplacian on functions has eigenvalues 

-2VaVi=2r’,“:r), r=O, 1,2 ,... (5.4.4) 

In particular, 2 is an eigenvalue. (See Proposition 5.4.1.) The CP”” fixed point is 
therefore unstable in the T-direction, marginal in the directions of the form fg, for f 
an eigenvector of the Laplacian with eigenvalue 2, and stable in all other directions. 
By Proposition 5.4.2, the marginality is present only when E = 0. The functions f 
giving the marginal directions are of the form 

f(z) =fzbZaZ6 (5.4.5) 

for fzb some hermitian form on C(n+2)‘2. 
Finally, some information is given on the spectrum of the Laplacian for the 

homogeneous (+ ) type Einstein manifold M= SO(N) = SO(N) x O(N)/SO(N). 
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The functions on A4 decompose into irreducible SO(N) representations on which 
the Laplacian is proportional to the quadratic Casimir operator. Each represen- 
tation occurs with multiplicity equal to its dimension. Direct calculation gives 

-,v.=N(N-1) * * 4(N- 1) 
on the spinor representation, 

on the standard representation. (5.4.7) 

and larger eigenvalues on the rest of the representations. Since, in this case, the 
dimension of A4 is n = N(N- 1)/2, the spinors represent directions of instability 
when N = 5 and 6. 

5.5. Quasi-Einstein Metrics 

The quasi-Einstein metrics are the solutions of 

R, - g, = Vivi + V,v, + 0. (5.5.1) 

By Propositions 2.2.1-2.2.4 
R30 (5.5.2) 

and 

-V,V,v’- Rqvi = 0, ViVi # 0. (5.5.3) 

Whether there exist any quasi-Einstein manifolds is unknown. Equations (2.3.2) 
and (2.4.15) show that infinitesimal variations of a (+ ) type Einstein metric of the 
form fgu with ( -V,V, - 2) f = 0 are quasi-Einstein. Proposition 5.4.1 and the com- 
ments on the group manifolds SO(5), SO(6) at the end of Section 6.4 indicate that 
such infinitesimal deformations do exist. There is no reason to suppose, however, 
that there are finite quasi-Einstein deformations corresponding the the infinitesimal 
ones; the quasi-Einstein equation might not be solvable at some order beyond the 
first. In any case, these infinitesimal deformations all have vi a gradient, while the 
principal interest is in the cases in which vi is not a gradient, 

The final propositions give elementary general information on Kahler quasi- 
Einstein manifolds. 

PROPOSITION 5.5.1. vi is the real part of a holomorphic vector field [32]. 

PROPOSITION 5.5.2. The first Chern class is positive and the fundamental form 
belongs to it. 

PROPOSITION 5.5.3. The first betti number is zero. 
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PROPOSITION 5.5.4. There exists a complex valued function F on A4 such that 

V,V,F= 0 (5.5.4) 

v, = tV,F, v,+p (5.5.5) 

Rab - gIi6 = V,V, (Re F). (5.5.6) 
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