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Abstract Near-critical quantum circuits close to equilibrium are ideal physical systems for
asymptotically large-scale quantum computers, because their low energy collective excita-
tions evolve reversibly, effectively isolated from microscopic environmental fluctuations by
the renormalization group. Entropy flows in near-critical quantum circuits near equilibrium
as a locally conserved quantum current, obeying circuit laws analogous to the electric circuit
laws. These “Kirchhoff laws” for entropy flow are the fundamental design constraints for
asymptotically large-scale quantum computers. A quantum circuit made from a near-critical
system (of conventional type) is described by a relativistic 1+1 dimensional relativistic quan-
tum field theory on the circuit. The quantum entropy current near equilibrium is just the
energy current divided by the temperature. The universal properties of the energy–momentum
tensor constrain the entropy flow characteristics of the circuit components: the entropic con-
ductivity of the quantum wires and the entropic admittance of the quantum circuit junctions.
For example, near-critical quantum wires are always resistanceless inductors for entropy. A
universal formula is derived for the entropic conductivity: σS(ω) = iv2S/ωT , where ω is
the frequency, T the temperature, S the equilibrium entropy density and v the velocity of
“light”. The thermal conductivity is Re(TσS(ω)) = πv2S δ(ω). The thermal Drude weight
is, universally, v2S. This gives a way to measure the entropy density directly.

Keywords Quantum computers · Quantum statistical mechanics · Quantum transport ·
Entropy transport
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828 D. Friedan

1 Introduction

Asymptotically large-scale quantum computers will have to operate reversibly, close to
equilibrium, effectively isolated from the environment [3–5,26]. Reversibility is a funda-
mental condition on any asymptotically large-scale computer, classical or quantum, because
irreversible computation necessarily generates heat. A quantum computer has to maintain
coherence as it evolves in time, so it must be isolated from environmental fluctuations. In
particular, it cannot afford to interact with the environment to discharge waste heat. On the
other hand, there must be some method of external control, for programming and for input
and output. External control requires contact with the environment. A fundamental problem
is to reconcile external control with isolation and reversibility.

Near-critical quantum systems close to equilibrium are ideal for the purpose. The low-
energy collective excitations in a near-critical quantum system are governed by a locally
conserved energy density operator. This means that they form an isolated quantum system
which evolves reversibly in time. The renormalizatgion group guarantees that the low-energy
excitations are effectively decoupled from microscopic environmental influences. External
microscopic fluctuations affect the low-energy physics only through a small number of rele-
vant and marginal local couplings. Control is feasible, in principle, because only the relevant
and marginal couplings need be tuned. It might even be arguable that near-critical quantum
systems are the only physical systems that can operate reversibly and controllably at large
scale, the only physical systems in which asymptotically large-scale quantum computation
is practical.

This approach to the design of asymptotically large-scale quantum computers starts by
singling out, on principle, the general class of useable physical systems. Left for later is the
question of how, precisely, quantumbits are to be represented andmanipulated in near-critical
quantum systems, on the perhaps facile assumption that a Hilbert space is, after all, just a
Hilbert space. When the low energy excitations are fermions, there is, of course, the obvious
remark that the occupation number basis offers a quantum bit represention of the Hilbert
space.

A quantum critical system is an extended system with a critical point at zero temperature.
When the couplings of the system approach their critical values, collective excitations develop
whose energies and momenta are very small on the characteristic microscopic scales. A
“conventional” quantum critical system is one in which, as the system approaches criticality,
the energies and momenta of the low-energy excitations scale in the same way (see [10]
and [30], for example). The energy–momentum dispersion relation then takes the relativistic
form E(p)2 = E(0)2 +v2 p2, where E(0) is the energy gap, which might be zero. The entire
low-energy physics becomes relativistic near the critical point, the coefficient v being the
speed of “light”. The low energy physics is described by a relativistic quantum field theory,
whose scale of energy and momentum is very much smaller than the microscopic scale. At
low enough temperatures, such that kT is small on the microscopic energy scale, the physics
of the near-critical system is entirely due to the low-energy excitations, and is described
by the relativistic quantum field theory at temperature T . Near-critical quantum circuits are
one-dimensional near-critical systems, described by relativistic quantum field theories in
1+1 dimensions: one space dimension and one time dimension. The “conventional” quantum
critical systems are not the only kind of quantum critical system (see [30] for example).
It might be that some of the present considerations apply as well to “non-conventional”
quantum critical systems, but only those described by relativistic quantum field theories will
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Entropy Flow in Near-Critical Quantum 829

be considered here. The uniform speed of “light” could be a distinguishing advantage of the
relativistic quantum critical systems.

All near-critical quantum systems fall into a relatively small set of universality classes.
These are the asymptotic limits of renormalization. The low-energy physics depends only
on the universality class. The physically possible universality classes correspond to mathe-
matically possible relativistic quantum field theories, and it might be conjectured that every
mathematically possible relativistic quantumfield theory can be realized as a physical system.
Each relativistic quantum field theory is parametrized by a finite number of renormalized
coupling constants, and by the speed of “light”, v, which is the maximum speed of the low-
energy excitations. All the low-energy properties of the near-critical quantum system are
determined by the quantum field theory as universal functions of the renormalized coupling
constants and v. Each universality class can be implemented in a variety of microscopically
different physical systems. Nothing depends on the details of the physical implementation,
except the value of v and themap that takes themicroscopic coupling constants in the physical
system to the renormalized coupling constants of the quantum field theory.

The relativistic quantum field theories are the universal “machine languages” for asymp-
totically large-scale quantum computers. Large-scale quantum computers can be designed
theoretically, in the language of quantum field theory. If a particular universality class yields a
theoretically useful design, the design can be implemented in any physical near-critical quan-
tum system belonging to the universality class. Algorithms for asymptotically large-scale
quantum computation are to be designed within the constrained vocabulary of relativistic
quantum field theory, rather than the much more general vocabulary of quantum mechanics.
The quantum field theory hamiltonians are very special among all possible quantum hamil-
tonians. Within this highly constrained set of “machine languages,” it should be possible
to make much more precise estimates of computational effectiveness than can be made for
algorithms performed in general quantum mechanical systems. General estimates should be
derivable from general properties of quantum field theory, and more specific estimates from
the particular properties of each individual universality class.

Large-scale quantum computers are likely to be built as circuits, for much the same
reasons as classical computers. The basic reason is that one-dimensional circuits can be
packed in three-dimensional space. A more immediate reason is the expectation, or hope,
that existing technologies for production of large-scale classical circuits can be adapted to
production of large-scale quantum circuits. A near-critical quantum circuit is described by a
1+1 dimensional quantum field theory on the one-dimensional space of the circuit, a network
of wires connected at junctions. The 1+1 dimensional relativistic quantum field theories are
the universal “machine languages” for near-critical quantum circuit computers.

The 1+1 dimensional quantum field theory determines the possible characteristics of the
elementary circuit components, the quantum wires and junctions. The challenge is to design
circuits using these components that will perform useful large-scale quantum computations.
Only a preliminary step is taken here. The laws governing entropy flow in near-critical
quantum circuits close to equilibrium are derived, and some basic, elementary calculations
are done. Entropy is the currency of reversible computing. The laws governing the flow
of entropy are the basic constraints on the movement of information within a reversible
computer, so the laws of entropy flow are the fundamental design constraints on reversible
computers.

For control of a near-critical quantum circuit to be practical, the wires will have to be
exactly critical in the bulk, with no relevant bulk couplings at all. The relevant couplings are
the renormalizable couplings of positive scaling dimension. Their effects become large at
low energies and momenta. Any relevant bulk coupling would have to be kept finely tuned
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830 D. Friedan

everywhere along the length of the wires. This would be a daunting task, probably hopeless.
Quantum wires with no relevant bulk couplings will automatically be critical in the bulk.
No local perturbations will be able to make the bulk wire non-critical. There might still be
marginal bulk couplings to control, but that will not require fine tuning. Such systems are
gapless, and scale invariant in the bulk, and no local perturbation can produce a gap or disturb
the scale invariance.

The simplest example of a universality class without relevant operators is the Berezinskii–
Kosterlitz–Thouless line of critical points in the U (1)-invariant 1+1 dimensional gaussian
model. There is a marginal scalar coupling that moves the system along the line of fixed
points. There are no relevant couplings that preserve the U (1) symmetry. But the model
does have relevant charged operators. So bulk scale invariance is not completely automatic.
Preserving the bulk scale invariance requires screening against microscopic fluctuations that
violate the U (1) symmetry.

The only known relativistic universality class that has no relevant operators whatsoever is
the c = 24 monster conformal field theory [14–16]. The Monster conformal field theory is
the tensor product of two chiral 1+1 dimensional conformal field theories, each of which has
the largest finite simple group, the monster group, as internal symmetry group. This quantum
field theory has no relevant bulk couplings and no scalar marginal couplings. It does have a
large number of spin-2 marginal couplings. Assuming that the spin-2 marginal couplings can
be controlled, enforcing 1+1 dimensional relativistic symmetry, the Monster conformal field
theory is a fixed point of the renormalization group whose attracting basin is an open set in
the space of physical systems. To realize the monster field theory physically, all that is needed
is a physical system whose couplings lie somewhere with the attracting basin of the monster
fixed point. No fine tuning is needed at all. On the other hand, the monster field theory is
constructed mathematically as a chiral orbifold. It is not clear how such a construction might
be realized physically. If the monster field theory could be realized in physical quantum
wires, it would have distinct advantages over the gaussian model: no need to screen the wires
to maintain a bulk U (1) symmetry, nor any need to control a marginal scalar bulk coupling
in the wires. The low energy properties of the bulk wires would be completely insensitive to
local perturbations.

The existence of such more or less stable universality classes in 1+1 dimensions is another
reason to prefer quantum circuits over quantum systems of higher dimension. Ideal would be
a universality class described by a 1+1 dimensional conformal field theory with no relevant
or marginal operators at all, of any spin. But no such theory has been found as yet.

All the relevant couplings of the near-critical quantum circuit will now be in the cir-
cuit junctions. The junction couplings will represent the program and the input and output.
Computation will be performed by the time evolution of the quantum state of the low energy
collective excitations traveling along the bulk-critical wires, scattering in the circuit junctions.
All excitations will travel at the speed of “light”, v, because of the bulk scale invariance.

Controlling the entropy of the junctionswill be a crucial function in a near-critical quantum
circuit computer. Entropy will be moved in and out of the junctions during the evolution of
the circuit. When the entropy of a junction is at its minimum, the junction is in a definite state,
capable of supplying information, as program, or input, or output. When entropy flows into
the junction, the state of the junction becomes uncertain, sensitive to the quantum excitations
passing through. When entropy flows out again, the junction is left in a new definite state,
which is a function of the original state and of the excitations that passed through the junction.
The entropy flow characteristics of the circuit junctions will constrain the possible methods
for input and output of information, and for control.
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Entropy Flow in Near-Critical Quantum 831

The junction entropy, s, was first described at critical points in the space of junction
couplings, in the form g = exp(scrit), the “noninteger ground state degeneracy” [2]. The
junction is connected to long wires. The junction entropy is what remains when the bulk
entropy of the wires is subtracted from the total entropy of junction plus wires (with a
subtlety: boundary conditions are needed for the far ends of the wires, whose entropies must
also be subtracted). When the junction is critical, along with the bulk wires, the whole system
is scale invariant, so the junction entropy is independent of temperature, and can be attributed
to the ground state. It was conjectured in [2], and supported by considerable evidence, that
the value of g should always be larger at the ultraviolet critical point than at the infrared
critical point, that it should decrease under the renormalization group flow, from fixed point
to fixed point. This is the g-theorem.

The g-theorem was proved by establishing a gradient formula, ∂s/∂λa = −gab(λ)βb,
which expresses the variation of the junction entropy with respect to the junction coupling
constants in terms of the junction beta-function, βa(λ), and a certain positive metric, gab(λ),
on the space of junction couplings [20]. The gradient formula holds for all junctions, critical
or not. The only scale in the junction is set by the temperature, T , so the renormalization
group equation for the junction entropy is Tds/dT = −βa∂s/∂λa = βagabβb. The junction
entropy thus decreases with decreasing temperature, which is to say that it decreases under
the renormalization group. The junction contains minimum entropy at T = 0, at its IR fixed
point and maximum entropy at T = ∞, at its critical point, its UV fixed point. The decrease
of the junction entropy with temperature is not an obvious consequence of thermodynamics.
The junction is a bounded sub-system, but as part of a near-critical system it cannot be treated
as finite.

It may well be useful that a junction is close to its critical point exactly when its entropy
is close to its minimum. Minimal entropy means that the junction is as sensitive as possible
to the excitations passing through it. Close to critical means that the characteristic response
time of the junction is long. The combination seems ideal: the junction is then able to process
over long times the effects of the excitations passing through it.

The gradient formula can be regarded as explaining how to control the junction entropy:
how the junction entropy changes in response to changes in the junction couplings. By relat-
ing the change in entropy to the junction beta-function, the gradient formula suggests that
control might be simplest to achieve in supersymmetric universality classes, since super-
symmetry typically simplifies the renormalization group flow. Supersymmetry is found at a
special value of themarginal coupling constant in theU (1)-invariant gaussianmodel [21–23].
Supersymmetry is also found in the c = 24 monster conformal field theory [13].

The junction entropy, s(T ), is not a useful quantity. Only changes, 	s(T ), are physically
significant, describing the movement of information in and out of the junction. Of particular
interest is the maximum change, s(∞)−s(0), which could be called the information capacity
of the junction. To find the junction entropy itself requires global measurement, but changes
in the junction entropy can be determined locally, near the junction, by studying how entropy
flows into and out from the junction.

2 Mathematical Setting

The mathematical setting is as follows.

1. There is a physical circuit described by a 1+1 dimensional relativistic unitary quantum
field theory on a 1-dimensional space C with the geometry of a graph:
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• A collection of line intervals (wires) and nodes (junctions),
• Each boundary of a wire identified with one of the nodes.
• With space-time metric gμνdxμdxν = −v2(dt)2 + (dx)2,
• v being the “speed of light”.

2. There is a conserved, symmetric energy–momentum tensor Tμν(x)

• Which is an operator valued distribution on C,
• Which gives the hamiltonian H0 = ∫

C dx T t
t (x).

3. There are no additional symmetries in general (such as parity invariance).
4. Bulk criticality is assumed in Sects. 11 and 12,

• Implying bulk conformal invariance, i.e., vanishing of the trace of the energy–
momentum tensor on the wires, so the trace Tμ

μ (x) consists entirely of delta-function
contributions localized on the junctions.

5. There is an equilibrium state at temperature T = (kβ)−1.

• Its partition function, density matrix, and expectation values are

Zeq = Tr
(
e−βH0

)
, ρeq = e−βH0

Zeq
, 〈O〉eq = Tr

(
ρeqO

)
. (1)

6. The system is assumed to operate close to the equilibrium state.
7. Time-dependent perturbations of the hamiltonian are studied

H(t) = H0 + 	H(t) (2)

of the form

	H(t) =
∫

C
dx T t

t (x, t)β−1	β(x, t) (3)

	β(x, t) → 0 for t → ±∞ (4)

which amounts to perturbing by an inhomogeneous time-dependent temperature field,

βH(t) =
∫

C
dx T t

t (x, t) [β + 	β(x, t)] . (5)

The perturbation 	H(t) is taken to be infinitesimal in order to derive linear response
functions at equilibrium, but some basic results hold for arbitrarily large perturbations of
the form (3).

8. The departure of an observable from its equilibrium expectation value is written

	O = O − 〈O〉eq . (6)

3 Summary

It is an elementary observation that entropy flows as a locally conserved quantum current in
near-critical quantum circuits that are close to equilibrium. Every 1+1 dimensional quantum
field theory has a conserved energy–momentum tensor, Tμ

ν (x, t). The energy density is
T t
t (x, t), the energy current is T x

t (x, t). Close to equilibrium, the entropy density operator,
ρS(x, t), is simply the change in the energy density from its equilibrium value, divided by the
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Entropy Flow in Near-Critical Quantum 833

temperature and the entropy current operator jS(x, t) is simply the energy current divided
by the temperature,

ρS(x, t) = kβT t
t (x, t) − kβ〈T t

t (x, t)〉eq (7)

jS(x, t) = kβT x
t (x, t) . (8)

This is the local, quantum mechanical expression of the formula of Clausius, 	S = 	Q/T .
Local conservation of energy then implies local conservation of entropy,

∂tρS(x, t) + ∂x jS(x, t) = 0 . (9)

The idea that entropy moves locally within a compound system goes back at least to Gibbs
[24]. What is perhaps slightly novel here is the construction of the entropy density as a
quantum operator.

The flow of entropy can now be treated in analogy with the flow of electric charge in
electric circuits. Entropic circuit laws can be written, in analogy with Kirchhoff’s laws for
electric circuits. The entropic potential, �S(x, t), is defined in analogy with the electric
potential, as a source that couples to the entropy density, perturbing the hamiltonian by

	H(t) =
∫

dx ρS(x, t)�S(x, t) =
∫

dx T t
t (x, t)kβ�S(x, t) (10)

so the entropic potential can be interpreted as a local variation of the temperature,

�S(x, t) = T−2	(T−1)(x, t) . (11)

In the linearized approximation, the entropic potential is the local temperature drop

�S(x, t) ≈ −	T (x, t) . (12)

The entropic field, analogous to the electric field, is defined as the gradient of the entropic
potential,

ES(x, t) = −∂x�S(x, t) . (13)

It can be interpreted as the temperature gradient

ES(x, t) ≈ ∂x T (x, t) . (14)

The laws governing entropy flow are more stringent than the laws for electricity, because the
energy current is part of the conserved, symmetric energy–momentum tensor, Tμν = T νμ.
The symmetry of the energy–momentum tensor relates the energy current to the momentum
density: T x

t (x, t) = −v2T t
x (x, t). This significantly constrains the entropy characteristics of

a quantum circuit.
The flow of entropy in a wire is characterized by its entropic conductivity. The entropic

conductivity of a wire, σS(ω), is the linear response coefficient which gives the entropy
current, 	IS(t) = σS(ω)	ES(t), that flows in response to an infinitesimal uniform entropic
field alternating at frequency ω.

The flow of entropy through a junction is characterized by its entropic admittance, which
gives the entropy current, 	IS(t)A = ∑N

B=1 YS(ω)AB 	VS(t)B , that flows out each of the
wires connected to the junction, A = 1 . . . N , in response to small alternating changes,
	VS(t)B , in the entropic potentials on the wires.

The entropic circuit laws determine the entropy flow in a complex circuit from the entropy
characteristics of its components. A complex circuit is a collection of quantum junctions
connected by quantum wires. Each junction is either elementary, without substructure, or is
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834 D. Friedan

a complex sub-circuit, whose sub-structure is expressed in the entropic admittance YS(ω)AB
of the junction.

This paper defines the entropy density and current operators, notes that circuit laws for
entropy follow by formal analogy to the electric circuit laws, derives entropy continuity
and conduction equations, and a universal formula for the entropic conductivity. All the
derivations and calculations are completely elementary. A subsequent paper treats the flow
of entropy through near-critical quantum circuit junctions [18,19].

In reversible processes close to equilibrium, bookkeeping entropy is equivalent to book-
keeping energy. The entropy density and current operators defined here are just the energy
density and current operators re-scaled. The present results on entropy transport can all be
re-phrased as results on energy transport by simply re-scaling the formulas. It is quite stan-
dard to express thermal transport properties of quantum systems in terms of the local energy
density and current operators [27].

However, it is entropy transport that is of interest in reversible computing, since entropy
transport is the negative of information transport. Moreover, it is the entropy current and
density operators that are appropriate for the formulation of circuit laws, because the entropic
potential, �S(x, t) has a thermodynamic interpretation as the local drop in temperature,
�S(x, t) = −	T (x, t). No such thermodynamic quantity couples to the energy density.

Much of what is done here is related to other works. Quantum wires and junctions have
beenmuch studied (see, for example, [11] and references therein). The idea of using quantum
critical systems for quantum computers is far from new (see, for example, [31]). But the goal
and the reasoning are perhaps different here. The goal here is to estalish the fundemental
physical constraints on the design of asymptotically large-scale quantum computers, based on
the condition that such computers must be large quantum systems that (1) operate reversibly
near equilibrium and (2) are controllable. The basic reason for proposing that asymptoti-
cally large-scale quantum computers should be built from near-critical quantum circuits is
the effective isolation provided by renormalization. Renormalizaton, by decoupling the low
energy excitations from the microscopic physics, solves the hard part of the control problem
andthus makes reversible operation practical. The program that follows from this reasoning
is to base the design strategy on the laws of entropy flow.

Universal equal-time commutation relations are derived for the energy density operator
T t
t (x, t) and the energy current operator T x

t (x, t). The formula for the equal-time commutator
[T t

t (x ′, t), T t
t (x, t)] implies the continuity equation for entropy:

∂t 〈ρS(x, t)〉 + ∂x 〈 jS(x, t)〉 = kβES(x, t)〈 jS(x, t)〉
− kβ∂x [�S(x, t)〈 jS(x, t)〉] . (15)

The formula for [T t
t (x ′, t), T x

t (x, t)] implies an equation for entropy conduction in bulk
wires:

∂t 〈 jS(x, t)〉 = −k2β2v2
cUV

6

h̄v

2π
∂2x ES(x, t)

+ k2β2v2〈T t
t (x, t) − T x

x (x, t)〉ES(x, t)

+ [1 + kβ�S(x, t)] kβv2∂x 〈T x
x (x, t)〉 . (16)

where cUV is the bulk conformal central charge in the short-distance limit (for discussion of
1+1 dimensional conformal field theory, see, for example, [10] and [12]).

The continuity and conduction equations are exact. No linear response approximations
are made. They are better interpreted as continuity and conduction equations for energy,
by substituting for ρS and jS according to (7) and (8). This is especially the case for the
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conduction equation (16), which is not expressed entirely in terms of ρS and jS , but also
involves other components of the energy–momentum tensor.

The conduction equation is useful in the limit of uniform flow, when the spatial derivatives
can be neglected, and in the bulk-critical limit, where conformal invariance allows replacing
T x
x (x, t) with −T t

t (x, t). The conduction equation, in the linear response approximation and
the uniform limit, implies a general formula for the entropic conductivity of near-critical
quantum wire:

σS(ω) = iv2S
ωT

(17)

whereω is the frequency, T is the temperature, S is the equilibrium entropy density, and v the
velocity of “light”. Thus near-critical quantum wires, as circuit elements, are resistanceless
inductors for entropy. A direct derivation of (17) using theKubo formula is given inAppendix
2. The entropic conductivity is just the complex thermal conductivity divided by temperature,
so the thermal conductivity of near-critical quantum wire is

κ(ω, T ) = Re(TσS(ω)) = πv2S δ(ω) . (18)

The coefficient v2S is the universal thermal Drude weight for a near-critical one-dimensional
quantum system.

The universal formula for the entropic conductivity of quantum wire that is near-critical
but not critical is not directly relevant to the design of quantum circuit computers, given the
argument that the quantumwires in such circuits should be exactly critical in the bulk. On the
other hand, the universal formula (18) for the thermal conductivity could be useful in other
contexts, as it gives a way to determine directly, by experiment, the entropy density of the
low energy collective excitations in near-critical one-dimensional and quasi-one-dimensional
quantum systems.

When the quantumwires are critical in the bulk, the entropic conductivity for non-uniform
flow is calculated from the continuity and conduction equations, in the linear response approx-
imation, using bulk conformal invariance:

σS(q, ω) = c

12

2πk2v

h̄

[

1 +
(
h̄vβq

2π

)2
](

i

ω + iε + vq
+ i

ω + iε − vq

)

(19)

where c is the bulk conformal central charge and q is the wave-number. As is very well-
known in 1+1 dimensional conformal field theory, the energy current splits into independent
right-moving and left-moving chiral energy currents. The low-energy excitations all travel at
the speed of “light”. The entropy current is just the energy current divided by the temperature,
so the entropy current splits into independent right-moving and left-moving chiral entropy
currents, jR(x, t) = jR(x − vt) and jL(x, t) = jL(x + vt). This is exhibited in Eq. (19)
by the poles in σS(q, ω) at ω = ±vq. The chirality of the entropy currents — the uniform
speed of the excitations and the absence of bulk interactions between the left-moving and
right-moving entropy currents — might be a useful feature of bulk-critical quantum wires.

Formulas for the thermal conductivity equivalent to (18) were previously derived for the
special case of a 1d spin chain [25] and the special cases of free massive fermions and bosons
and for the general bulk-critical case [29], but it was not noted for any of these special cases
that the thermal Drude weight takes the general form v2S.

123

Author's personal copy



836 D. Friedan

4 Comments on the Occasion of Republication

This paper and its sequal were originally published on arXiv.org in 2005 [17,18]. In the
present version, the author has made a number of revisions for clarity following suggestions
of the referee of the present version, but has not changed anything of substance, with two
minor exceptions: (1) deletion of the argument on the temperature dependence of persistent
equilibrium entropy currents that appeared in the original version of the first paper at the
end of section VI (where the argument was described as “dubious”), and (2) addition of a
comment in the Introduction above on the problem of marginal spin-2 operators in the c = 24
monster conformal field theory.

The referee of the present version suggested adding some discussion of how these two
papers fit into the modern research on quantum states out of equilibrium, pointing out that
“a lot of work has been done since these papers first appeared on the arxiv”, and pointing for
possible references to the various reviews in [8]. The author takes the position that the two
papers from 2005 are here being republished in honor of Leo Kadanoff and that discussion
of work after the original 2005 publication on arXiv.org would be ahistorical. The author
also takes the position that he would not be competent to discuss the work that has taken
place since the original publication. The reviews in [8], and especially [6], give very many
references, if perhaps not all.

In any case, research on out of equilibrium physics is not germaine. The starting point of
the present work is the fact that asymptotically large scale computers, classical or quantum,
must operate reversibly, close to equilibrium [3–5,26]. The fundamental physical constraints
on such computers are the laws of local entropy flow close to equilibrium, which are given
by linear response theory, in analogy with Kirchoff’s laws for electric circuits. Some of the
results of the present papers apply to energy flow out of equilibrium, but these results are
incidental.

The review [6] gives some references to relevant work before the original 2005 publication
of the present papers, that the author was ignorant of at the time. In particular, both [28] and
[33] construct a classical entropy density and entropy current and write a local conservation
law for entropy. Still, the attribution of the original idea to Gibbs [24] at the beginning of
the Summary above seems correct. Several of the pre-2005 papers cited in [6] discuss flow
of energy and/or flow of information and entropy, but not in circumstances related to the
present work. Several discuss a 1d system (a wire) in a “non-equilibrium steady state” with
different temperatures at its two boundaries. Again, some of the present results on energy
transport and locally varying temperature might be applicable to such an out of equilibrium
situation, but the central concern here is only with small local perturbations around the
equilibrium state. In particular, it should be noted that the persistent equilibrium energy
current 〈 jS(x, t)〉eq. discussed at the end of Sect. 8 below is not the same as the entropy
current in the “non-equilibrium steady state”. The latter is steadily pumping entropy into the
wire, thus “non-equilibrium”. Finally, the paper [25] calculated the thermal conductivity in a
1d spin chain. It has now been added to the citation of [29] at the end of the Summary above.

5 Entropy Flow

Every relativistic quantum field theory has a locally conserved, symmetric energy–
momentum tensor, Tμ

ν (x, t), which represents the response of the system to local defor-
mations of the space-time geometry. In 1+1 dimensions, the space-time metric, gμν , has
components gtt = −v2, gxx = 1, gxt = gtx = 0. Any local deformation, δgμν(x, t), can
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be represented as a local variation of the couplings in the hamiltonian, so is equivalent to a
perturbation of the hamiltonian by a local quantum field, the energy–momentum tensor. The
expectation values in the quantum field theory change by

δ〈· · ·〉 =
∫ ∫

dt dx

(−1

2

)

δgμν(x, t)
〈 i

h̄
Tμν(x, t) · · · 〉 (20)

where Tμν′
gν′ν = Tμ

ν . The energy–momentum tensor is symmetric, Tμν = T νμ, because
the space-time metric is symmetric. Symmetry of Tμν is simply the indentity T x

t = −v2T t
x .

The individual components of the energy–momentum tensor are the energy density,
T t
t (x, t), the energy current, T x

t (x, t), the momentum density, T t
x (x, t), and the momentum

current, T x
x (x, t). Energy and momentum are each locally conserved,

∂μT
μ
ν (x, t) = 0 . (21)

The hamiltonian is

H0 =
∫

dx T t
t (x, t) . (22)

Local conservation of energy,

∂t T
t
t (x, t) + ∂x T

x
t (x, t) = 0 , (23)

expresses the effective isolation of the near-critical quantum system. The degrees of freedom
of the quantum field theory are the low energy collective degrees of freedom of the near-
critical quantum system. They form a closed system, neither gaining nor losing energy,
effectively decoupled from microscopic fluctuations.

The formula of Clausius,

	S = 	Q

T
, (24)

expresses the change of entropy in a reversible process as the change in heat divided by the
temperature. The constant of proportionality, 1/T , is also written kβ, where k is Boltzmann’s
constant, the fundamental unit of entropy. In a near-critical system, the change in heat within
a local region, R, is

	QR =
∫

R
dx 	〈T t

t (x, t)〉 (25)

because all available forms of energy are included in T t
t (x, t). The entropy within region R

changes by

	SR = kβ
∫

R
dx 	〈T t

t (x, t)〉 . (26)

This local version of the Clausius formula can be derived formally by calculating the change
of entropy when the hamiltonian of the local region is perturbed infinitesimally from H0 to
H = H0 +	H , at constant temperature. The equilibrium expectation values of observables,
〈O〉eq, are perturbed to 〈O〉 = 〈O〉eq + 	〈O〉. The partition function is

Z = Tr
(
e−βH )

(27)

and the entropy is

S = k

(

1 − β
∂

∂β

)

ln Z = k ln Z + kβ〈H〉 . (28)
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The infinitesimal change of entropy is

	S = k	 ln Z + kβ	〈H0〉 + kβ〈	H〉eq
= kβ〈−	H〉eq + kβ	〈H0〉 + kβ〈	H〉eq
= kβ	〈H0〉
= kβ	

〈 ∫
dx T t

t (x, t)

〉

. (29)

The Clausius formula for finite perturbations follows by integrating over infinitesimal per-
turbations.

Write the local change of entropy as

	SR = 	

∫

R
dx 〈ρS(x, t)〉 (30)

where
ρS(x, t) = kβT t

t (x, t) − 〈kβT t
t (x, t)〉eq . (31)

The operator ρS(x, t) can be interpreted as the variation of the entropy density away from its
equilibrium value, which is the natural baseline against which to measure the flow of entropy.
The time derivative of the entropy density operator is

∂tρS(x, t) = kβ∂t T
t
t (x, t) = −kβ∂x T

x
t (x, t) (32)

so the local entropy current is
jS(x, t) = kβT x

t (x, t) . (33)

The entropy current, jS(x, t), is the entropy per unit time flowing to the right through the point
x . The local entropy current and the local entropy density, ρS(x, t), are quantum observables.
Entropy flows as a locally conserved quantum current:

∂tρS(x, t) + ∂x jS(x, t) = 0 . (34)

6 Quantum Circuits and Entropic Circuit Laws

A near-critical quantum circuit is described by a 1+1 dimensional relativistic quantum field
theory on the one-dimensional space of the circuit. That space consists of a set of line
segments, the wires, and a set of points, the junctions. Each wire boundary is identified with
one of the junctions. A junction to which only a single wire is connected is simply an end of
the wire.

The existence of the locally conserved quantum entropy current implies that the flow
of entropy is governed by entropic circuit laws derived by formal analogy with the laws
of electric circuits, which are expressed for example in Kirchoff’s laws. The circuit laws
determine the performance of the whole circuit given the characteristics of its parts, the
entropic conductivity of the wires and the entropic admittance of the junctions.

The characteristics of the wires and junctions are determined by their linear responses
to small external perturbations by an entropic potential, �S(x, t), which is the external
source that couples to the entropic charge density, in analogy with the electric potential. The
perturbed hamiltonian is

H = H0 + 	H(t) = H0 +
∫

dx ρS(x, t)�S(x, t) . (35)
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�S(x, t) has dimensions of temperature. The entropic field

ES(x, t) = −∂x�S(x, t) (36)

has dimensions of temperature/distance.
Compare this perturbation to a change of temperature from T to T +	T . The equilibrium

density matrix of the unperturbed system is

ρeq = 1

Z0
e−βH0 . (37)

Under an infinitesimal change of temperature, the equilibrium density matrix changes by

	ρeq = ρeq(kβ
2	T )

(
H0 − 〈H0〉eq

)
. (38)

The same effect can be obtained at constant temperature by adding an infinitesimal pertur-
bation to the hamiltonian,

	H = (H0 − 〈H0〉eq)(−kβ	T ) =
∫

dx ρS(x, t)(−	T ) . (39)

Therefore, imposing an infinitesimal static entropic potential, 	�S(x, t) = −	T (x), is
equivalent to making an infinitesimal local variation of the temperature, 	T (x), in the
limit where both become constant in space. Integrating infinitesimal perturbations gives
	�S(x, t) = −	T for finite changes of temperature. Increasing the entropic potential
means decreasing the temperature. The entropic potential is the local drop in temperature.
The entropic field ES(x, t) = −∂x�S(x, t) is the local temperature gradient, in the limit
where both are uniform in space.

When the external perturbation is turned on, entropy flows along the entropic field from
higher entropic potential to lower, from regions of lower temperature to regions of higher
temperature.The entropic potential acts like the temperature dial on the thermostat of a heating
system. When a negative entropic potential is introduced in a local region, the temperature
dial there is turned up. The couplings in the hamiltonian are changed locally, so that the system
behaves as if at a higher temperature, locally. The system responds by evolving towards local
equilibrium at the new temperature. Initially, there is too little entropy in the perturbed region
for that region to be in equilibrium at the new, higher temperature, so entropy flows into the
perturbed region from regions of higher entropic potential elsewhere in the system.

In an operating circuit, the only external perturbations will be in the junctions that serve
as external controls. The entropic potential everywhere else in the circuit is an auxiliary
variable, determined by a subset of the circuit equations as a function of the entropic currents
and charges. The remaining circuit laws and the external entropic potentials in the control
junctions then determine the flow of entropy within the circuit.

7 Entropic Conductivity and Admittance

The entropic conductivity of a quantumwire is defined by analogywith the electrical conduc-
tivity. When a wire is perturbed by a small entropic field, 	ES(x, t) = eiqx−iωt	ES(0, 0),
an entropy current is induced to flow. The entropy current is given, to first order in the
perturbation, by a linear response formula

	〈 jS(x, t)〉 = σS(q, ω)	ES(x, t) . (40)
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The linear response coefficient σS(q, ω) is the entropic conductivity. Appendix 2 gives the
usual derivation of the linear response formula (40) for the perturbed current and the usual
derivation of the Kubo formula for the conductivity in terms of two-point functions. The
entropic conductivity for uniform flow is

σS(ω) = lim
q→0

σS(q, ω) . (41)

The entropic conductivity is just the complex thermal conductivity dividedby the temperature,

σS = T−1σthermal , (42)

since	ES is the temperature gradient and	〈 jS〉 is the energy current divided by temperature.
The circuit laws for uniform entropy conduction through wires are analogous to those for

electrical conduction. Let A,A′ label the two ends of a wire. Let 	IS(t)A be the entropy
current entering the wire at end A, and 	IS(t)A′ the entropy current entering at end A′. Let
	VS(t)A be the entropic potential at end A, and 	VS(t)A

′
the entropic potential at end A′.

Let 	ES(t) be the entropic field in the wire. Let l be the length of the wire. The conduction
equations for uniform entropy flow in the wire are simple consequences of (36) and (40),

l 	ES(t) = 	VS(t)
A − 	VS(t)

A′
(43)

	IS(t)A = σS(ω)	ES(t) = −	IS(t)A′ . (44)

The entropic admittance of a junction is defined by analogy with the electrical admittance.
Label the N wire-ends attached to the junction by indices A, B = 1 . . . N . Let 	VS(t)B be
an infinitesimal change of entropic potential at the end of wire B, where it is attached to the
junction, and let 	IS(t)A be the resulting change in the entropic current flowing out of the
junction through wire A. For alternating potentials

	VS(t)
B = e−iωt 	VS(0)

B (45)

the junction admittance equation is

	IS(t)A =
N∑

B=1

YS(ω)AB 	VS(t)
B (46)

where the matrix YS(ω)AB is the entropic admittance of the junction. The usual derivation
of the linear response formula (46) and of the Kubo formula for the admittance can be found
in Sect. 2 of the second paper [19].

The entropic conductivity, σS(ω), of the wire and the entropic admittance matrices,
YS(ω)AB , of the elementary junctions are to be calculated in the 1+1 dimensional quan-
tum field theory. The conduction equations for the wires and the admittance equations for
the junctions then determine the entropy flow properties of the circuit.

8 The Continuity Equation for Entropy

Observables in the unperturbed system evolve in time by

∂tO(t) = i

h̄
[H0,O(t)] . (47)
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The hamiltonian of the perturbed system is H = H0 + 	H(t). The perturbation, 	H(t),
vanishes at early times. The perturbed system starts at early time unperturbed and in equi-
librium. The density matrix, ρ(t), starts at early time equal to the unperturbed equilibrium
density matrix, ρeq. It evolves in time by

∂tρ(t) = − i

h̄
[H, ρ(t)] (48)

The expectation values in the perturbed system, 〈O(t)〉 = Tr[ρ(t)O(t)], evolve in time by

∂t 〈O(t)〉 = 〈∂tO(t)〉 + 〈 i

h̄
[	H(t),O(t)]〉. (49)

This time evolution formula is especially useful when the equal-time commutator can be
evaluated explicitly.

The entropy density evolves in time by

∂t 〈ρS(x, t)〉 = 〈∂tρS(x, t)〉 +
〈
i

h̄
[	H(t), ρS(x, t)]

〉

= 〈−∂x jS(x, t)〉 +
〈
i

h̄
[
∫

dx ′ ρS(x
′, t)�S(x

′, t), ρS(x, t)]
〉

(50)

or

∂t 〈ρS(x, t)〉 + ∂x 〈 jS(x, t)〉 =
∫

dx ′ �S(x
′, t)

〈
i

h̄
[ρS(x

′, t), ρS(x, t)]
〉

. (51)

First, integrate over x to find the rate of change of the total entropy:

dS

dt
=

∫
dx ′ �S(x

′, t)
〈
i

h̄
[ρS(x

′, t), kβH0]
〉

= kβ
∫

dx ′ �S(x
′, t)〈−∂tρS(x

′, t)〉

= kβ
∫

dx ′ �S(x
′, t)〈∂x jS(x ′, t)〉

= kβ
∫

dx ′ ES(x
′, t)〈 jS(x ′, t)〉 (52)

which can be written
dS

dt
= kβ

dW

dt
(53)

where W (t) is the work done on the system by the external entropic potential, given by

dW

dt
= d〈H0〉

dt
=

∫
dx ES(x, t)〈 jS(x, t)〉 . (54)

Equation (51), unintegrated, describes the local production of entropy:

∂t 〈ρS(x, t)〉 + ∂x 〈 jS(x, t)〉 = kβ p(x, t) (55)

where

p(x, t) =
∫

dx ′ �S(x
′, t)〈 i

h̄
[ρS(x

′, t), T t
t (x, t)]〉 (56)

is the density of power delivered to the system by the imposed entropic field. The power
delivered to the system by the external field is a source of entropy. This does not have an
analogue in the continuity equation for electric charge.
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The equal-time commutator appearing in (51) and (56) is calculated in Appendix 1:

i

h̄
[T t

t (x ′, t), T t
t (x, t)] = ∂x ′δ(x ′ − x)T x

t (x, t) − ∂xδ(x
′ − x)T x

t (x ′, t) . (57)

Substituting in (51) gives the continuity equation for entropy:

∂t 〈ρS(x, t)〉 + ∂x 〈 jS(x, t)〉 = kβES(x, t)〈 jS(x, t)〉
− kβ∂x [�S(x, t)〈 jS(x, t)〉] .

(58)

The form of this equation suggests that it might be worthwhile to redefine the entropy current
as jS(x, t)+kβ�S(x, t) jS(x, t) away fromequilibrium, so that the powerwill be proportional
to the current.

The continuity equation for entropy is exact. In the linear response approximation, it
becomes

∂t	〈ρS(x, t)〉 + ∂x	〈 jS(x, t)〉 = kβ	ES(x, t)〈 jS(x, t)〉eq
− ∂x

[
kβ	�S(x, t)〈 jS(x, t)〉eq

]
. (59)

where, for any operator O,
	〈O〉 = 〈O〉 − 〈O〉eq . (60)

Entropy is locally conserved to first order in the perturbation, unless there is a persistent
equilibrium entropy current, 〈 jS(x, t)〉eq. The distribution of entropy is stationary in equilib-
rium, ∂t 〈ρS(x, t)〉eq = 0, so ∂x 〈 jS(x, t)〉eq = 0. Therefore, if there is an equilibrium entropy
current, it must flow in closed loops within the circuit and must flow uniformly within each
wire. Since ∂x 〈 jS(x, t)〉eq = 0, the linearized continuity equation can be written

∂t	〈ρS(x, t)〉 + ∂x	〈 jS(x, t)〉 = 2kβ	ES(x, t)〈 jS(x, t)〉eq . (61)

Entropy current could be stored in such persistent loops. The possibility of persistent
entropy currents in equilibrium is due to the isolation of the near-critical degrees of freedom
from the environment. The operator that generates translations around a closed loop of wire
L (disconnected from the rest of the circuit),

PL =
∫

L
dx T t

x (x, t) = (kβ)−1
∫

L
dx jS(x, t) , (62)

commutes with the hamiltonian. Therefore the eigenspaces of PL are superselection sectors,
and there exists an equilibrium state for each eigenvalue of PL. In the superselection sectors
where PL �= 0, there is a nonzero persistent equilibrium entropy current, 〈 jS(x, t)〉eq �= 0.

9 The Entropy Conduction Equation

The time evolution of the entropy current is

∂t 〈 jS(x, t)〉 = 〈∂t jS(x, t)〉 +
∫

dx ′ �S(x
′, t)

〈
i

h̄
[ρS(x

′, t), jS(x, t)]
〉

. (63)

Symmetry of the energy–momentum tensor implies

jS(x, t) = kβT x
t (x, t) = −kβv2T t

x (x, t) . (64)

Local conservation of momentum implies

∂t jS(x, t) = −kβv2∂t T
t
x (x, t) = kβv2∂x T

x
x (x, t) . (65)
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Equation (63) becomes

∂t 〈 jS(x, t)〉 = kβv2∂x 〈T x
x (x, t)〉 +

∫
dx ′ �S(x

′, t)
〈 i

h̄
[ρS(x

′, t), jS(x, t)]
〉

. (66)

The equal-time commutator appearing in (66) is calculated in Appendix 1:

i

h̄
[T t

t (x ′, t), v−2T x
t (x, t)] = cUV

6

h̄v

2π
∂3x δ(x

′ − x)

+ ∂xδ(x
′ − x)[T x

x (x, t) − T t
t (x, t)]

+ δ(x ′ − x)∂x T
x
x (x, t) (67)

where cUV is the bulk conformal central charge in the short-distance limit. Substituting in
(66) gives the conduction equation:

∂t 〈 jS(x, t)〉 = −k2β2v2
cUV

6

h̄v

2π
∂2x ES(x, t)

+ k2β2v2〈T t
t (x, t) − T x

x (x, t)〉ES(x, t)

+ [1 + kβ�S(x, t)] kβv2∂x 〈T x
x (x, t)〉 . (68)

The conduction equation is especially useful in two situations: when the entropy flow in the
wire is uniform, so ∂x 〈T x

x (x, t)〉 = 0, or when the wire is conformally invariant in the bulk,
so T x

x = −T t
t .

10 Uniform Entropy Conduction

When the entropy flow is uniform, the spatial derivatives in (68) are negligible, so the con-
duction equation becomes

∂t 〈 jS(x, t)〉 = k2β2v2〈T t
t (x, t) − T x

x (x, t)〉ES(x, t) . (69)

In the linear response approximation, this becomes

∂t	〈 jS(x, t)〉 = k2β2v2〈T t
t (x, t) − T x

x (x, t)〉eq	ES(x, t) . (70)

The quantity kβ〈T t
t (x, t)−T x

x (x, t)〉eq is the equilibrium entropy density,S, by the following
argument.[32] The equilibrium energy density in a long wire of length l is

E = 〈T t
t (x, t)〉eq = −∂

∂β

ln Z0

l
. (71)

The free energy density in the one-dimensional volume V = l,

F = − 1

β

ln Z0

V
= − 1

β

ln Z0

l
, (72)

is independent of l in the limit of large l, so

F = (
1 + l

∂

∂l

)F = − 1

β

∂

∂l
ln Z0 = 〈T x

x (x, t)〉eq , (73)

which is the standard thermodynamic relation between the specific free energy and the pres-
sure P = kT d ln Z/dV . The equilibrium entropy density is

S = k

(

1 − β
∂

∂β

)
ln Z0

l
= kβ(E − F) = kβ2 ∂

∂β
F . (74)
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It can now be written in two equivalent ways:

S = kβ〈T t
t (x, t) − T x

x (x, t)〉eq = kβ2 ∂

∂β
〈T x

x (x, t)〉eq . (75)

Substituting in the formula for uniform conduction, (70), gives

∂t	〈 jS(x, t)〉 = kβv2S	ES(x, t) . (76)

The entropic conductivity for uniform entropy flow is therefore

σS(ω) = ikβv2S
ω

= iv2S
ωT

. (77)

The complex thermal conductivity is

σthermal(ω) = TσS(ω) = iv2S
ω

(78)

and the thermal conductivity is

κ(ω, T ) = Re(TσS(ω)) = πv2S δ(ω) . (79)

An alternative derivation of (77) is given in Appendix 2, using the Kubo formula for the
conductivity instead of the linearized conduction equation.

As a consistency check, take the static limit of the conduction formula, (68), make the
linear response approximation, then take the uniform limit, letting the entropic potential
become constant in space, 	�S(x, t) = −	T . The perturbed system will be in equilibrium
at temperature T + 	T . The conduction equation becomes

0 = kβv2	〈T x
x (x, t)〉 + k2β2v2〈T t

t (x, t) − T x
x (x, t)〉eq	T (80)

or
0 = 	F + S	T (81)

which is just the thermodynamic relation between free energy and entropy.

11 Bulk-Critical Wire

When the quantum wire is critical in the bulk, the 1+1 dimensional quantum field theory is
conformally invariant in the bulk:

�(x, t) = −Tμ
μ (x, t) = −T t

t (x, t) − T x
x (x, t) = 0 . (82)

Then T x
x (x, t) can be replaced by −T t

t (x, t) in the conduction equation, (68), giving

∂t 〈 jS(x, t)〉 = −kβv2∂x 〈T t
t (x, t)〉 − k2β2v2

c

6

h̄v

2π
∂2x ES(x, t)

+ k2β2v2ES(x, t)2〈T t
t (x, t)〉 − k2β2v2�S(x, t)∂x 〈T t

t (x, t)〉 . (83)

In the linear response approximation, this becomes

∂t	〈 jS(x, t)〉 + v2∂x	〈ρS(x, t)〉 =
k2v2β2

[

2〈T t
t (x, t)〉eq − c

6

h̄v

2π
∂2x

]

	ES(x, t) . (84)
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For bulk-critical wire, the equilibrium energy density is [1,7]

Ecri t = 〈T t
t (x, t)〉eq = c

12

2π

h̄v

1

β2 (85)

so the linearized conduction equation is

∂t	〈 jS(x, t)〉 + v2∂x	〈ρS(x, t)〉 =

k2
c

6

2πv

h̄

[

1 −
(
h̄v

2π

)2

β2∂2x

]

	ES(x, t) . (86)

This equation and the linearized continuity equation (61) together determine the entropy flow
in the wire. For 	ES(x, t) = eiqx−iωt+εt	ES(0, 0), the entropy current is

	〈 jS(x, t)〉 = σS(q, ω)	ES(x, t) . (87)

with

σS(q, ω) = k2
2πv

h̄

c

12

[

1 +
(
h̄vβq

2π

)2
] (

i

ω + iε − vq
+ i

ω + iε + vq

)

+ vkβ〈 jS〉eq
(

i

ω + iε − vq
− i

ω + iε + vq

)

. (88)

The change in the entropy density is

	〈ρS(x, t)〉 = k2
2π

h̄

c

12

[

1 +
(
h̄vβq

2π

)2
]

(
i

ω + iε − vq
− i

ω + iε + vq

)

	ES(x, t)

+ kβ〈 jS〉eq
(

i

ω + iε − vq
+ i

ω + iε + vq

)

	ES(x, t). (89)

In the limit of uniform flow,

σS(ω) = lim
q→0

σS(q, ω) = c

6

2πk2v

h̄

i

ω
(90)

which agrees with the general formula for the entropic conductivity, (77), since the equilib-
rium entropy density of bulk-critical wire is

Scri t = c

6

2π

h̄v

k

β
. (91)

Equation (90) is equivalent to the formula for the thermal conductivity of bulk-critical quan-
tum wire, κ(ω, T ) = (k2π2T vc/3h̄)δ(ω), which was previously derived in [29].

As another check, take the static limit, 	ES(x, t) = −∂x	�S(x). Equation (89) gives
the change in the entropy density:

	〈ρS(x, t)〉 = −k2
2π

h̄v

c

6

[

1 −
(
h̄vβ

2π

)2

∂2x

]

	�S(x) . (92)
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Let the entropic potential become uniform, 	�S(x) = −	T . The system should respond
to the perturbation by going to equilibrium at temperature T + 	T . The induced change in
entropy density will be, according to (92),

	〈ρS(x, t)〉 = k2
2π

h̄v

c

6
	T (93)

which agrees with the temperature derivative of the equilibrium entropy density, (91).

12 Chiral Energy and Entropy Currents

The energy–momentum tensor has only two independent components when the quantum
wire is critical in the bulk. They can be written as two currents

TR(x, t) = 1

2
(vT t

t (x, t) + T x
t (x, t)) (94)

TL(x, t) = 1

2
(vT t

t (x, t) − T x
t (x, t)) . (95)

The conservation laws, ∂μT
μ
ν (x, t) = 0, become

(∂t + v∂x )TR(x, t) = (∂t − v∂x )TL(x, t) = 0 , (96)

so each is a chiral current, depending on a single coordinate:

TR(x, t) = TR(x − vt) (97)

TL(x, t) = TL(x + vt) . (98)

The entropy current is a sum of chiral entropy currents:

jS(x, t) = jR(x, t) − jL(x, t) (99)

ρS(x, t) = 1

v
jR(x, t) + 1

v
jL(x, t) (100)

where

jR(x, t) = jR(x − vt) = kβTR(x, t) − 1

2
kβv〈T t

t (x, t)〉eq (101)

jL(x, t) = jL(x + vt) = kβTL(x, t) − 1

2
kβv〈T t

t (x, t)〉eq . (102)

jR(x, t) flows to the right, jR(x, t) = jR(x + vδt, t + δt), and jL(x, t) flows to the left,
jL(x, t) = jL(x − vδt, t + δt), both at the speed of “light”, v.

The chiral energy currents are, up to normalization, the usual chiral components, T (z)
and T̄ (z̄), of the euclidean energy–momentum tensor: TR(z) = −h̄v2T (z)/2π , TL(z̄) =
−h̄v2T̄ (z̄)/2π , where z = x + ivτ , z̄ = x − ivτ , τ = i t . The usual analytic operator
product expansions of T (z) and T̄ (z̄) are equivalent to equal-time commutation relations
(see Appendix B of [18] (Appendix 2 of [19]) for details). These are equivalent to the general
equal-time commutation relations derived inAppendix 1, specialized to the bulk-critical case.

A naive calculation shows the condition for uniform entropy flow in bulk-critical wire.
Consider a wire of length l. Let I (t) = I (0) cos(iωt) be the entropy current flowing into the
wire from the left, at x = −l/2. The same entropy current flows out of the wire to the right,
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at x = +l/2. The boundary conditions completely determine the expectation values of the
chiral currents,

〈

jS(− l

2
, t)

〉

=
〈

jL(− l

2
− vt)

〉

−
〈

jR(− l

2
+ vt)

〉

= I (0) cos(iωt) (103)

〈

jS(+ l

2
, t)

〉

=
〈

jL(+ l

2
− vt)

〉

−
〈

jR(+ l

2
+ vt)

〉

= I (0) cos(iωt) , (104)

so the entropy current inside the wire is

〈 jS(x, t)〉 = I (t)
cos(ωx/v)

cos(ωl/2v)
. (105)

The condition for uniform flow is therefore ωl 	 v.

13 Conclusion

An argument has been presented that near-critical quantum circuits are, in principle, ideal
physical systems for large-scale quantum computers, because they are effectively isolated
and controllable. The relativistic quantum field theories in 1+1 dimensions are then universal
“machine languages” for large-scale quantum circuit computers. It was remarked that laws
governing the flow of entropy are basic constraints on the design of reversible quantum
computers, and that entropy flows in near-critical quantum circuits as a conserved quantum
current, so circuit laws can be written for entropy flow in analogy with the electric circuit
laws.

It was argued that the quantum wires should be stably bulk-critical, with no relevant bulk
couplings, to avoid intractable control problems in the bulk wires. It was pointed out that
bulk-critical quantum wires have some possibly useful features: all excitations move along
the wires at a uniform speed, v, and the entropy current separates into left and right moving
chiral currents which do not interact with each other in the bulk.

The continuity equation for entropy, (15), and the equation for the conduction of entropy in
wires, (16), were derived. The entropy continuity and conduction equations are exact. Neither
depends on a linear response approximation. They are universal equations, because they
follow from universal equal-time commutation relations of the energy density and current.

The conduction equation, in the limit of uniform flow, was shown to imply a formula for
the entropic conductivity of near-critical quantum wire, σS(ω) = iv2S/ωT , equivalent to a
formula for the thermal conductivity, κ(ω, T ) = πv2Sδ(ω). This formula provides a way
to measure directly, by experiment, the entropy density, S, of the low-energy excitations in
one-dimensional and quasi-one-dimensional near-critical quantum systems.

It is hoped that these will be useful preliminary steps towards the design of near-critical
quantum circuits that can perform large-scale quantum computations.

Acknowledgements I thank A. Konechny for many discussions. I thank the members of an informal Rutgers
seminar—S.Ashok, A.Ayyer, D. Belov, E. Dell’Aquila, B. Doyon, andR. Essig—for listening to a preliminary
version of this work, and for their comments and questions. I thank M. Douglas and G. Moore for reminding
me that the monster conformal field theory is an example of a completely stable renormalization group fixed
point in 1+1 dimensions, and G. Moore for pointing out [13]. I thank S. Lukyanov for pointing towards some
of the condensed matter literature, leading in particular to [27,29]. I thank N. Andrei for helpful comments on
the manuscript and for explaining to me that there are quantum critical phenomena which are not described by
relativistic quantum field theories. This work was supported by the Rutgers New High Energy Theory Center.

123

Author's personal copy



848 D. Friedan

Appendix 1: Equal-Time Commutators of T t
t (x, t) and T t

x (x, t)

The universal equal-time commutators of the energy and momentum densities

i

h̄
[T t

t (x ′, t), T t
t (x, t)] = −∂xδ(x

′ − x)2T x
t (x, t) − δ(x ′ − x)∂x T

x
t (x, t) (106)

i

h̄
[T t

x (x
′, t), T t

x (x, t)] = ∂xδ(x
′ − x)2T t

x (x, t) + δ(x ′ − x)∂x T
t
x (x, t) (107)

i

h̄
[T t

t (x ′, t), T t
x (x, t)] = −cUV

6

h̄v

2π
∂3x δ(x

′ − x) + ∂xδ(x
′ − x)[T t

t (x, t) − T x
x (x, t)]

− δ(x ′ − x)∂x T
x
x (x, t) (108)

are derived here from the Ward identities for the operator product of two energy–momentum
tensors. The number cUV is the bulk conformal central charge at short-distance.

Make an infinitesimal local variation of the space-time metric, gμν → gμν + δgμν(x, t),
combined with an infinitesimal space-time transformation, xμ → xμ + δxμ(x, t). The com-
bined change in the metric is

gμν → gμν + ∂μ(δxν) + ∂ν(δxμ) + δgμν + δxα∂α(δgμν) + ∂μ(δxα)δgαν + ∂ν(δx
α)δgμα .

(109)
Vary ln Z , keeping terms that are first order in δxμ and in δgμν , to obtain the Ward identity
on the time-ordered product of two energy–momentum tensors:

i

h̄
∂ ′
μ′ t{Tμ′

ν′ (x ′, t ′) Tμ
ν (x, t)} = ∂α

[
δ(x ′−x)δ(t ′−t)

] (
δα
ν′Tμ

ν − gν′νg
αβTμ

β − δ
μ

ν′T α
ν

)
(x, t)

+δ(x ′ − x)δ(t ′ − t)∂ν′Tμ
ν (x, t) . (110)

Integrate both sides of the Ward identity over t ′ from t − ε to t + ε to obtain:

i

h̄
[T t

ν′(x ′, t), Tμ
ν (x, t)] + ∂x ′

∫ t+ε

t−ε

dt ′ i

h̄
t{T x

ν′(x ′, t ′) Tμ
ν (x, t)} =

∫ t+ε

t−ε

dt ′
{

∂α

[
δ(x ′ − x)δ(t ′ − t)

] (
δα
ν′Tμ

ν − gν′νg
αβTμ

β − δ
μ

ν′T α
ν

)
(x, t)

+ δ(x ′ − x)δ(t ′ − t)∂ν′Tμ
ν (x, t)

}

. (111)

The time integral on the lhs picks out the contact terms in the time-ordered operator product.
The energy–momentum tensor has scaling dimension 2, so the contribution of the contact
terms has the form:

∫ t+ε

t−ε

dt ′ i

h̄
t{Tμ′

ν′ (x ′, t ′) Tμ
ν (x, t)} =

∫ t+ε

t−ε

dt ′
[
Cμ′μαβ

ν′ν ∂α∂β + Bμ′μα

ν′ν (x, t)∂α + Aμ′μ
ν′ν (x, t)

] [
δ(x ′ − x)δ(t ′ − t)

]
(112)

for some operator-valued tensors A, B, C . The operators Cμ′μαβ

ν′ν have scaling dimension 0,
so are multiples of the identity.

By (111) and (112), the equal-time commutators of the energy and momentum densities
are:
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i

h̄
[T t

ν′(x ′, t), T t
ν (x, t)] = cν′ν∂

3
x δ(x

′ − x) + bν′ν(x, t)∂
2
x δ(x

′ − x)

+ (
δxν′T t

ν − δtν′T x
ν − gν′νT

t
x + aν′ν

)
(x, t)∂xδ(x

′ − x)

+ ∂ν′T t
ν (x, t)δ(x ′ − x) (113)

where aν′ν = Att
ν′ν , bν′ν = Bttxx

ν′ν , and cν′ν = Cttxx
ν′ν .

The antisymmetry of the commutators is equivalent to:

0 = cν′ν − cνν′ (114)

0 = bν′ν + bνν′ (115)

0 = ∂x (axx − 2T t
x ) (116)

0 = ∂xatt (117)

0 = ∂x (axt + atx + T x
x − T t

t ) (118)

0 = atx − axt − 2∂xbtx − T t
t − T x

x . (119)

Therefore bxx = btt = 0, bxt = −btx , and, up to multiples of the identity operator,

axx = 2T t
x (120)

att = 0 (121)

axt = ∂xbtx − T x
x (122)

atx = ∂xbtx + T t
t . (123)

Ignoringmultiples of the identity operator for the time being, the only unknown is the operator
btx (x, t). The equal-time commutators are, up to multiples of the identity,

i

h̄
[T t

t (x ′, t), T t
t (x, t)] = −∂xδ(x

′ − x)2T x
t (x, t) − δ(x ′ − x)∂x T

x
t (x, t) (124)

i

h̄
[T t

x (x
′, t), T t

x (x, t)] = ∂xδ(x
′ − x)2T t

x (x, t) + δ(x ′ − x)∂x T
t
x (x, t) (125)

i

h̄
[T t

t (x ′, t), T t
x (x, t)] = +∂xδ(x

′ − x)(T t
t − T x

x )(x, t) − δ(x ′ − x)∂x T
x
x (x, t)

+∂x
[
∂xδ(x

′ − x)btx (x, t)
]

. (126)

Take the time derivative of both sides of (124). In the time derivative of (124), use (126) to
evaluate the commutators. The equation that results is:

0 = 2∂3x δ(x
′ − x)btx (x, t) + 3∂2x δ(x

′ − x)∂xbtx (x, t) + ∂xδ(x
′ − x)∂2x btx (x, t) . (127)

So btx (x, t) = 0.
Equations (124–126), with btx (x, t) = 0, give the equal-time commutators up tomultiples

of the identity. These are exactly (106–108), up to multiples of the identity. So all that
remains is to determine the multiples of the identity operator that appear in the equal-time
commutators.

The terms proportional to the identity operator in (106–108) are determined by evaluat-
ing the expectation values of the equal-time commutators in the ground-state. The spectral
representation of the ground-state two-point function of the energy–momentum tensor
is: [9]

〈∣
∣ i

h̄
t{Tμ′

ν′ (x ′, t ′) Tμ
ν (x, t)}∣∣

〉

=
∫ ∞

0
d(m2) ρc(m

2) Gμ′μ
ν′ν (x ′ − x, t ′ − t;m2) (128)
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Gμ′μ
ν′ν (x, t;μ) = 1

(2π)2

∫ ∫
dpxdpt e

i px x+i pt t
(pν′ pμ′ − δ

μ′
ν′ p2)(pν pμ − δ

μ
ν p2)

pμ pμ + m2 + iε
.

(129)

The conformal central charge in the short distance limit, cUV , is given by
∫

d(m2) ρc(m
2) = cUV

6

h̄v

2π
. (130)

Extract the equal-time commutator from (128) by evaluating at t ′ = t + ε and at t ′ = t − ε

and taking the difference:

〈
0| i

h̄
[Tμ′

ν′ (x ′, t) Tμ
ν (x, t)] |0〉 =

∫ ∞

0
d(m2) ρc(m

2)
1

2π

∫
dpx ei px (x

′−x)

1

2π

∫
dpt

ei pt ε − e−i pt ε

pμ pμ + m2 + iε

[
(pν′ pμ′ − δ

μ′
ν′ p2)(pν p

μ − δμ
ν p2)

]
. (131)

In particular,

〈
0| i

h̄
[T t

t (x ′, t) T t
t (x, t)] |0〉 = 0 (132)

〈
0| i

h̄
[T t

x (x
′, t) T t

x (x, t)] |0〉 = 0 (133)

〈
0| i

h̄
[T t

t (x ′, t) T t
x (x, t)] |0〉 = −∂3x δ(x

′ − x)
cUV

6

h̄v

2π
. (134)

This fixes the terms proportional to the identity operator in (106–108), finishing their deriva-
tion.

Appendix 2: σS(ω) = iv2S/ωT from the Kubo formula

TheKubo formula for the entropy current induced in awire by an entropic potential	VS(x, t)
is

	〈 jS(x2, t2)〉 =
∫ t2

−∞
dt1 〈 i

h̄
[	H(t1), jS(x2, t2)]〉eq

=
∫ t2

−∞
dt1 〈 i

h̄
[
∫

dx1 	VS(x1, t1)ρS(x1, t1), jS(x2, t2)]〉eq . (135)

The Kubo formula is the solution of the time evolution equation, (49), in the linear response
approximation.

For an alternating entropic potential,	VS(x, t) = eiqx−iωt	VS(0, 0), the induced current
is

	〈 jS(x, t)〉 = σS(q, ω)	ES(x, t) (136)

where 	ES(x, t) = −iq	VS(x, t). The Kubo formula for the entropic conductivity is

σS(q, ω) = i

q

∫
dx1

∫ t2

−∞
dt1 eiω(t2−t1)−iq(x2−x1)

〈
i

h̄
[ρS(x1, t1), jS(x2, t2)]

〉

eq

= k2β2 i

q

∫
dx1

∫ t2

−∞
dt1 eiω(t2−t1)−iq(x2−x1)
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〈
i

h̄
[T t

t (x1, t1), T
x
t (x2, t2)]

〉

eq
. (137)

Introduce the Fourier transform of the energy–momentum tensor:

T̃μ
ν (p, η) =

∫
dx

∫
dt ei(ηt−px)Tμ

ν (x, t) . (138)

Write its two-point functions:

〈T̃μ′
ν′ (p′, η′) T̃μ

ν (p, η)〉eq = (2π)2δ(p′ + p)δ(η′ + η)Gμ′μ
ν′ν (p, η) . (139)

The equilibrium expectation values of the commutators are given by
〈
i

h̄
[T̃μ′

ν′ (p′, η′) T̃μ
ν (p, η)]

〉

eq
= (2π)2δ(p′ + p)δ(η′ + η)

i

h̄

(
1 − eβh̄η

)
Gμ′μ

ν′ν (p, η).

(140)

The Kubo formula becomes

σS(q, ω) = k2β2

h̄

∫
dη

1

ω + iε − η

(
1 − eβh̄η

) 1

iq
Gtx

tt (q, η) . (141)

Conservation and symmetry of the energy–momentum tensor imply

ηT̃ x
t (q, η) = −v2qT̃ x

x (q, η) (142)

so
1

q
Gtx

tt (q, η) = −v2

η
Gtx

tx (q, η) (143)

so

σS(q, ω) = k2v2β3
∫

dη
i

ω + iε − η

(
1 − eβh̄η

) 1

βh̄η
Gtx

tx (q, η) . (144)

In the uniform limit, q → 0,

lim
q→0

Gtx
tx (q, η) = δ(η)〈H0 T

x
x (x, t)〉eq = −δ(η)

∂

∂β
〈T x

x (x, t)〉eq (145)

so

σS(ω) = lim
q→0

σS(q, ω) = k2v2β3 i

ω + iε

∂

∂β
〈T x

x (x, t)〉eq (146)

The equilibrium entropy density is [see (75]:

S = kβ2 ∂

∂β
〈T x

x (x, t)〉eq (147)

so

σS(ω) = ikβv2S
ω

. (148)

The thermal conductivity is

κ(ω, T ) = Re(TσS(ω)) = πv2Sδ(ω) . (149)
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