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Abstract
We give a non-perturbative proof of a gradient formula for beta functions of
two-dimensional quantum field theories. The gradient formula has the form
∂ic = −(gij + �gij + bij )β

j where βj are the beta functions, c and gij are
the Zamolodchikov c-function and metric respectively, bij is an antisymmetric
tensor introduced by Osborn and �gij is a certain metric correction. The
formula is derived under the assumption of stress–energy conservation and
certain conditions on the infrared behavior the most significant of which
is the condition that the large-distance limit of the field theory does not
exhibit spontaneously broken global conformal symmetry. Being specialized
to nonlinear sigma models this formula implies a one-to-one correspondence
between renormalization group fixed points and critical points of c.

PACS numbers: 04.60.Kz, 11.10.Gh, 11.10.Hi, 11.25.Sq

1. Introduction

Change of scale in quantum field theories (QFTs) is governed by renormalization group (RG)
transformations. If a space of theories is parameterized by coupling constants {λi}, the RG
transformations are governed by a beta function vector field:

μ
dλi

dμ
= βi(λ). (1.1)

The idea that RG flows could be gradient flows, that is

βi(λ) = −Gij (λ)
∂S(λ)

∂λj
(1.2)
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for some metric Gij (λ) and potential function S(λ) defined on the theory space, has some
history. One of the earliest papers devoted to this question was [2]. It was suggested in that
paper that RG flows are gradient flows in a wide variety of situations. Gradient flows have
some special properties. Thus, if the metric Gij is positive definite, the scale derivative of the
potential function is negative definite:

μ
dS

dμ
= βi ∂S

∂λi
= −Gijβ

iβj � 0 (1.3)

and therefore S monotonically decreases along the flow. This demonstrates irreversibility of
the RG flows and forbids limiting cycle behavior. Another appealing property of gradient
flows is that the matrix of anomalous dimensions ∂iβ

j is symmetric and thus their eigenvalues
at critical points, that give critical exponents, are always real.

The first perturbative computations in support of this idea were done for four-dimensional
theories [3]. Later more evidence was found in the context of two-dimensional general sigma
models [4, 5]. In [5] a gradient formula of the form (1.2) was formulated for such models and
shown to hold up to two loops for a particular class of sigma models. A crucial ingredient for
a gradient formula for general sigma models was the introduction of the dilaton field [6, 7].
It was shown in [8, 10] that including the dilaton couplings into a general sigma model one
finds that the vanishing beta function equations are equivalent to critical points of a certain
functional at the leading order in α′. A gradient formula of the form (1.2) was checked for
general sigma models in [9] to the first two orders in α′. In string theory conformal sigma
models describe strings propagating on the sigma model target manifolds. The sigma model
couplings parameterize a metric GIJ, an antisymmetric tensor BIJ and a dilaton field � defined
on the target space manifold. The gradient property (1.2) attains a special significance in this
context becoming a manifestation of the string action principle. The condition for conformal
invariance is that the beta functions vanish: βG = βB = β� = 0. It is equivalent to string
equations of motion. The gradient property (1.2) thus means that the string equations of
motion arise by varying a functional of couplings—S, which can be identified with the string
action functional.

Another reinforcement of the gradient conjecture (1.2) for two-dimensional theories came
from the Zamolodchikov c-theorem [11]. The last one is a general theorem applicable to unitary
2D theories that states that there is a function c on the space of theories that monotonically
decreases along the RG flows and coincides with the Virasoro central charge at fixed points.
(We give a slightly modified proof of this theorem in section 3.) The theorem was proved
by constructing c whose scale derivative takes the form of the right-hand side of (1.3) with a
certain positive definite metric. It was natural to conjecture that a gradient formula of the form
(1.2) holds with S being the c function and Gij—the Zamolodchikov metric. This was shown
to hold at the leading order in conformal perturbation theory near fixed points [11, 13]. In the
context of nonlinear sigma models this idea was discussed in [15]. It was argued in [15] that
for the purposes of string theory the c-function cannot provide a suitable potential function
(we comment more on this in section 10). Other potential functions for RG flows of nonlinear
sigma models were considered in [12, 14, 15, 17, 18] which were shown to be related to
the central charge and to each other. In [18] a potential function for nonlinear sigma models
was constructed assuming the existence of a sigma model zero mode integration measure with
certain properties. It was shown that a measure with the required properties can be constructed
infinitesimally but a proof of the integrability of that construction is still lacking. An essential
tool proposed in [18] for deriving gradient formulas was the use of Wess–Zumino consistency
conditions on local Weyl transformations in the presence of curved metric and sources. This
technique was applied in [19] to a class of quantum field theories subject to certain power
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counting restrictions. It was shown that for these theories a gradient formula holds which is
of a slightly different form than (1.2):

∂ic = −gijβ
j − bijβ

j (1.4)

where c and gij are Zamolodchikov’s metric and c-function respectively [11] and bij is a
certain antisymmetric tensor. The necessity to introduce an antisymmetric tensor along with
Zamolodchikov’s metric can be demonstrated by the use of conformal perturbation theory.
Thus, it was shown in [23] by explicit perturbative calculations that the one-form gij ∂

j c is not
closed for some flows5. Still, as we will explain in the next section, Osborn’s gradient formula
(1.4), although very inspiring, falls short of providing a general gradient formula. The main
content of the present work is a derivation of a gradient formula that generalizes formula (1.4)
to a much wider class of theories that includes nonlinear sigma models as well.

To finish the historical overview we mention here that a general gradient formula was
proven for boundary renormalization group flows in two dimensions [22]. Such flows happen
in QFTs defined on a half plane (or a cylinder) when the bulk theory is conformal but the
boundary condition breaks the conformal invariance. One of the implications of the boundary
gradient formula is a proof of Affleck and Ludwig’s g-theorem [21] which is a statement
analogous to Zamolodchikov’s c-theorem. A string theory interpretation of this gradient
formula is that it provides an off-shell action for open strings. The boundary gradient formula
was proved under certain assumptions on the UV behavior which are reminiscent of the
power counting restrictions of [19]. Nevertheless, we will show in the present paper that any
assumption of this kind can be dispensed with in proving a bulk gradient formula.

The paper is organized as follows. In section 2 after introducing some notations we
explain in more detail Osborn’s gradient formula (1.4) and the assumptions that went into
proving it. We then state our main result—a general gradient formula (2.13)—and discuss the
assumptions needed to prove it. In section 3 we give a proof of Zamolodchikov’s formula and
recast it in the form that we use as a starting point for proving the gradient formula. In section
4 the first steps of the proof are explained. At the end of those steps we express the quantity
∂ic + gijβ

j + bijβ
j built from the elements present in (1.4) via three-point functions with a

certain contact operator present in them. To analyze these three-point functions we develop a
sources and operations formalism in section 5. A short summary of the formalism is provided
in section 5.2. After discussing the Callan–Symanzik equations in section 6 we resume
the proof in section 7 putting to use the Wess–Zumino consistency conditions on the local
renormalization operation and our infrared assumptions. At the end of section 7 an infrared
regulated gradient formula is obtained. In section 8 the proof is concluded by removing the
infrared cutoff. Section 9 contains a discussion of the properties of the gradient formula and
the assumptions used in proving it. In section 9.5 the gradient formula is specialized to the
nonlinear sigma model case and a proof is given of the correspondence between RG fixed
points and stationary points of c. In section 10 we conclude with some final remarks.

2. The general gradient formula

In this paper we consider two-dimensional Euclidean quantum field theories equipped with
a conserved stress–energy tensor Tμν(x). The stress–energy tensor measures the response
of the theory to metric perturbations, so that if Z[gμν] is a partition function defined on a
two-dimensional plane with metric gμν(x) = δμν + δgμν ,

δ ln Z = 1

2

∫∫
d2x〈δgμνT

μν(x)〉. (2.1)

5 The obstruction to closedness occurs at the next-to-leading order in perturbation.
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In two dimensions any metric can be made conformally flat so that gμν(x) = μ2(x)δμν where
the function μ(x) sets the local scale. A change of local scale is generated by the trace of
stress–energy tensor 
(x) ≡ gμνTμν(x) :

μ(x)
δ ln Z

δμ(x)
= 〈
(x)〉. (2.2)

For correlation functions computed on R2 with constant scale μ the change of scale is obtained
by integrating over an insertion of 
(x) :

μ
∂

∂μ
〈O1(x1), . . . ,On(xn)〉c =

∫
d2x〈
(x)O1(x1), . . . ,On(xn)〉c. (2.3)

Here O1, . . . ,On are local operators and the subscript c at the correlator brackets marks
connected correlators.

Assume that a family of renormalizable QFTs is parameterized by renormalized coupling
constants λi , i = 1, . . . , N . We assume that an action principle [1] is satisfied. This means
that for each coupling λi there exists a local operator φi(x) such that for any set of local
operators O1, . . . ,On

∂

∂λi
〈O1(x1), . . . ,On(xn)〉c =

∫
d2x 〈φi(x)O1(x1), . . . ,On(xn)〉c. (2.4)

Note that the integrability of the integrand in (2.3) and (2.4) assumes the appropriate infrared
behavior of the correlators.

Assume further that the couplings λi can be promoted to local sources λi(x) for the fields
φi(x). The generating functional ln Z then in general depends on the scale factor μ(x) and
the sources λi , and the action principle (2.4) means that in addition to (2.1) we have

δ ln Z

δλi(x)
= 〈φi(x)〉. (2.5)

A correlation function of the form

〈φi1(x1)φi2(x2) . . . φin(x2)
(y1)
(y2) . . . 
(ym)〉c (2.6)

evaluated on a flat R2 can be obtained by taking variational derivatives of ln Z with respect to
the sources λi and the metric scale factor μ and then setting the sources and the scale to be
constant. In a renormalized theory the correlators (2.6) are distributions. They form a basic
set of local physical quantities defined in a given QFT.

In a renormalizable QFT a change of scale can be compensated by changing the couplings
λi according to (1.1). By the action principle (2.4) this implies that 
(x) = βiφi(x) where
βi are the beta functions. This equation should be understood as an operator equation, that
is, as an equation that holds inside correlation functions (2.6) up to contact terms (i.e. up
to distributions supported on subsets of measure zero). The use of sources λi(x) and non-
constant Weyl factor μ(x) facilitates bookkeeping of the contact terms. In the presence
of non-constant λi(x) and μ(x) one can expand the difference 
(x) − βi(λ(x))φi(x) in
terms of derivatives of the sources and metric [19]. The expansion must by covariant with
respect to changes of coordinates. This requirement ensures that the contact terms respect
the conservation of stress–energy tensor. In [19] Osborn assumed that this expansion has
the form


(x) − βiφi(x) = 1
2μ2R2(x)C(λ) + ∂μ[Wi(λ)∂μλi] + 1

2∂μλi∂μλjGij (λ) (2.7)

where

μ2R2(x) = −2∂μ∂μ ln μ(x) (2.8)
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is the two-dimensional curvature density. Note that in (2.7) C, Wi and Gij are functions
of λ evaluated on λi(x) that depend on x via λi(x) only. Effectively equation (2.7) gives
a local version of the renormalization group equation. Using the Wess–Zumino consistency
conditions for the local renormalization group transformations (2.7) Osborn derived a gradient
formula [19]

∂ic + gijβ
j + bijβ

j = 0 (2.9)

where c and gij are the Zamolodchikov c-function and metric respectively[11] defined in terms
of two-point functions as

c = 4π2 (
xμxνxαxβ − x2gμνxαxβ − 1

2x2xμgναxβ
) 〈Tμν(x)Tαβ(0)〉c/
|x|=1 (2.10)

gij = 6π2
−4〈φi(x)φj (0)〉c/
|x|=1 (2.11)

where 
−1 is a fixed arbitrary 2D distance. The tensor bij is an antisymmetric two-form that
can be expressed as

bij = ∂iwj − ∂jwi, wi = 3π

∫
d2x x2θ(1 − 
|x|)〈φi(x)
(0)〉c (2.12)

where 
 is the same mass scale used in the definitions of c and gij. The most restrictive
assumption in [19] appears to be the form of expansion (2.7). The fact that the expansion does
not go beyond the second order in derivatives suggests a certain power counting principle. Such
a principle could be provided in the vicinity of an ultraviolet fixed point by the standard power
counting arguments for renormalizability. Even with such a counting principle expansion (2.7)
is too restrictive. Thus, it omits terms of the form ∂μλiJ

μ

i (x) where J
μ

i (x) are local vector
fields which can be prescribed engineering dimension 1. Such terms in the scale anomaly can
be generated by near marginal perturbations near fixed points. In particular they are present in
generic current–current perturbations of Wess–Zumino–Witten theories [27]. Another class
of theories for which (2.7) is too restrictive is general nonlinear sigma models. In this case
one needs to allow the quantities C, Wi and Gij in (2.7) to have a non-trivial operator content.
The case of sigma models was covered separately in [19] (see also [12, 14, 15, 17, 18] and
references therein). It was shown that a gradient formula analogous to (2.9) can be derived
provided a sigma model integration measure with certain properties exists. In the present
paper we will go beyond Osborn’s UV assumptions allowing for an arbitrary local covariant
expansion with operator-valued coefficients replacing (2.7). Making instead assumptions
about the infrared behavior we derive a general formula

∂ic + (gij + �gij )β
j + bijβ

j = 0. (2.13)

The metric correction �gij is constructed via two-point functions of φi with the currents
J

μ

j (x) arising from the expansion generalizing expansion (2.7) (see formulas (8.2) and
(8.15)). Alternatively �gij can be expressed via three-point functions with the pure-contact
field D(x) = 
(x) − β(x) (formula (8.3)). Formula (2.13) is derived under two separate
assumptions on the infrared behavior. The first assumption is that the action principle (2.4)
holds for one- and two-point functions of operators φi that assumes that these functions are at
least once differentiable. This ensures in particular that the c-function is once differentiable.
The second assumption is that for any vector field Jμ(x) we have

lim
|x|→∞

|x|3〈Jμ(x)Tαβ〉c = 0. (2.14)

This condition is equivalent to requiring that the long-distance limit of the QFT does not
exhibit spontaneously broken global conformal symmetry. (Recall that at fixed points special
conformal symmetry requires T (z) to decay at infinity as |z|−4.) As a simple example in
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section 9.2 demonstrates, this condition is essential. If in a scale invariant theory the global
conformal symmetry is broken via boundary conditions at infinity, the value of the central
charge may vary with moduli.

Our considerations include the nonlinear sigma model case. We thus show that in order
to have a gradient formula we may replace the somewhat obscure technical assumption on
the measure given in [18] by a more conceptually clear assumption on the stress–energy
tensor behavior (2.14) which we show to be a necessary assumption in section 9.2. A question
remains, of course, how one can check whether our infrared conditions hold in any given theory.
Since in the nonlinear sigma model the expectation values of diffeomorphism invariant local
operators are believed to be free of perturbative infrared divergences, they must be analytic
in the couplings ([24, 25]). This means that the first infrared assumption can be controlled
in perturbation theory. It is less clear to us whether one can control the infrared behavior
of Tμν perturbatively. We are planning to discuss applications of our general result (2.13) to
nonlinear sigma models in more detail in a separate paper [27].

3. Zamolodchikov’s formula

Zamolodchikov proved in [11] the following formula:

μ
∂c

∂μ
= −βigijβ

j (3.1)

where μ is the RG scale, c is the c-function (2.10) and gij is the metric introduced in (2.11).
This formula implies that c decreases under the renormalization group flow and is stationary
exactly at the fixed points. c is normalized so that at fixed points its value coincides with the
value of the Virasoro central charge.

Note that the c-function and the metric gij depend on 
 only through the dimensionless
ratio 
/μ because according to (2.1) and (2.4) the fields Tμν(x) and φi(x) are densities in x,
implying that their two-point functions take the form

〈Tμν(x)Tαβ(0)〉c = μ4Fμναβ(μx),

〈φi(x)φj (0)〉c = μ4Fij (μx),

〈Tμν(x)φi(0)〉c = μ4Fμν,i(μx). (3.2)

Before we set out to prove the general gradient formula it is instructive to go over a proof
of formula (3.1). One way to prove equation (3.1) is to derive alternative formulas for c and
gij

c = −
∫

d2x G
(x)〈
(x)
(0)〉c (3.3)

gij = −

∂

∂


∫
d2xG
(x)〈φi(x)φj (0)〉c (3.4)

where

G
(x) = 3πx2θ(1 − 
|x|). (3.5)

These are the formulas for c and gij that we will use in the proof of the gradient formula.
Equation (3.1) follows immediately from formulas (3.3) and (3.4):

μ
∂c

∂μ
= −


∂c

∂

= 


∂

∂


∫
d2x G
(x)〈
(x)
(0)〉c

=
∫

d2x 

∂G
(x)

∂

〈βiφi(x)βjφj (0)〉c

= −βigijβ
j . (3.6)
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Replacing 〈
(x)
(0)〉c by 〈βiφi(x) βjφj (0)〉c in the second line is allowed because they
differ only by a contact term in x, which gives no contribution since the smearing function

∂G
(x)/∂
 is supported away from x = 0.

While formula (3.4) is evidently equivalent to formula (2.11) the equivalence of formulas
(2.10) and (3.3) for c is shown as follows. Combine the special identity in two spacetime
dimensions

(x2gμνgαβ − gμνxαxβ − xμxνgαβ + 2gμαxνxβ − x2gμαgνβ)〈Tμν(x)Tαβ(0)〉c = 0 (3.7)

with the Ward identity

∂μ〈Tμν(x)Tαβ(0)〉c = 0 (3.8)

and CPT invariance

〈Tμν(x)Tαβ(0)〉c = 〈Tμν(−x)Tαβ(0)〉c = 〈Tαβ(x)Tμν(0)〉c (3.9)

to calculate

∂μ[(2xνxαxβ − 2x2xνgαβ − x2gναxβ)〈Tμν(x)Tαβ(0)〉c] = −3x2〈
(x)
(0)〉c. (3.10)

It follows from (3.10) that

−
∫

d2x G
(x)〈
(x)
(0)〉c

= π

∫
d2xθ(1 − 
|x|)∂μ[(2xνxαxβ − 2x2xνgαβ − x2gναxβ)〈Tμν(x)Tαβ(0)〉c]

= π

∫
d2xδ(1 − 
|x|)|x|−2xμ(2xνxαxβ − 2x2xνgαβ − x2gναxβ)〈Tμν(x)Tαβ(0)〉c

= 2π2(2xμxνxαxβ − x2xμxνgαβ − x2gμνxαxβ − x2xμgναxβ)〈Tμν(x)Tαβ(0)〉c/
|x|=1,

(3.11)

which demonstrates the equivalence of (2.10) and (3.3).

4. The proof of the gradient formula (first steps)

We start by defining a one-form ri by the equation

∂ic + gijβ
j + bijβ

j + ri = 0 (4.1)

and show that the remainder term ri can be expressed in terms of correlation functions of 
(x)

and φi(x) with the pure-contact field D(x) = 
(x)−β(x). Infrared behavior of the correlation
functions will be an important issue, so we introduce an IR cutoff at |x| = L � 
−1 and keep
track of the error terms. Our assumptions about IR behavior will be designed to ensure the
vanishing of the IR error in the limit L → ∞.

We start out by recasting gijβ
j as

gijβ
j = 6π2
−4〈φi(x)φj (0)βj 〉/
|x|=1 = 6π2
−4〈φi(x)
(0)〉/
|x|=1 (4.2)

which is valid because βjφj (0) differs from 
(0) only by contact terms. This can be further
rewritten as

gijβ
j = −


∂

∂


∫
d2x G
(x)〈φi(x)
(0)〉c = μ

∂

∂μ

∫
d2x G
(x)〈φi(x)
(0)〉c (4.3)

where the scaling property (3.2) was used in the last step. Finally using (2.3) we obtain

gijβ
j =

∫
d2y

∫
d2x G
(x)〈
(y)φi(x)
(0)〉c. (4.4)
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Formula (4.4) is infrared safe but as we want to impose the IR cutoff systematically, we write
instead

gijβ
j + E1 =

∫
|y|<L

d2y

∫
d2x G
(x)〈
(y)φi(x)
(0)〉c. (4.5)

The Ward identity gives the error term

E1 =
∫

|y|<L

d2y ∂μ

[
yν

∫
d2x G
(x)〈Tμν(y)φi(x)
(0)〉c

]

= 2πyμyν

∫
d2x G
(x)〈Tμν(y)φi(x)
(0)〉c/|y|=L

(4.6)

which certainly vanishes in the limit L → ∞.
We next turn our attention to the derivative ∂ic. Assuming that c can be differentiated

with respect to the coupling constants λi , we can write using formula (3.3) for c and the action
principle (2.4)

∂ic = −
∫

d2y

∫
d2x G
(x)〈φi(y)
(x)
(0)〉c. (4.7)

Again, we regularize in the IR as

∂L
i c = −

∫
|y|<L

d2y

∫
d2x G
(x)〈φi(y)
(x)
(0)〉c. (4.8)

Formulas (4.5) and (4.8) can be combined to obtain

∂L
i c + gijβ

j + E1 =
∫

|y|<L

d2y

∫
d2xG
(x)〈
(y)φi(x)
(0) − φi(y)
(x)
(0)〉c

=
∫

|y|<L

d2y

∫
d2xG
(x)〈[β(y) + D(y)]φi(x)
(0) − φi(y)[β(x) + D(x)]
(0)〉c

= −bL
ijβ

j +
∫

|y|<L

d2y

∫
d2xG
(x)〈D(y)φi(x)
(0) − φi(y)D(x)
(0)〉c (4.9)

where we have introduced the two-form bL
ij :

bL
ij =

∫
|y|<L

d2y

∫
d2xG
(x)〈φi(y)φj (x)
(0) − φj (y)φi(x)
(0)〉c. (4.10)

Equation (4.9) can be written as

∂L
i c + gijβ

j + E1 + bL
ijβ

j + rL
i = 0 (4.11)

with

rL
i =

∫
|y|<L

d2y

∫
d2xG
(x)〈φi(y)D(x)
(0) − D(y)φi(x)
(0)〉c. (4.12)

Equations (4.11) and (4.12) are the main results of this section. We will later show that
under our assumptions on the infrared behavior the limits

∂ic = lim
L→∞

∂L
i c, bij = lim

L→∞
bL

ij (4.13)

exist. The error term E1 goes to zero as L → ∞. The remainder term rL
i is expressed via

correlation functions involving the pure-contact field D(x). In order to investigate this term
we develop a sources and operations formalism for calculating correlation functions of D(x).
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5. Sources and operations

In this section we present a general formalism that allows computing correlation functions of
pure-contact fields using functional differential operators acting on functionals of sources and
metric. The general exposition is somewhat tedious so for the reader’s convenience we present
the most important ingredients necessary to understand the proof of the gradient formula in a
separate subsection 5.2.

5.1. General formalism

So far we have introduced the fields φi(x) as operators conjugate to the coupling constants
λi that parameterize a renormalizable 2D QFT. It will be convenient to assume that the set
φi is complete in a given class of fields which we denote by F . The class of fields can be
a complete set of spin-zero relevant and near-marginal fields. We could define such fields
without a reference to a particular fixed point by requiring that the corresponding coupling
constant belongs to some family of renormalizable theories with finitely many couplings (there
are finitely many couplings for which βi is not identically zero). This will not work for the
nonlinear sigma models, for which the set of couplings is infinite, but in that case we could
talk about near-relevant and near-marginal couplings using the engineering scaling dimensions
introduced via free fields. As yet another possibility we could assume that the set {φi} spans
all spin-zero local fields and works with a Wilsonian RG. We will keep the class of fields
F unspecified throughout this section assuming only that F is closed under RG the precise
sense of which we will discuss below. In general a field O(x) is defined via its distributional
correlation functions with other fields. If O(x) ∈ F , the completeness of {φi} means that
there are unique coefficients Oi such that the field O(x) − Oiφi(x) has vanishing correlation
functions with all fields from F inserted away from x. The field O(x) − Oiφi(x) is thus a
pure-contact field, that is its correlation functions are distributions supported on a subset of
measure zero in x. We can define ordinary fields O(x) as fields for which the correlations
of O(x) − Oiφi(x) are zero as distributions. This means that the distributional correlation
functions of such fields are obtained from those of the fields φi(x) by contracting them with
the appropriate coefficients Oi.

WhateverF we choose it is essential that the trace of stress–energy tensor can be expanded
in these fields: 
(x) = βi(λ)φi(x). It is worth noting that the set φi may include total
derivative fields. Although the correlation functions are independent of the corresponding
coupling constants, the beta functions may be non-trivial and total derivatives may thus
contribute to 
(x). Let us further introduce sources λi(x) for all fields φi(x) so that the
generating functional ln Z depends on these sources and the metric scale factor μ(x) with
equations (2.2) and (2.5) satisfied. This means that φi(x) and 
(x) are represented by
functional derivatives

φi(x) = δ

δλi(x)
, 
(x) = μ(x)

δ

δμ(x)
(5.1)

which we chose to denote by the same symbols. The action of these functional derivatives
on ln Z generates distributional correlation functions (2.6). To facilitate the use of differential
operators in computing correlation functions we introduce a shorthand notation

〉〉 = ln Z (5.2)

〈〈 = restriction of functionals to constant sources and flat 2D metric (5.3)

so

〈〈φi1(x1) · · · 
(y1) · · ·〉〉 = 〈φi1(x1) · · · 
(y1) · · ·〉c (5.4)

9
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where, on the left-hand side, the φi(x) and 
(x) are functional differential operators (5.1),
while on the right-hand side they are fields.

Define operations O(x) to be first-order local differential operators acting on functionals
of the sources and 2D metric. The word local here means that the coefficients of the functional
derivatives in an operation given at x can depend only on the values of λ(x), μ(x) and finitely
many derivatives thereof. An ordinary field O(x) = Oi(λ)φi(x) is naturally assigned an
operation O(x) = Oi(λ(x))φi . Operations of this form we will call ordinary. An arbitrary
operation O(x) gives rise to an ordinary field denoted O(x) via

〈O(x)φi1(x1) · · · 
(y1) · · ·〉c = 〈〈O(x)φi1(x1) · · · 
(y1) · · ·〉〉. (5.5)

Although the above formula specifies distributional correlation functions containing only a
single O(x), it defines uniquely the coefficients Oi in O(x) = Oiφi(x) and thus in principle
fixes the correlation functions containing arbitrarily many O(x). The ordinary operation
Oiφi(x) corresponding to O(x) will be denoted by the same symbol O(x). Define pure-
contact operations O(x) as operations satisfying O(x) = 0, i.e.

〈〈O(x) = 0 (5.6)

Then

〈〈φi1(x1) · · · 
(y1) · · ·O(0)〉〉 = 〈〈[φi1(x1),O(0)] · · · 
(y1) · · ·〉〉 + · · ·
+ 〈〈φi1(x1) · · · [
(y1),O(0)] · · ·〉〉 + · · · (5.7)

is a sum of contact terms.
We would like now to construct an operation for a given operator that can be used in

computing its correlation functions from ln Z. Since we know how to do this for ordinary
operators, it suffices to solve this problem for a pure-contact field. Let O(x) ∈ F be a
pure-contact field that does not explicitly depend on λi , that is [∂i,O(x)] = 0. Then we can
construct a pure-contact operation Õ(x) by requiring

〈〈φi1(x1) · · · 
(y1) · · · Õ(x)〉〉 = 〈φi1(x1) · · · 
(y1) · · · O(x)〉c. (5.8)

This essentially fixes Õ(x) because in physical correlators singularities appear only when
some of the insertions coincide. The only ambiguity in Õ(x) is operations annihilating ln Z.
Any choice however suffices for practical purposes. With this definition given an arbitrary
operator A(x) ∈ F its correlators with the fundamental fields φik (xk), 
(yl) can be computed
using the ordinary operation A(x) = Aiφi and the contact operation

A(x) ≡ ˜[A − A](x) (5.9)

according to

〈φi1(x1) · · · 
(y1) · · · A(x)〉c = 〈〈φi1(x1) · · · 
(y1) · · · [A(x) + A(x)]〉〉. (5.10)

In the above correlation function the contact terms proportional to δ(x − xik ) are essentially
fixed by the action principle (2.4). The extra contributions arising from the explicit dependence
of the coefficients Ai on λj ’s are accounted for by commuting the operation A(x) to the left.
Similarly the contact terms proportional to δ(x −yik ) are fixed by the change of scale equation
(2.3). All contact term contributions proportional to derivatives of delta functions are obtained
by commuting the pure-contact operation A(x) to the left until it annihilates 〈〈.

Consider now the operator 
(x). Assuming, as we agreed before, that 
(x) = βiφi ≡
β(x) in the operator sense means that 
 = β(x) and the field D(x) = 
(x) − β(x) is pure
contact. As 
(x) does not explicitly depend on λi (μ∂/∂μ and ∂/∂λi commute), we can
define a pure-contact operation D(x) in accordance with the general rule (5.9), (5.10). The
field 
(x) is special in that it is represented by a variational derivative (5.1). This implies that

〈〈φi1(x1) · · · 
(y1) · · · [
(x) − β(x) − D(x)]〉〉 = 0 (5.11)

10
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which can be written more succinctly as a first-order functional differential equation on the
generating functional

[
(x) − β(x) − D(x)] ln Z = 0. (5.12)

Knowing the pure-contact operation D(x) the correlation functions of D(x) with any number
of φi(x) and 
(x) can be calculated as

〈D(x)φi1(x1) . . . 
(y1) . . .〉c = 〈〈(
(x) − β(x))φi1(x1) . . . 
(y1) · · ·〉〉
= 〈〈[(
(x) − β(x)), φi1(x1) . . . 
(y1) . . .]〉〉 + 〈〈φi1(x1) . . . 
(y1) . . .D(x)〉〉
= 〈〈[φi1(x1) . . . 
(y1) . . . , (D(x) + β(x) − 
(x))]〉〉
= 〈〈[φi1(x1),D(x)] . . . 
(y1) . . .〉〉 + . . . + 〈〈φi1(x1) . . . [
(y1),D(x)] . . .〉〉 + . . .

+∂i1β
iδ(x − x1)〈φi(x1) . . . 
(y1) . . .〉c + · · · (5.13)

where equation (5.11) was used on the second line, 〈〈D(x) = 0 was used on the third line and

[φi1(x1), β(x)] = δ(x − x1)∂i1β
iφi(x1). (5.14)

was used on the last line.
The form of D(x) is constrained by 2D covariance and locality. In general it can be written

as an expansion in derivatives of the sources λi and covariant derivatives of the curvature with
coefficients being ordinary operations. It is interesting to consider additional restrictions on
D(x) from power counting rules. We will distinguish two such rules which we call a loose
power counting and a strict power counting. In both cases the expansion of D(x) goes only up
to two derivatives in the sources and metric. In the loose power counting rule the coefficients
can have a non-trivial operator content. Explicitly in this case we can write

D(x) = 1
2μ2R2(x)C(x) + ∂μλi(x)J

μ

i (x) + ∂μ[Wi(x)∂μλi] + 1
2∂μλi∂μλjGij (x) (5.15)

where C(x), Wi(x), Gij (x) are ordinary spin-zero fields, and J
μ

i (x) is an ordinary spin-one
field, and where the 2D curvature is given by

μ2R2(x) = −2∂μ∂μ ln μ(x).

Two comments are in order here. Firstly, note the appearance of vector fields J
μ

i (x) in the
expansion. As we defined operations only for spin-zero fields to accommodate fields and
operations of non-trivial spin, we need to introduce new fundamental fields and new sources
for those fields. While used to obtain distributional correlation functions involving operators
of non-trivial spin, such sources are always set to zero in the end of a computation. The
operation D(x) does contain terms proportional to the tensorial sources and their derivatives.
However, our proof avoids using the explicit form of such terms and we will not introduce
the tensor field sources explicitly not to clutter the computations. Nevertheless, the operations
like J

μ

i (x), when appear, should be understood in this sense.
Secondly, note that in the power counting scheme used the operators C(x), Wi(x), Gij (x)

must have dimension near zero. This means that, using the fixed point language, we allow for
slightly irrelevant terms to appear in D(x). This is a common consideration used for general
nonlinear sigma models [5]. The loose power counting thus accommodates perturbative
nonlinear sigma models.

If one assumes that the UV behavior is governed by a unitary fixed point, the only
dimension zero operator is the identity and the total UV dimension of D(x) must be strictly
2, then the operators C(x), Wi(x), Gij (x) must be all proportional to the identity operator.
We call this restrictions a strict power counting rule. It applies in a vicinity of a unitary fixed

11
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point that has a discrete spectrum of conformal dimensions. Under the additional assumption
that there are no operators J

μ

i (x) appearing in D(x) the case of the strict power counting was
investigated in [19].

Finally the case when the only restrictions on D(x) come from the general covariance and
locality can be referred to as Wilsonian. We will prove the general gradient formula (2.13) in
the Wilsonian case. The proof is simplified if we impose a loose power counting. We will be
discussing in parallel how our steps look in that case.

As a last comment in this section note that due to equation (5.12) the operation D(x) is
subject to Wess–Zumino consistency conditions

[
(x) − β(x) − D(x),
(y) − β(y) − D(y)] ln Z = 0 (5.16)

which will be exploited in sections 7.3 and 9.3.

5.2. Summary

OperationsO(x) are local first-order differential operators defined on functionals of the sources
λi(x) and metric. For the fundamental fields φi(x) and the trace of stress–energy tensor 
(x)

the corresponding operations are the functional derivatives (5.1). We introduced the notation
〈〈O1(x1), . . . ,O(xn)〉〉 for a sequence of operations Oi (xi) applied to the generating functional
ln Z ≡〉〉 with the result restricted to constant sources and metric (the restriction is signified
by the symbol 〈〈 ).

Given an operation O(x) one can extract a field from it by restricting it to constant sources
and metric (5.5). The resulting fields are denoted by O(x) and are called ordinary fields. Such
fields have the form O(x) = Oiφi(x). A pure-contact operation is an operation O(x) for
which O(x) = 0.

For ordinary fields the distributional correlation functions are completely fixed by those
of the fields φi . More generally a given field A(x) equals a linear combination of fundamental
fields: A(x) = Aiφi(x) only up to contact terms. Such contact terms can be stored in a
pure-contact operation A(x) according to (5.10). For the trace of stress–energy tensor 
(x)

we have 
(x) = βiφi(x) ≡ β(x) up to contact terms. The corresponding contact terms
are stored in a pure-contact operation D(x). The generating functional satisfies an equation
[
(x)−β(x)−D(x)] ln Z = 0 which can be used to compute correlation functions involving
the field D(x) = 
(x) − β(x) according to (5.13). The form of D(x) is constrained by
locality and general covariance. It can be further constrained by a power counting principle.
We distinguish a strict power counting, which applies to a vicinity of a unitary fixed point with
a discrete spectrum of conformal dimensions, and a loose power counting that is suitable for
describing renormalizable nonlinear sigma models. For the loose power counting case D(x)

can be explicitly written as in formula (5.15).

6. The Callan–Symanzik equations

In the operations formalism the Callan–Symanzik equations for correlators involving fields
φi(x) and 
(y) can be obtained by integrating equation (5.13) over x:(

μ
∂

∂μ
− βi ∂

∂λi

)
〈φi1(x1) . . . 
(y1) . . .〉c =

∫
d2x 〈〈D(x) φi1(x1) . . . 
(y1) . . .〉〉

= ∂i1β
i〈φi(x1) . . . 
(y1) . . .〉c +

∫
d2x 〈〈[φi1(x1),D(x)] . . . 
(y1)〉〉 + . . .

+
∫

d2x 〈〈φi1(x1) . . . [
(y1),D(x)] . . .〉〉 + . . . . (6.1)

12
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It is convenient to define the following operations:

Dφi(x) =
∫

d2y[φi(x),D(y)],

D
(x) =
∫

d2y[
(x),D(y)]. (6.2)

In view of (6.1) the operations Dφi(x) and D
(x) can be interpreted as extra contributions to
the Callan–Symanzik equations.

We further note that∫
d2x〈〈D
(x) = 0,

∫
d2x〈〈Dφi(x) = 0. (6.3)

This follows from the fact that
∫

d2x 
(x) = μ∂/∂μ,
∫

d2y φi(x) = ∂/∂λi and every term in
D(y) is proportional to derivatives of λi(y) and μ(y). Equations (6.3) imply that there must
be ordinary spin-one fields (and ordinary operations respectively) Jμ(x) and J

μ

i (x) such that

D
(x) = −∂μJμ(x), (6.4)

Dφi(x) = −∂μJ
μ

i (x). (6.5)

If we impose a loose power counting, so that D(x) is given by equation (5.15), then

D
(x) = −∂μ∂μC(x) (6.6)

Dφi(x) = −∂μ

[
J

μ

i (x) + ∂μλjGij (x)
]

+ ∂μλj∂iJ
μ

j (x) + 1
2∂μλj∂μλk∂iGjk(x) (6.7)

so

Jμ(x) = ∂μC(x) (6.8)

and J
μ

i (x) defined in (6.5) in general (without any power counting assumptions) coincides
with the coefficient in the expansion of D(x) based on a loose power counting, equation (5.15).
In general (without any power counting restrictions) since all terms in D(x) are proportional
to derivatives of the sources and/or to derivatives of μ(x), there exists a scalar operator C(x)

such that Jμ(x) = ∂μC(x).
The Callan–Symanzik equations (6.1) for the correlation functions at non-coincident

points (neglecting contact terms) can now be written as

μ
∂

∂μ
〈φi1(x1) . . . 
(y1) . . .〉c = βi ∂

∂λi
〈φi1(x1) · · · 
(y1) . . .〉c + 〈�φi1(x1) . . . 
(y1) . . .〉c

+ . . . + 〈φi1(x1) . . . [−∂μJμ(y1)] . . .〉c + . . . (6.9)

where

�φi1(x1) = ∂i1β
iφi(x1) − ∂μJ

μ

i1
(x1). (6.10)

The terms involving the beta functions can be put into the Lie derivative Lβ so that equation
(6.9) takes a more succinct form[

μ
∂

∂μ
− Lβ

]
〈φi1(x1) · · · 
(y1) . . .〉c

= 〈[ − ∂μJ
μ

i1
(x1)

]
. . . 
(y1) . . .

〉
c

+ . . . + 〈φi1(x1) . . . [−∂μJμ(y1)] . . .〉c + . . . . (6.11)
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7. The proof continued

We now come back to the proof of the gradient formula which we left at the end of section 4.
We express the remainder term rL

i of equation (4.12) in the source-operation formalism. The
three-point functions occurring in equation 4.12 can be written as

〈φi(y)D(x)
(0)〉c = 〈〈φi(y)
(0)[
(x) − β(x)]〉〉 + ∂iβ
j δ2(y − x)〈〈
(0)φj (x)〉〉

= 〈〈φi(y)
(0)D(x)〉〉 + ∂iβ
j δ2(y − x)〈〈
(0)φj (x)〉〉, (7.1)

〈D(y)φi(x)
(0)〉c = 〈〈φi(x)
(0)D(y)〉〉 + ∂iβ
j δ2(x − y)〈〈
(0)φj (y)〉〉, (7.2)

so

〈φi(y)D(x)
(0) − D(y)φi(x)
(0)〉c = 〈〈φi(y)
(0)D(x) − φi(x)
(0)D(y)〉〉. (7.3)

Substituting the last relation into equation (4.12) and using 〈〈D(x) = 0 gives

rL
i =

∫
|y|<L

d2y

∫
d2xG
(x)〈〈φi(y)
(0)D(x) − φi(x)
(0)D(y)〉〉

=
∫

|y|<L

d2y

∫
d2xG
(x)〈〈φi(y)[
(0),D(x)] + [φi(y),D(x)]
(0)〉〉

−
∫

|y|<L

d2y

∫
d2xG
(x)〈〈φi(x)[
(0),D(y)] + [φi(x),D(y)]
(0)〉〉. (7.4)

Note that D(x) is a pure-contact operation, and |x| � 
−1 
 L, so that∫
|y|<L

d2y [
(0),D(y)] =
∫

d2y [
(0),D(y)] = D
(0) (7.5)

∫
|y|<L

d2y [φi(x)D(y)] =
∫

d2y [φi(x)D(y)] = Dφi(0) (7.6)

∫
|y|<L

d2y 〈〈[φi(y),D(x)] =
∫

d2y 〈〈[φi(y),D(x)] = [∂i,D(x)] = 0. (7.7)

Using these relations in (7.4) we obtain

rL
i = −

∫
|y|<L

d2y12π〈〈φi(y)C2(0)〉〉 −
∫

d2xG
(x)〈〈φi(x)D
(0)〉〉

−
∫

d2xG
(x)〈〈Dφi(x)
(0)〉〉 (7.8)

where we have defined an operation

C2(y) = −
∫

d2x
1

4
x2[
(y),D(x)]. (7.9)

If a loose power counting is imposed, D(x) is given by equation (5.15), and we have

C2(y) = −
∫

d2x
1

4
x2[−∂μ∂μδ2(x − y)]C(x) = C(y). (7.10)

Thus, with a loose power counting,

D
(x) = −∂μ∂μC2(x). (7.11)
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We separate rL
i into two parts:

rL
i = rL

i,1 + rL
i,2 (7.12)

rL
i,1 = −

∫
d2xG
(x)〈〈Dφi(x)
(0)〉〉 (7.13)

rL
i,2 = −

∫
|y|<L

d2y12π〈〈φi(y)C2(0)〉〉 −
∫

d2xG
(x)〈〈φi(x)D
(0)〉〉 (7.14)

and then investigate each in turn.

7.1. The IR condition and the sum rule

We investigate ri,1 first. Our goal is to show that under certain assumptions this quantity is
proportional to the beta functions.

We have

〈〈Dφi(x) = 〈〈Dφi(x) = 〈〈[ − ∂μJ
μ

i (x)
]

(7.15)

so

〈〈Dφi(x)
(0)〉〉 = −〈〈∂μJ
μ

i (x)
(0)〉〉 = −〈
∂μJ

μ

i (x)
(0)
〉
c
. (7.16)

Substituting this expression into equation (7.13) we get

rL
i,1 =

∫
d2xG
(x)

〈
∂μJ

μ

i (x)
(0)
〉
c
. (7.17)

Now we use the technique similar to the one we used in the proof of Zamolodchikov’s formula
(see section 3). It is straightforward to check that the Ward identity for Tμν(x) implies

x2〈∂μJ
μ

i (x)
(0)〉c = ∂μ

[
x2

〈
J

μ

i (x)
(0)
〉
c
− 2xαxβ

〈
J α

i (x)T
μ
β (0)

〉
c

+ x2
〈
J α

i (x)T μ
α (0)

〉
c

]
(7.18)

which allows us to perform the integral in equation (7.17), obtaining

rL
i,1 = 6π2xμ

[
x2

〈
J

μ

i (x)
(0)
〉
c
− 2xαxβ

〈
J α

i (x)T
μ
β (0)

〉
c

+ x2
〈
J α

i (x)T μ
α (0)

〉
c

]
/
|x|=1. (7.19)

What we want however is an expression proportional to βi . Recall that

G
(x) = 3πx2θ(1 − 
|x|) (7.20)

so that

G0(x) = 3πx2 (7.21)

and

G0(x) − G
(x) = 3πx2θ(
|x| − 1). (7.22)

We write

rL
i,1 = E2 +

∫
|x|�L

d2x[G
(x) − G0(x)]
〈
∂μJ

μ

i (x)
(0)
〉
c

= E2 +
∫

|x|�L

d2x[G
(x) − G0(x)]
〈
∂μJ

μ

i (x)φj (0)
〉
c
βj (7.23)
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with

E2 =
∫

|x|�L

d2xG0(x)
〈
∂μJ

μ

i (x)
(0)
〉
c

(7.24)

= 6π2xμ

[
x2〈Jμ

i (x)
(0)
〉
c
− 2xαxβ

〈
J α

i (x)T
μ
β (0)

〉
c

+ x2〈J α
i (x)T μ

α (0)
〉
c

]
/|x|=L

. (7.25)

We are allowed to replace 
(0) with βjφj (0) to obtain equation (7.23) because G
(x)−G0(x)

vanishes for 
|x| � 1, so contact terms in the two-point function make no difference.
The IR error term E2 will vanish in the limit L → ∞ if the two-point functions

〈Jμ

i (x) Tαβ(0)〉c go to zero at large x faster than |x|−3:

lim
|x|→∞

|x|3〈Jμ

i (x) Tαβ(0)
〉
c
= 0. (7.26)

A violation of this IR decay condition would mean that the long-distance limit of the
quantum field theory exhibits spontaneously broken global conformal symmetry. Our main
IR assumption is that such a spontaneous breaking does not take place and equation (7.26) is
satisfied.

The condition limL→∞ E2 = 0 is equivalent to the sum rule∫
d2xx2

〈
∂μJ

μ

i (x)
(0)
〉
c
= 0. (7.27)

Such a sum rule holds for any spin-one field, given our infrared assumption.

7.2. The term rL
i,2

Similar to (7.23) we want to write rL
i,2 as an integral over 
|x| > 1 of an expression proportional

to βj . Equation (7.11), which one obtains when the loose power counting is imposed, motivates
the following manipulation of equation (7.14). Write the first term, using equation (7.21) for
G0(y),

−
∫

|y|<L

d2y12π〈〈φi(y)C2(0)〉〉 = −
∫

|y|<L

d2y[∂μ∂μG0(y)]〈〈φi(y)C2(0)〉〉 (7.28)

and then integrate by parts. Equation (7.14) becomes

rL
i,2 = E3 −

∫
|y|<L

d2yG0(y)〈〈φi(y)∂μ∂μC2(0)〉〉 −
∫

d2xG
(x)〈〈φi(x)D
(0)〉〉 (7.29)

where E3 is an infrared error

E3 = −
∫

|x|<L

d2x∂μ[∂μG0(x)〈〈φi(0)C2(x)〉〉 − G0(x)∂μ〈〈φi(0)C2(x)〉〉]. (7.30)

We further rewrite equation (7.29) as

rL
i,2 = E3 + E4 +

∫
|x|<L

d2x [G0(x) − G
(x)] 〈〈φi(x)D
(0)〉〉 (7.31)

where

E4 = −
∫

|x|<L

d2xG0(x)〈〈φi(x)[∂μ∂μC2(0) + D
(0)]〉〉. (7.32)

The term E4 is identically zero if we assume a loose power counting by equation (7.11). We
will show in section 7.4 that in general E4 vanishes as L → ∞.
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In equation (7.31), the integration variable x is bounded away from 0, so we can substitute

〈〈φi(x)D
(0)〉〉 = 〈〈D
(0)φi(x)〉〉 = 〈−∂μJμ(0)φi(x)〉c (7.33)

giving

rL
i,2 = E3 + E4 +

∫
|x|<L

d2x [G
(x) − G0(x)] 〈φi(x)∂μJμ(0)〉c. (7.34)

Finally, we will now show that

∂μJμ(0) = βj∂μJ
μ

j (0) (7.35)

so that rL
i,2 also becomes proportional to βj , up to IR errors,

rL
i,2 = E3 + E4 +

∫
|x|<L

d2x [G
(x) − G0(x)] 〈φi(x)∂μJ
μ

j (0)〉cβj . (7.36)

7.3. The identity ∂μJμ(x) = βj∂μJ
μ

j (x)

We want to show that the ordinary field

K(x) = βj∂μJ
μ

j (x) − ∂μJμ(x) (7.37)

is zero, which is to say that all its non-coincident correlation functions vanish:

〈K(x)φi1(x1) . . .〉c = 0 x �= x1, . . . . (7.38)

In the source/operation formalism, this means that

〈〈K(x)φi1(x1) . . .〉〉 = 0, x �= x1, . . . . (7.39)

To show this we first argue that (7.38) is equivalent to showing that

[D,D(x)]〉〉 = K1(x)〉〉 (7.40)

for some pure-contact operation K1(x). We then demonstrate that (7.40) is a consequence of
the Wess–Zumino consistency conditions on D(x).

It follows from (6.2) that

〈〈K(x) = 〈〈[ − ∂μJμ(x) + βj∂μJ
μ

j (x)
]

= 〈〈[D
(x) − βjDφj (x)]

= 〈〈[D,
(x) − βjφj (x)]

= 〈〈[D,D(x)] (7.41)

where D(x) = 
(x)−βjφj (x) is acting here as an operation. This last calculation implicitly
uses the obvious identity

〈〈βj (λ(x)) = βj (λ)〈〈 (7.42)

and its direct implication

〈〈[D, βj (λ(x))] = −〈〈βj (λ(x))D = −βj (λ)〈〈D = 0. (7.43)

Now we have

〈〈K(x)φi1(x1) · · ·〉〉 = 〈〈[D,D(x)]φi1(x1) · · ·〉〉. (7.44)
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The operation [D, D(x)] commutes with all φir (xr) because x �= xr , so

〈〈K(x)φi1(x1) · · ·〉〉 = 〈〈φi1(x1) · · · [D,D(x)]〉〉. (7.45)

We now need to show that

〈〈φi1(x1) · · · [D,D(x)]〉〉 = 0, x �= x1, . . . , (7.46)

which by (5.7) is equivalent to (7.40).
Equation (7.40) follows from the Wess–Zumino consistency conditions. Recall that we

have an equation

0 = [D(x) − D(x)]〉〉. (7.47)

The Wess–Zumino consistency conditions are

[D(x) − D(x),D(y) − D(y)]〉〉 = 0. (7.48)

It follows from

[
(x),
(y)] = 0, [
(x), β(y)] = 0, [β(x), β(y)] = 0 (7.49)

that

[D(x),D(y)] = 0 (7.50)

and therefore (7.47) is equivalent to

[D(y),D(x)]〉〉 = − ([D(y),D(x)] + [D(x),D(y)])〉〉. (7.51)

The operation [D(x), D(y)] is evidently pure contact. It also follows from (2.3) and (7.43)
that [∫

d2yD(y),D(x)

]
(7.52)

is a pure-contact operation. Thus, integrating equation (7.51) with respect to y gives

[D,D(x)]〉〉 = K1(x)〉〉 (7.53)

where

K1(x) = −
[∫

d2yD(y),D(x)

]
− [D(x),D] (7.54)

is pure contact. This completes the proof that at all non-coincident correlation functions of
βj∂μJ

μ

j (x) − ∂μJμ(x) are identically zero. Therefore,6

∂μJμ(x) = βj∂μJ
μ

j (x). (7.55)

7.4. E4 is an IR error term

We owe a proof that the term E4 given by

E4 = −
∫

|x|<L

d2x G0(x)〈〈φi(x)[∂μ∂μC2(0) + D
(0)]〉〉 (7.56)

is an infrared error, that is it vanishes as L → ∞. The argument is a bit tedious, so the reader
might want to skip this section at the first reading.

6 It is worth noting that relation (7.55) is a generalization of the Curci–Paffuti relation [16] known for nonlinear
sigma models. By methods similar to those employed in this section one can actually prove a stronger relation:
Jμ(x) = βj J

μ
j (x). We do not need this stronger relation in the proof of the gradient formula.

18



J. Phys. A: Math. Theor. 43 (2010) 215401 D Friedan and A Konechny

We have noted that in general (without the assumption of a loose power counting) we
have

[
(0),D(y)] = −∂μ∂μδ(y) C2(y) + ∂μ∂ν∂γ δ(y) C
μνγ

3 (y) + · · · (7.57)

where the omitted terms contain derivatives of delta functions of order 4 and higher. For our
purposes this expansion can be written more compactly as

[
(0),D(y)] = −∂μ∂μδ(y) C2(y) + ∂μ∂ν∂γ δ(y) C̃
μνγ

3 (y) (7.58)

where C̃
μνγ

3 (y) is some tensor operation. Formula (7.58) implies

∂μ∂μC2(0) + D
(0) = ∂μ∂ν∂γ C̃
μνγ

3 (0) (7.59)

and therefore

〈〈φi(x)[∂μ∂μC2(0) + D
(0)]〉〉 = 〈
∂μ∂ν∂γ C̃3

μνγ
(0)φi(x)

〉
+

〈〈[
φi(x), ∂μ∂ν∂γ C̃

μνγ

3 (0)
]〉〉

.

(7.60)

The second term on the right-hand side of (7.60) vanishes because it is proportional to a
one-point function of a total derivative operator. Thus, we obtain

E4 = −3π

∫
|x|<L

d2x x2〈φi(x)∂μ∂ν∂γ C̃3
μνγ

(0)
〉

(7.61)

which exhibits that E4 is a linear combination of two-point functions at separation L. Assuming
that 〈φi(L)C̃3

μνγ
(0)〉 is integrable at infinity (which is consistent with 〈C̃3

μνγ
(0)〉 = 0 being

independent of λi) all combinations of two-point functions entering E4 go to zero as L → ∞.

8. Conclusion of the proof

Combining our results for rL
i,1 and rL

i,2, equations (7.23) and (7.36), and substituting into
equation (7.12), we get

rL
i = E2 + E3 + E4 +

(
�gL

ij

)
βj (8.1)

with

�gL
ij =

∫
|x|<L

d2x[G
(x) − G0(x)]
〈
φi(x)∂μJ

μ

j (0) + φj (x)∂μJ
μ

i (0)
〉
c
. (8.2)

The metric correction �gL
ij can be also written without any direct reference to currents J

μ

i (x)

using the Callan–Symanzik equations (6.11)

�gL
ij =

∫
|x|<L

d2x [G
(x) − G0(x)]

(
Lβ − μ

∂

∂μ

)
〈φi(x)φj 〉 (8.3)

which, using (2.3), (2.4), can be written in terms of integrated three-point functions of
fundamental operators up to IR error terms.

Equation (4.11) becomes, finally, the IR-regulated gradient formula

∂L
i c +

(
gij + �gL

ij + bL
ij

)
βj + E(L) = 0 (8.4)

with total error

E(L) = E1 + E2 + E3 + E4. (8.5)
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The L-dependent constituents of the formula are

∂L
i c = −

∫
|y|<L

d2y

∫
d2x G
(x)〈φi(y)
(x)
(0)〉c, (8.6)

bL
ij =

∫
|y|<L

d2y

∫
d2xG
(x)〈φi(y)φj (x)
(0) − φj (y)φi(x)
(0)〉c, (8.7)

E1 = 2πyμyν

∫
d2x G
(x)〈Tμν(y)φi(x)
(0)〉c/|y|=L

, (8.8)

E2 = 6π2xμ

[
x2

〈
J

μ

i (x)
(0)
〉
c
− 2xαxβ

〈
J α

i (x)T
μ
β (0)

〉
c

+ x2
〈
J α

i (x)T μ
α (0)

〉
c

]
/|x|=L

, (8.9)

E3 = −
∫

|x|<L

d2x∂μ[∂μG0(x)〈〈φi(0)C2(x)〉〉 − G0(x)∂μ〈〈φi(0)C2(x)〉〉], (8.10)

E4 = −3π

∫
|x|<L

d2xx2
〈
φi(x)∂μ∂ν∂γ C̃3

μνγ
(0)

〉
(8.11)

and �gL
ij is given in (8.2) (see equations (4.8), (4.10), (4.6), (7.25), (7.30) and (7.61)).

Now that the infrared regulated formula (8.4) is derived we can study its L → ∞ limit.
Let us recapitulate our assumptions on the infrared behavior. Firstly, we assume that the
action principle holds at least for one- and two-point functions so that the one- and two-point
functions are at least once differentiable. Secondly, the infrared behavior of the stress–energy
tensor correlators should satisfy (7.26). The first assumption means that two-, three- and
four-point functions involving φi(x) or Tμν(x) decay faster than x2 when |x| → ∞. This
together with formula (7.26) implies that

lim
L→∞

E(L) = 0,

lim
L→∞

∂L
i c = ∂ic,

lim
L→∞

bL
ij = bij , (8.12)

where bij is given by Osborn’s formula7 (2.12). Note that in showing (8.12) formula (7.26)
is needed only to argue that E2 vanishes at infinity while the first infrared assumption alone
suffices to show all other limits.

Note that although the same set of assumptions implies

lim
L→∞

�gL
ijβ

j < ∞, (8.13)

there is no guarantee that the L → ∞ limit of �gL
ij is finite. However, infrared divergences,

if present in �gL
ij , are orthogonal to the beta function. Therefore, they can be subtracted to

obtain a finite quantity �gij so that the following gradient formula holds:

∂ic = −(gij + �gij + bij )β
j (8.14)

7 The two-form bij is exact provided wj defined in (2.12) is differentiable. If one relaxes the differentiability
assumptions, there is room for the limit bij = limL→∞ bL

ij to exist without wj being differentiable, in which case bij

would be closed but not exact. The failure of differentiability of wj could come from some non-perturbative effects.
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where

�gij = lim
L→∞

[
�gL

ij − subtractions
]
. (8.15)

This completes the derivation of the general gradient formula.

9. Discussion

9.1. Contact term ambiguities and scale dependence

As the proof of the gradient formula uses distributional correlation functions which have
contact term ambiguities, one should ask if the formula itself is free from such ambiguities.
The contact term ambiguities arise from the choice of a renormalization scheme and are
generated by adding to the generating functional finite local counterterms of the form

ln Z[λ, gij ] �→ ln Z[λ, gij ] +
∫

d2x

[
f (λ)μ2R2(x) +

1

2
cij (λ)∂μλ∂μλ(x) + · · ·

]
, (9.1)

where f (λ) and cij (λ) are arbitrary functions8 (scalar and tensor respectively) and the omitted
terms contain higher order derivatives of the metric and sources. Redefinition (9.1) shifts the
terms in the renormalization operation D(x). The low-order terms shift as

C(x) �→ C(x) + βi∂if (x), (9.2)

Wi(x) �→ Wi(x) − ∂if (x) − cijβ
j (x), (9.3)

Gij (x) �→ Gij (x) − Lβcij (x) (9.4)

with all shifts proportional to the identity operator.
The c-function and the metric tensors gij, �gij can each be written in a form involving

two-point correlators at non-zero separation only (see formulas (2.10), (2.11), (8.2)). Thus,
these quantities are independent of the contact term ambiguities. The one-form wi defined in
(48) changes under (9.1) as

wi �→ wi − ∂if (9.5)

and the antisymmetric form bij thus does not change. Since redefinition (9.1) is the most
general one9, the two-form bij is also independent of the contact term ambiguities.

Another property that we would like to check is whether the quantities we defined depend
on the scales μ and 
 only via their ratio μ/
. For the c-function (2.10), the metric (2.11) and
the antisymmetric form (2.12) this immediately follows from the scaling properties (3.2). As
for the metric correction �gij it may happen that the infrared regulated quantity �gL

ij contains
a logarithmic divergence ∼ ln L whose subtraction requires introducing a new scale. If this
happens, the subtracted correction will not depend on μ and 
 via the ratio μ/
 only. The
physical significance of this is unclear to us.

9.2. The infrared condition: an example

Here we discuss a simple example that demonstrates the necessity of the infrared condition
(7.26) for a gradient formula to hold. Consider a free compact boson X defined on a two-
dimensional curved surface with metric gμν by the action functional

S[R, gμν] = 1

8π

∫
d2x (λ

√
ggμν∂μX∂νX + QX

√
gR2), (9.6)

8 We assume that these functions are at least once differentiable.
9 The higher order terms omitted in (9.1) do not contribute to the change of wi.
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where λ is the coupling constant corresponding to the radius of compactification squared, R2

is the curvature of gμν and Q is a parameter. Promoting λ to a local source λ(x) we can define
a generating functional

ln Z[λ(x), gμν(x)] =
∫

[dX] e−S[λ(x),gμν (x)]. (9.7)

For the zero mode integral to be well defined we assume that the theory is defined only on a
surface with the topology of a plane so that∫

d2x
√

gR2 = 0 (9.8)

and the zero mode integral in (9.7) only yields an overall numerical factor. Note that Q
cannot be considered as a coupling constant as it does not stand at a local operator. The
functional integral is Gaussian so the anomaly can be readily computed (e.g. using the heat
kernel method) with the result

D(x) = 
(x) = 1
2C(λ)

√
gR2(x) + J

μ
λ (x)∂μλ + 1

2gλλ∂μλ∂μλ + ∂μ(wλ∂
μλ), (9.9)

where

C(λ) = 1

12π
+

Q2

4πλ
(9.10)

J
μ
λ (x) = − Q

4πλ
∂μX(x) (9.11)

gλλ = 1

64πλ2
. (9.12)

The value of wλ is essentially scheme dependent. It can be shifted by adding to S a local
counterterm

∫
d2x f (λ(x))R2(x) dependent on an arbitrary function f (λ). In the context of

nonlinear sigma models such term can be fixed by target space diffeomorphism invariance.
For the model at hand this gives wλ = (8πλ)−1.

We see from (9.10) that while the theory has a vanishing beta function, its c-function:
c = 12πC(λ) has a non-trivial derivative with respect to the modulus λ. We can further
observe that it is the broken global conformal symmetry that is responsible for the breakdown
of gradient property. The stress–energy tensor on a flat surface is

Tμν = λ

4π

(
: ∂μX∂νX : −δμν

2
: ∂γ X∂γ X :

)
+

Q

4π
(δμν∂λ∂

λ − ∂μ∂ν)X. (9.13)

It has exactly the same form as the background charge model [26] with imaginary background
charge. Note that in our theory there is no background charge. Moreover, since our theory is
defined on a topological plane, the field X can be taken to be compact with an arbitrary radius.
The correlation function

〈T (z)Jλ,z(0)〉 = − Q2

4πλ2

1

z3
(9.14)

means that special conformal transformations are broken by the boundary condition at
infinity10.

10 The charge
∮

dz z2T (z) does not vanish at infinity.
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Another way to see the necessity to have theory defined on a sphere of large radius is in
the context of nonlinear sigma model. There it is essential for the gradient formula to hold (at
least in the leading order in the α′ expansion) that the zero mode measure includes the dilaton
contribution corresponding to spherical topology [19].

9.3. Bare gradient formula

Here we will show how the Wess–Zumino consistency condition for the local renormalization
operation can be used to derive a different gradient formula. The main quantities in the new
gradient formula are constructed using the anomalous contact terms present in D rather than
correlation functions at finite separation. For this reason we call it a bare gradient formula. As
a consequence of that the terms in that formula are defined modulo contact term ambiguities
discussed in section 9.1. The new formula also suffers from potential infrared divergences in
the metric. In this section however for the sake of brevity we will not introduce an explicit
infrared cutoff and our manipulations with integrals will be formal. It is straightforward
however to introduce such a cutoff with the main result correct up to some error terms
vanishing when the cutoff is removed.

Using (7.49) the Wess–Zumino consistency condition

[(D(x2) − D(x2)), (D(x1) − D(x1))] 〉〉 = 0 (9.15)

can be rewritten as11

[[
(x2),D(x1)] − [
(x1),D(x2)] − [β(x2),D(x1)]

+β(x1)D(x2) − D(x2)
(x1) + D(x1)D(x2)] 〉〉 = 0. (9.16)

Applying to the above equation 〈〈φi(y) on the left-hand side and integrating over x1 we obtain

〈〈φi(y)[D
(x2) − βjDφj ]〉〉 + 〈〈φi(y)

∫
d2x1 β(x1)D(x2)〉〉 + 〈〈Dφi(y)D(x2)〉〉

−μ
∂

∂μ
(〈D(x2)φi(y)〉c − δ2(y − x2)∂iβ

j 〈φj 〉) = 0 (9.17)

where we used the identities∫
dx1[
(x1),D(x2)] = 0, 〈〈φi(y)

∫
dx1[βj (x2),D(x1)]φj (x2)〉〉 = 0. (9.18)

As we know from section 7.3 D
 − βjDφj is a pure-contact operation. Its field part
βj∂μJ

μ

i − ∂μJμ vanishes (is pure contact). Equation (9.17) expresses the contact terms with
φi(y) via the operation D. Integrating the above formula over x2 with the weight (x2 − y)2

and using

μ
∂

∂μ

∫
d2x2 〈D(x2)φi(y)〉c(x2 − y)2 = 0 (9.19)

we obtain12

∂i〈C2〉 = −Hijβ
j + LβWi + Qi (9.20)

11 Note that this form of the Wess–Zumino condition is linear in D. This leads to essential simplifications in
computations and also ensures that terms with tensorial sources in D do not contribute to the final gradient formula.
12 Recall that the currents J

μ
i and the metric Gij in (5.15) are ordinary operations so that 〈∂iJ

μ
j 〉 = 0.
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where

Hij = −Gij − 1

4

∫
d2y y2

[〈
∂μJ

μ

j (0)φi(y)〉 + 〈∂μJ
μ

i (0)φj (y)
〉]
,

Gij = −1

4

∫
d2y y2〈〈[φi(0),Dφj (y)] 〉〉,

Wi = 1

4

∫
d2y y2〈D(y)φi(0)〉c,

Qi = 1

4

∫
d2y y2

〈
∂μJ

μ

i (y)
(0)
〉
c
. (9.21)

Note that the tensor Gij is symmetric. This follows from the fact that operations φi(y), φj (x)

commute. The metric tensor Hij can be also written in terms of integrated correlation functions:

Hij = 1

4

∫
d2yy2

[∫
d2x〈D(x)φi(y)φj (0)〉c − ∂iβ

k〈φk(y)φj (0)〉c − ∂jβ
k〈φi(y)φk(0)〉c

]
.

(9.22)

According to our main infrared assumption (7.26) Qi vanishes and we have a gradient
formula

∂ic
(0) + g

(0)
ij βj + b

(0)
ij βj = 0 (9.23)

where

c(0) = 〈C2〉 − Wiβ
i, g

(0)
ij = Hij , b

(0)
ij = ∂iWj − ∂jWi. (9.24)

The metric Hij potentially suffers from the same infrared divergences as the correction to
Zamolodchikov’s metric defined in (8.15). We define the finite quantity entering (9.23) by
subtracting these divergences.

When a loose power counting applies, the above quantities can be computed more
explicitly using (5.15). In this case we have

Hij = Gij − 1

4

∫
d2y y2

[〈
∂μJ

μ

i (y)φj (0)
〉
+

〈
∂μJ

μ

j (y)φi(0)
〉]
, (9.25)

〈C2〉 = 〈C〉 and Gij, Wi coincide with the respective quantities defined in formula (5.15). In
the case when the currents J

μ

i are absent, formula (9.23) matches with the one obtained by
Osborn [19].

9.4. Dressing transformations

For any gradient formula

∂ic + gijβ
j + bijβ

j = 0 (9.26)

with a symmetric tensor gij and an antisymmetric tensor bij one can redefine c, bij and gij as

c̃ = c + βicijβ
j ,

g̃ij = gij − Lβcij ,

b̃ij = bij − (diβc)ij , (9.27)
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so that a gradient formula ∂i c̃ = g̃ij β
j + b̃ij β

j holds. The tensor cij above is any tensor on the
space of couplings that may depend on the couplings and the renormalization scale μ. We will
refer to redefinitions (9.27) as dressing transformations. One can show that formula (8.14) is
related to formula (9.23) by means of a dressing transformation specified by

c

ij =

∫
d2x G
(x)〈φi(x)φj (0)〉c (9.28)

so that

c = c(0) − βic

ij β

j . (9.29)

It is not hard to construct using dressing transformations a class of c-functions that
monotonically decrease under the RG flow. Such functions cf can be defined as

cf = −3π

∫
d2x x2f (x2)〈
(x)
(0)〉c, (9.30)

where f (x2) is a function such that f (0) = 1, f (x2) decreases fast at infinity13 and

xμ∂μf (x2) < 0. (9.31)

These potential functions satisfy a gradient formula

∂ic
f = −(

g
f

ij + �g
f

ij + b
f

ij

)
βj , (9.32)

where

g
f

ij = −3π

∫
d2x x2[xμ∂μf (x2)]〈φi(x)φj (0)〉c (9.33)

�g
f

ij = 3π

∫
d2x x2[f (x2) − 1]

(〈
∂μJ

μ

i (x)φj (0)
〉
+

〈
∂μJ

μ

j (x)φi(0)
〉)

(9.34)

b
f

ij = ∂iw
f

j − ∂jw
f

i (9.35)

w
f

i = 3π

∫
d2x x2f (x2)〈φi(x)
(0)〉c. (9.36)

Such smeared c-functions were first considered in [20].

9.5. Renormalization group transformation as a flow of couplings

As one can observe from the form of Callan–Symanzik equations (6.11), the scale
transformation of correlation functions

〈φi1(x1)φi2(x2) . . . 
(y1)
(y2) . . .〉c
even at finite separation is not fully compensated by the change of couplings λi . In addition
to changing the couplings according to their beta functions and rotating the fields φi by the
anomalous dimension matrices ∂iβ

j the operators φi(x) and 
(y) each shift by an additional
total derivative: ∂μJ

μ

i (x) and ∂μJμ(y), respectively. If the currents J
μ

i , Jμ are not conserved,
these shifts affect the scale transformation of the correlation functions taken at finite separation.
This signals that more couplings need to be introduced to parameterize such additional terms
in the Callan–Symanzik equations. Thus, to account for the current Jμ(y) it is customary to
introduce dilaton couplings λi

D that couple to φi(x)μ2R2(x) terms in the Lagrangian14. The

13 An exponential decrease would suffice for all purposes.
14 A completeness of the set φi is assumed here as discussed in section 5.
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generating functional Z depends on these couplings according to the functional differential
equation

δ ln Z

δλi
D(x)

= 1

2
μ2R2(x)

δ ln Z

δλi(x)
. (9.37)

The introduction of this new set of couplings is natural if one bears in mind that coupling
constant redefinitions are responsible for having different RG schemes. To renormalize a
theory on a curved space one needs counterterms of the form φi(x)μ2R2(x). As usual such
counterterms are defined up to arbitrary finite parts. Changing the dilaton couplings λi

D

accounts for changing the finite parts in such counterterms. (Previously we assumed that
such counterterms are fixed somehow which amounts to partially fixing the RG scheme.
This resulted in the extra terms in the Callan–Symanzik equations.) Expanding the operator
C(x) in (5.15) as C(x) = βi

Dφi(x) we see that the coefficients βi
D can now be naturally

interpreted as the beta functions for the dilaton couplings. For the loose power counting case
the Callan–Symanzik equation for correlators of stress–energy tensor takes the form

μ
∂

∂μ
〈Tμν(y1)Tαβ(y2) . . .〉c = βi ∂

∂λi
〈Tμν(y1)Tαβ(y2) . . .〉c +

〈
�C

μν(y1)Tαβ(y2) . . .
〉
c

+
〈
Tμν(y1)�

C
αβ(y2) . . .

〉
c

+ . . . =
(

βi ∂

∂λi
+ βi

D

∂

∂λi
D

)
〈Tμν(y1)Tαβ(y2) . . .〉c (9.38)

where

�C
μν(x) = (∂μ∂ν − gμν∂α∂α)C(x). (9.39)

We used (9.37) and (5.15) to obtain the last equality in (9.38). We see that the dilaton couplings
account for mixings of the stress–energy tensor with trivially conserved currents �C

μν(x). With
the enlarged set of couplings (λ, λD) the change in scale for correlators of stress–energy tensor
components (at finite separation) is exactly compensated by the change in coupling constants.
In particular for the c-function (2.10) we have

μ
∂c

∂μ
=

(
βi ∂

∂λi
+ βi

D

∂

∂λi
D

)
c. (9.40)

We can also compute the derivatives of the c-function (2.10) with respect to the dilaton
couplings. Using (3.3), (9.37) and the identity

∂

∂λi
D

=
∫

d2x
δ

δλi
D(x)

(9.41)

we obtain
∂c

∂λi
D

= − ∂

∂λi
D

∫
d2x G
(x)〈
(x)
(0)〉c = 2

∫
d2x G
(x)〈
(x)∂μ∂μφi(0)〉c. (9.42)

Integrating by parts in (9.42), using

μ
∂

∂μ
〈φi〉 = βj∂j 〈φi〉 (9.43)

and the assumption that∫
d2x 〈φj (x)φi(0)〉 = ∂j 〈φi〉 = ∂i〈φj 〉 < ∞, (9.44)

we obtain
∂c

∂λi
D

= −gD
ij βj (9.45)

26



J. Phys. A: Math. Theor. 43 (2010) 215401 D Friedan and A Konechny

where

gD
ij = 2

∫
d2x [G0(x) − G
(x)]〈φj (x)∂μ∂μφi(0)〉c (9.46)

is a symmetric tensor.
We can further show that the contraction of gradient formula (8.14) with the beta functions

βi gives Zamolodchikov’s formula (3.1). This boils down to the identity

βi
D

∂c

∂λi
D

= βi�gijβ
j . (9.47)

Using equations (9.45), (9.46) the left-hand side of equation (9.47) can be written as

βi
D

∂c

∂λi
D

= 2
∫

d2x [G
(x) − G0(x)]〈
(x)∂μ∂μC(0)〉c (9.48)

while for the right-hand side we have

βi�gijβ
j = 2

∫
d2x [G
(x) − G0(x)]

〈

(x)βi∂μJ

μ

i (0)
〉
c
. (9.49)

The last expression coincides with (9.48) by virtue of the identity ∂μ∂μC(x) = ∂μJ
μ

i (x)

proven in section 7.3. This identity can be used because the two-point function in (9.49)
is taken at finite separation. It is not hard to extend the proof of identity (9.47) to a more
general case not assuming the loose power counting. Formula (9.47) shows in particular that
the metric correction �gij is necessary to account for the flow of dilaton coupling constants
when the last ones are present.

The additional gradient formula (9.45) together with the main formula (8.14) implies that
the c-function is stationary with respect to the couplings (λ, λD) at fixed points βi = 0. The
inverse follows from Zamolodchikov’s formula (3.1) combined with formula (9.40). Thus,
under our main set of assumptions and with a loose power counting the stationary points of
the c-function are in a one-to-one correspondence with the fixed points.

10. Final comments

As we said in the introduction one of the motivations to obtain a general gradient formula
came from string theory. In regard to potential applications of our result to the problem of
constructing string effective actions it should be stressed that we worked throughout with
normalized connected correlation functions while it is the unnormalized and disconnected
ones which are relevant to string theory. This fact also explains why our results seem to be at
odds with the conclusion of [15] that the Zamolodchikov c-function does not give a suitable
string effective action. In the unnormalized correlators the dilaton zero mode φ0 contributes
an overall factor e−2φ0 which results in having the same factor in c. Thus, stationarity of c
with respect to φ0 implies that c has to vanish at stationary points. This factor and the related
problem disappear when one builds c out of normalized correlators as we do in this paper.

The aforementioned problem with c prompted various authors to switch to using what we
call the bare gradient formula which was discussed in section 9.3. The negative side of this is
that the metric that appears in that formula, being built from contact terms, does not have any
positivity properties.

In the present paper we focused on a formal derivation of the new gradient formula and
discussed its general properties. It would be instructive to illustrate how it works on concrete
examples in conformal perturbation theory and nonlinear sigma models. We are planning to
do this in a separate publication [27]. It is also interesting to understand better the implications
of the new formula for string theory. We leave this question to future studies.

27



J. Phys. A: Math. Theor. 43 (2010) 215401 D Friedan and A Konechny

Acknowledgments

The work of DF was supported by the Rutgers New High Energy Theory Center. Both authors
acknowledge the support of Edinburgh Mathematical Society.

References

[1] Schwinger J 1951 Phys. Rev. 82 914
Schwinger J 1953 Phys. Rev. 91 713

[2] Wallace D J and Zia R K P 1974 Gradient flows and the renormalization group Phys. Lett. A 325
[3] Wallace D J and Zia R K P 1975 Gradient properties of the renormalization group equations in multicomponent

systems Annu. Phys. 92 142
[4] Friedan D 1980 Nonlinear models in two epsilon dimensions Phys. Rev. Lett. 45 1057
[5] Friedan D 1980 Nonlinear models in two + epsilon dimensions PhD Thesis University of California at Berkeley,

published as Lawrence Berkeley Laboratory Publication LBL-11517
Friedan D 1985 Annu. Phys., NY 163 318

[6] Fradkin E S and Tseytlin A A 1985 Effective field theory from quantized strings Phys. Lett. B 158 316
[7] Fradkin E S and Tseytlin A A 1985 Quantum string theory effective action Nucl. Phys. B 261 1
[8] Callan C G, Friedan D, Martinec E J and Perry M J 1985 Strings in background fields Nucl. Phys. B 262 593
[9] Tseytlin A A 1986 Vector field effective action in the open superstring theory Nucl. Phys. B 276 391

[10] Callan C G, Klebanov I R and Perry M J 1986 Quantum string theory effective action Nucl. Phys. B 278 78
[11] Zamolodchikov A 1986 Irreversibility of the flux of the renormalization group in a 2-D field theory JETP Lett.

43 730
[12] Tseytlin A A 1986 Conformal anomaly in a two-dimensional sigma model on a curved background and strings

Phys. Lett. B 178 34
[13] Zamolodchikov A 1987 Renormalization group and perturbation theory about fixed points in two-dimensional

theory Yad. Fiz. 46 1819
Zamolodchikov A 1987 Sov. J. Nucl. Phys. 46 1090

[14] Tseytlin A A 1987 Sigma-model Weyl invariance conditions and string equations of motion Nucl. Phys.
B 294 383

[15] Tseytlin A A 1987 Conditions of Weyl invariance of the two-dimensional sigma model from equations of
stationarity of the ‘central charge’ action Phys. Lett. B 194 63

[16] Curci G and Paffuti G 1987 Consistency between the string background field equation of motion and the
vanishing of the conformal anomaly Nucl. Phys. B 286 399

[17] Osborn H 1988 String theory effective actions from bosonic sigma models Nucl. Phys. B 308 629
[18] Osborn H 1990 General bosonic sigma models and string effective actions Annu. Phys. 200 1
[19] Osborn H 1991 Weyl consistency conditions and a local renormalization group equation for general

renormalisable field theories Nucl. Phys. B 363 486
[20] Cappelli A, Friedan D and Latorre J I 1991 C theorem and spectral representation Nucl. Phys. B 352 616
[21] Affleck I and Ludwig A 1991 Universal noninteger ‘ground state degeneracy’ in critical quantum systems Phys.

Rev. Lett. 67 161
[22] Friedan D and Konechny A 2004 On the boundary entropy of one-dimensional quantum systems at low

temperature Phys. Rev. Lett. 93 030402 (hep-th/0312197)
[23] Freedman D Z, Headrick M and Lawrence A 2006 On closed string tachyon dynamics Phys. Rev. D 73 066015

(hep-th/0510126)
[24] Elitzur S 1983 The applicability of perturbation expansion to two-dimensional Goldstone systems Nucl. Phys.

B 212 501
[25] David F 1980 Phys. Lett. 96B 371

David F 1981 Commun. Math. Phys. 81 149
[26] Dotsenko Vl S and Fateev V A 1984 Conformal algebra and multipoint correlation functions in 2D statistical

models Nucl. Phys. B 240 312
[27] Friedan D and Konechny A 2010 (in preparation)

28

http://dx.doi.org/10.1103/PhysRev.82.914
http://dx.doi.org/10.1103/PhysRev.91.713
http://dx.doi.org/10.1016/0003-4916(75)90267-5
http://dx.doi.org/10.1103/PhysRevLett.45.1057
http://dx.doi.org/10.1016/0003-4916(85)90384-7
http://dx.doi.org/10.1016/0370-2693(85)91190-6
http://dx.doi.org/10.1016/0550-3213(85)90559-0
http://dx.doi.org/10.1016/0550-3213(85)90506-1
http://dx.doi.org/10.1016/0550-3213(86)90303-2
http://dx.doi.org/10.1016/0550-3213(86)90107-0
http://dx.doi.org/10.1016/0370-2693(86)90465-X
http://dx.doi.org/10.1016/0550-3213(87)90588-8
http://dx.doi.org/10.1016/0370-2693(87)90770-2
http://dx.doi.org/10.1016/0550-3213(87)90447-0
http://dx.doi.org/10.1016/0550-3213(88)90581-0
http://dx.doi.org/10.1016/0003-4916(90)90241-F
http://dx.doi.org/10.1016/0550-3213(91)80030-P
http://dx.doi.org/10.1016/0550-3213(91)90102-4
http://dx.doi.org/10.1103/PhysRevLett.67.161
http://dx.doi.org/10.1103/PhysRevLett.93.030402
http://dx.doi.org/10.1103/PhysRevD.73.066015
http://dx.doi.org/10.1016/0550-3213(83)90682-X
http://dx.doi.org/10.1007/BF01208892
http://dx.doi.org/10.1016/0550-3213(84)90269-4

	1. Introduction
	2. The general gradient formula
	3. Zamolodchikov's formula
	4. The proof of the gradient formula (first steps)
	5. Sources and operations
	5.1. General formalism
	5.2. Summary

	6. The Callan--Symanzik equations
	7. The proof continued
	7.1. The IR condition and the sum rule
	7.2. The term
	7.3. The identity
	7.4.  E   4  is an IR error term

	8. Conclusion of the proof
	9. Discussion
	9.1. Contact term ambiguities and scale dependence
	9.2. The infrared condition: an example
	9.3. Bare gradient formula
	9.4. Dressing transformations
	9.5. Renormalization group transformation as a flow of couplings

	10. Final comments
	Acknowledgments
	References



