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Abstract

Generalizations of the non-linéar sigma model are described
in which the fields take values in a compact manifold M, the
couplings are the Riemannian metrics on M and the action is
5(#) - ;';r SA",( 9or (dm)aﬁw})é‘a"(x). Renormalizability in 2+ ¢
dimensions is proved. The renormalization group acts on the
infinite dimensional space of couplings. Its fixed points are
the metrics satisfying an extension of Einstein's equation. At
the fixed points all but a finite dimensional subspace of
couplings become irrelevant. Possibilities for exotic critical

behaviour are considered.



Some férms of critical behaviour in extended physical
systems are due to large-scale fluctuations among a variety of
easily accessible equilibrium states. When the typical extent
of a fluctuation becomes large compared to microscopic and
thermal lengths the long distance static properties of the
fluctuations can be reproduced in a classical Euclidean
statistical field theory. Because susceptibilities diverge in
the critical regime, the values of the field can be restricted
to lie among the extreme equilibrium states availkble to the system.
The effectf%ction of the field theoretic model will encourage order
and will be local if long range physical interactions can be
ignored. The standard example is the ideal ferromagnet near the
Curie temperature. Its pure equilibrium states are represented
by directions of magnetization. The corresponding field theory
is the non-linear sigma model, or, with lattice cutoff, the
classicaereisenberg model.

Invariance of the long distance physics under the renormalization
group ensures that there be relatively few distinct models, all
associated with unstable asymptotic behaviour of the group orbits.l
Here I consider the possibilities when the pure equilibria form
a compact differentiable manifold and when all mixtures of pure
states are distinct. The corresponding models are generalisations
of the Heisenberg model in which the field ¢ takes values g (x)
not in the 2-sphere but in the m-dimensional manifold M.

Polyakoy2 found the renormalization group transformation
for the Heisenberg model simplified drastically at low effective
temperature in dimensions near two and that perturbative
methods could be used to find fixed points and critical scaling
behaviour. Brezin and Zinn—Justin3 sharpened this result by

showing that the low temperature expansion was in fact a



renormalizable perturbation series in 2+¢ dimensions, so that
critical indices could be calculated systematically as asymptotic
expansions in ¢ . The results in dimension two are exact and

in 2+t give, it is hoped, at least qualitative information about
the possibilities in dimension three. The same strategy can

be made to work in the general case.

1. Perturbation theory and its renormalization

The partition function for the fluctuations in the presence

of external fields is
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where D) = ’l;f dvol (45(1)),
dval () is a volumn element on M,
s() is the effective action,

ad H() is the effective source.
The effective action has a continuum limit when the significant

forces are short-range:
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where the coupling #rﬂq is some symmetric, non-negative tensor
field on M. (Greek indices are used for external space, Latin

for internal space.) The source takes the form
Hig) = S 44 Ly, 99)

where, for each % h(x,* ) is a function on M. With an assumption
of non-degeneracy, the coupling becomes a (positive-definite)
Riemannian metric on M. The volumn element Jvo)C) can be
taken to be the metric volumn. Naive power counting indicates

that the terms in the effective action with more than two



derivatives are irrelevant to the low temperature expansion
when d is asymptotically close to 2. 2Z(h) is generating
functional for the correllation functions
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which should be thought of as:probability measureg on MK. In

particular, the order parameter <¢h» is a probability measure
on M. |

In the low temperature limit the constant fields dominate
the functional integral. The expansion in T is obtained by
integrating perturbatively the small fluctuations about the
constants. Around a particular constant field ¢ this is done
by choosing a system of coordinate% to be thought of as an
identification of a neighbourhood of % in M with a neighbourhood
of the origin in the tangent space to ¢# , T 4 M. The small
- fluctuations become linear fields 5“%x); the actim is
written as a power series in & and Feynman rules are. derived.
Unfortunately the part of the action quadratic in & is the action
of a massless free scalar field, whose propagator has low
momentum pathology in two dimensions. To provide infra-red
regulation the system is placed in a box and periodic boundary
conditions imposed. Compactness of M ensures existence of the
infinite volumn limit of'Z(h);5 the boundary conditions are
chosen in order that the infinite volumn limit commute with the
low temperature limit in two dimensions.6

Since space is now compact (a torus) the functional integral
must include small fluctuations about each of the constant fields:
one perturbative integration for each point # in M. To avoid
double counting a gauge condition (like SA& G'x) =0 } and

a finite dimensional Faddeev-Popov determinant are required in



each perturbative integration. The functional integral becomes
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where i%(sf . is the gauge function at ¢ (expanded as a
power series in & ); ¥- is a multiplier enforcing the gauge
condition; det(f; (s7)) is the Faddeev-Popov determinant (F also
expanded in powers of s ); Cyr c*; are anti-commuting ghosts
used to calculate the determinant; and g; ’ ﬁ? are the action

and source term written in coordinates and expanded in o :
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Er¢ (¢7) and E,,(x,s‘) being the metric and source function
pulled back to the coordinate system s in the tangent space

at ¢ . The change from non-linear to linear functional measure



on the & field gives rise to cutoff dependent terms usually
written « %ﬁO). Dimensional regularization conveniently allows
these to be ignored, because they vanish in the continuum limit
for sufficiently low dimension.

By naive power counting the perturbative action (in curly
brackets) for each # is renormalizable, since all possible
vertices which might arise as primitive divergences are already
present in the Taylor series making up the action. But the
original Taylor series for the various ¢ are not independent,
being the expressions of a single metric and source on M in a
particular collection of coordinate systems. Unless the bare
vertices are similarly derived from bare metric, source and
coordinates, the renormalization procedure will abandon the
original space of couplings for a much larger class of theories
having no infinite volumn limit in two dimensions. Proof of
renormalizability requires a demonstration that compatibility of
metric, source and coordinates persists after renormalization,
order by order in perturbation theory. Since the asymptotic
expansion of #Z(h) in powers of T does not depend on the
coordinate systems used in its calculation, it can be made finite
in the continuum limit by using from the beginning a bare metric
and source depending only on the regularization scheme and on the
renormalized metric and source.

The proof of renormalizability uses a certain amount of
abstract geometric machinery and will be given elsewhere. The
crucial idea is that the bundle of perturbation series contains
redundant information: the contents of one can be derived from
any of its near neighbours by variation of the gauge condition.

A differential operator AR , generalizing the BRS transformation,7

is constructed to connect infinitesimally close perturbation



theories and to encode their redundant information in its
annihilation of the perturbative action as a function of &, & ,
¥ , c and c*. Legendre transformation of the perturbative action
for each ¢ separately converts the differential identity to a
quadratic functional equation on the resulting effective actions,
again connecting neighbouring perturbation theories. This is
used to prove inductively that the bare action as function of
"4 + & , etc. is annihilated by a bare version of »~ , implying
that the compatibility conditions are indeed renormalized.
The same geometric apparatus is used to derive recursion

relations for the partial derivatives of the metric (and E;i )
and the source, allowing their systematic calculation in terms
of curvature and covariant derivatives.8 Renormalization should
preserve internal symmetry. This is guaranteed by a choice of
coordinate system which is natural with respect to the action of
the diffeomorphism group, Diff (M), on metrics. The obvious
choice ié geodesic or normal coordinates, in which the Taylor

series begin
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(where 5,., ()" = g % & C(><) ).

Primitive divergences are cancelled by replacing these at order
~ (|<)

K with regulator dependent power series 3,;; (&) ’
< g (%3 N ’
L\;)(Gﬁ , osd r;)(s)}. . The bare metric and source are
then given by
Gure . ~(o0) -G 3
F = 95 () K Ry )

L\mr‘( (x’¢) - E:?) (a) )

The divergences from source vertices are soft so the external
field is renO{malized linearly.

To calculate renormalization coefficients it is only necessary
to consider those irreducible diagrams with primitive divergences
and either: (1) two external legs, no ghost or source vertices;
or (2) one source vertex, no external legs, no ghost vertices.
The renormalization of the ghost vertices can be derived from
that of fhe sources. .

The renormalization group equaﬁion satisfied by the
partition function, derived in standard fashion, is
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all to two loops.9 The f —~function is a vector field on the
coupling space, assigning to each metric g a small perturbation,
i.e. a symmetric tensor field F(O);; . Similarly, ¥(g)h is
a vector field on the space of sources, linear in h; ¥ (g) is

a linear operator on functions on M.
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The free energy as a function of the order parameter,satisfies

where ¥ (g)* acting on measures on M is dual to ¥(g).
Effective coupling, source and order parameter are found by
flowing'along the rg trajectories
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The coefficien?s of the rg equations are in every order natural
local invariants of the metric (combinations of curvature and
covariant derivatives) of appropriate homogeneity degree. This
is guaranteed by the use of natural methods in the calculation
and by the nature of the Taylor series of the metric. If a
metric has a symmetry then all its local invariants will also, so
the G qunction will too. The same is true of local symmetries,
at least in perturbation theory. This means that the rg
trajectories stay within the subspace of couplings of any fixed
symmetry. If a symmetry group is assumed to act transitively on
M, so M is a homogeneous space, then the space of invariant
metrics is finite dimensional. Thus renormalizability in the

standard sense is proved for the familiar non-linear sigma models.

2. The ﬁ ~-function

Consider zeros of the p-function which depend smoothly

o
amd € and have a zero temperature limit as £ vanishes.

For € <0 these are the solutions of Einstein's eqguation

0= "£4:- +Ro:: . All the known examples are either



locally symmetric or Kahler.lO Of the locally symmetric spaces

those with no two dimensional factors are infra-red stable fixed
points,11 so are not critical points, The Kahler examples also
show no instability, at least through two loops, but they do

show marginality. That is, rather than an isolated zero there is
a finite dimensional space of zeros. It is not clear whether the
marginality persists to higher order or even whether any of the
space of zeros remains when higher order corrections to the

@ ~function are taken into account. The two dimensional
examples are the surfaces of constant negative curvature.
They have no ihstability, but they have marginality which persists
to all orders. '

Each of these Einstein metrics give also Gaussian fixed
points at zero temperature which are once unstable, in the
direction of increasing temperature. Physical intuition'about
dimensions slightly below two is difficult to come by, but the
absence of non-Gaussian critical fixed points among two large
classes of fixed points suggests the impossibility of such a
creature. In fwo dimensions the fixed point at T = 0(€& ) merges
with the T = 0 fixed point and might be interpreted as describing
the power law correlations in the long distance limit of a theory
whose critical region is out of reach of perturbation theory.

The presence of a finite correlation length in the high temperature
expansion12 indicates some sort of phase transition at finite
temperature. The locally symmetric and some of the Kahler

examples have non-trivial fundamental groups, so might go critical

3 but without

when bound vortices dissociate, as in the XY—model,1
a marginal temperature variable. Other of the Kahler examples
are simply connected so would require another mechanism to

produce critical behaviour.
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When £>0 two types of zero are possible: (1) the metric
satisfies the Einstein condition ©= “5-342*‘R3F and the
zerc is at T = 0(%); or (2) the metgic is Ricci-flat, Ri} =0,
and the zero is at T = 0( i%). Both are unstable in the
temperature variable.

Examples of compact Einstein manifolds with positive scalar
curvature (type (1) above) are scarce. The obvious ones are the
homogeneous spaces with symmetry group so large that only one

invariant symmetric form is possible, up to constant multiples}4

The corresponding fixed points are essentially already known.z’3
Assumption of homogeneity gives an algebraic Einstein equation,
some solutions of which are known nOt_to be forced by symmetry.15
These are applicable to frustrated spin systems for which the
possible couplings are the left-invariant metrics on a Lie group.16
Only one non-homogeneous Einstein metric with positive

17 Existence of the corresponding

scalar curvature is known.
critical model will not be established until it is shown that
linearization of the one loop {-function at the zero is non-
degenerate, making it impossible for higher order corrections to
remove the zero. The model would be interesting because it would
show "spontaneous symmetry breakdown" without the symmetry. Once
one of these metrics is known there seems no reason to suppose
there are not others.

About the possibility of additional instability there is
little of generality to be said. A certain amount of vériation
of sectional curvature is required, so the manifolds of constant
positive curvature, the spheres, are unstable only in the
temperature. é@g§eare homogeneous spaces with more instability.

Zeros near the Ricci-flat metrics (type (2) above) are

found by consulting the two loop term in p . The integral
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over M of its contraction is balanced against the zero lodp

term to fix the temperature. This works unless the metric is
flat, in which case its perturbative renormalization is trivial.
With the temperature held fixed the'metric is perturbed slightly
to give enough of a Ricci tensor to cancel the remainder of

the two loop term in ( - As long as the linearization of the
one loop term is non-degenerate this will succeed. But if there
are moduli for the Ricci-flat metric then the two loop term will
have td satisfy a finite number of linear conditions for the
zero to be present. (Its projection onto the moduli space must
vanish.) Nonjflat Ricci-flat metrics are known to exis.t.l0 All
have moduli; all satisfy the linear conditions so the zeros exist,
with marginality, at two-loops. Theré is no instability beyond
that of temperature. It is difficult to find guarantees that
.any cof these zeros will survive higher order corrections. The

three loop term might clarify the matter.

Normally 'fixed point of the renormalization group' and
'zero of the f -function' are synonymous, but for the geometric
models this is not true. Additional structure is provided by
the diffeomorphisms of M acting as covariance group for the
renormalization procedure. The simplest manifestation is the
depenidence of the correlation length not oﬁ the coupling itself
5ut only on its equivalence class under the action of Diff (M).
The fixed points are defined as the couplings at which the
renormalization gréup makes no change in the correlation length.
This happens when flow along the F -function gives the effect
of transformation by a diffeomorphism, that is, when
P(5)55= Ve X + Tpx¢ for some vector field X on M. The

basic fixed pOiné: equations are now (#) ‘-ET 5;;_+R:;. = UKy X
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with ¢ <0, & =0 or €7 0. Temperature instability is
present if and only if <20.

I have no examples with ¥ non-trivial but I can suggest
likely places to look. From the Biénchi identity X must satisfy

((;) Ve Xo® Row Xie = o and for non-triviality it must not
be a.Killing vector. It follows that the scalar curvature must
not be constant, so the metric is not homocgeneous. If the
metric is Kahler then (4) is just the statement that X is
the real part of a holomorphic vector field, so the candidates
for X are known from the complex structure prior to the choice
of Kahler metric. This suggests looking for solutions of GﬁQ
among the Kahler metrics on complex manifolds with holomorphic
vector fields. The two-sphere is one such, but if an S0(2)
symmetry is assumed in order to make the problem tractable there
is no solution. Any Kahler Einstein manifold with holomorphic
vector fields, or equivalently Killing fields, has infinitesmal
perturbaﬁions solving the linearization of Q*) . These are
responsible for exceptional 1l-loop marginality. Unfortunately
for the prospects of finding a "quasi-Einstein" fixed point, the
marginality turns to stability at two loops in the available
examples. Non-homogeneous zeros of the one loop { -function,
for instance the Page metric, might be turned into non-zero
fixed points by higher order corrections. This is another reason
for interest in them.

Covariance under Diff (M) is responsible for extraordinary
universal properties of non-zero fixed points (if they exist).
The usual local universal properties of a fixed point are its
invariants under reparametrizationé of couplings and fields. At
a non-degenerate zero of the renormalization group generator

the invariants are the eigenvalues of its linearization. But in
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the geometric models reparametrization must commute with the
action of Diff(M). At fixed points which are zeros of (3 this
makes no difference, except that only physically distinct
eigenvectors of the linearization m;tter. At a non-zero fixed
point the situation would be completely different. In addition
to the standard eigenvalues (which could become complex here)
the vector field X would itself be universal up to equivalence
under Diff (M). Under special circumstances even more subtle
invariahts would exist. The richness that is possible in the
topological structure of the universal vector field associated
with a quasi~Einstein metric would be reflected in the structure

of the corresponding critical model.,

All of the fixed points of the geometric 0 ~function have
one loop linearization given by an elliptic pseudo-differential
operator bounded above. The dimensions of the eigenspaces with
Zexro or ?ositive eigenvalues must therefore be finite. These
are the directions of marginality (or, potentially, instability
at higher order) and instability. It is generally expected that
only a finite number of parameters should be needed to
characterize a given critical system (or quantum field theory).

Locally these expectations are mety Lece,

The fixed points for €20 all describe critical phenomena
associated with continuous phase transitions. At low temperature
the models are accurately described by mean field theory (in
the measure valued order parameter). In the absence of external
field there is coexistence of a collection of pure, ordered

18

equilibrium states indexed by the points in M. The possibility

of varying the ordered state continuously implies massless
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modes (a geometric Goldstone phenomencn). AS zero temperature

is raised the point measures diffuse outward, gradually losing
memory of their origins until at the critical temperature they
become identical. The system them ﬁas a unique, disordered
equilibrium state. About the high temperature phase only critical
scaling behaviour can be learned from the perturbative renormal-
ization group. When £=0 these fixed points all define
asymptotically free theories and describe their short distance

scaling behaviour.

The poss%bility of more complicated asymptotic behaviour
of the renormalization group trajectories than that determined by
the fixed points cannot be ruled out. The (* —function is not
in general the gradient of a Diff (M) invariant potential (its
behaviour near the Fubini-Study metric on CPm/2 rules this out).
it

It is such a gradient in the special casesyn = 2 with the notable

exception of the 2-sphere.

The (>-function restricted to a finite dimensional space
of homogeneous metrics has a gradient-like flow. Compléx cross-
over behaviour between competing fixed points remains possible,
however, and is accessible to study because the { —function is
now algebraic. In simple examples a fixedvpoint can occur on
the boundary of the space of metrics, indicating premature
disordering along a submanifold of M and identical to a fixed
point of the model based on the submanifold alone. Questions
are raised about the meaning of stability when the f -function

can connect metrics on different manifolds.19

'Finally it should be noted that the key question on global
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properties of the (¢ -function is not whether it itself is a
gradient but whether its projection to the space of equivalence
classes of metrics is one. It seems not to be, but I have no

proof.

My partial analysis of the (* ~function has benefited from
advice and information from several members of Berkeley geometry
communityﬁ N. Ercolani, S. Kobayashi, P. Li, J. E. Marsden,

I. M. Singer and J. A. Wolf. I learned of the relevance of
geometric ideas to perturbative quantum field theory from

Singer's 1977-78 lectures on gauge theory.
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