Integrate the odes to check property P

Imports

Functions to analyze the odes over a range of parameters

Each ode is parametrized by two numbers, $\sigma$ and $\alpha$ which are functions of

function to analyze ode 3$_{j}$, 2$_{j}$, or 1$_{j}$ at $j=\infty$ for list of $\sigma$ values

The limit $j\rightarrow \infty$ is taken with $\sigma$ fixed.

function to analyze ode 3$_{j}$, 2$_{j}$, or 1$_{j}$ for list of $j$ values given $\epsilon$

Function to analyze ode 2 for list of $\epsilon$ values

Function to analyze imaginary period monodromy matrix

subroutines

subroutines for the ode solver

Initialization functions

Set precision and tolerances

The precision of Sagemath real and complex numbers is set to match the mpmath precision

Set Jacobi parameters

Utilities

Numerical closeness utilities

$\text{mptol} = $ approximate equality tolerance $z\approx 0 \equiv |z| < \text{mptol}$

$\mathbf{a0(x)}\quad\mathrm{ iff \quad x.norm()\;<\;tol}{}^{2}$

aeq(x,y) iff $\mathrm{(x-y).norm}()\;<\mathrm{tol}^2$
clean(x)

Global variables

Check gauge invariance of $P(\tau)$

This can be used after a run, i.e. after an ode solution is found.

Run the analyses

Integrating the ode requires a certain decimal precision in the ode solver.
For each calculation below the decimal precision has been set by trial and error.
Various consistency checks were made on each calculation.
The decimal precision was raised until all the consistency checks were passed.

load the odes, set precision and tolerance

Ode 2

Ode $\mathbf{3_j}$

$j$ finite

$j= \infty$

Ode $\mathbf{2_j}$

$j$ finite

$j\rightarrow \infty$

Ode $\mathbf{1_j}$

$j$ finite

$j\rightarrow \infty$

Graphics