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2
1D Hamiltonians H = . + V(q)

2m
Central force, e.g. p?
Kepler problem ~ 2m +V(r)
R
Eulertop H=—+ + Liouville
Tsale 6 Sl 2I, 25 2l (1809 — 1882)

{L*, L.} ={L* H} = {L.,H} =0

H(p,q), where ¢ = (q1,...,qn); p = (p1,--.,Pn); i.e. n degrees of freedom

Definition: H(p,q) 1s integrable if 1t has #» (maximum possible number)
of functionally independent Poisson-commuting integrals

{Hi(p,q), Hj(p,q)} =0, i,jZO,.U-;,n—l; Ho(p,q) = H(p,q)

=  Unambiguous separation of integrable from nonintegrable (generic)
=  Exact solution, various properties that don’t have to be verified on a case
by case basis, regular vs. chaotic dynamics
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Classical Regularity vs. Classical Chaos

Double pendulum: cross-sections of trajectories in 4D phase space

regular, quasiperiodic motion Now ““chaos is the sole ruler of the world”

Images by wolfoerster at www.codeproject.com



Q: What is quantum integrability? How is it defined?

Various quantum many-body lattice models (e.g. 1D Hubbard, 1D Heisenberg magnets,
BCS) are called “integrable”. What does it mean?

Think finite N x N matrix Hamiltonian
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Example: Hubbard model
for benzene molecule

Given a matrix H how do we
tell 1f 1t’s integrable?

Can we randomly generate such
integrable matrices?

No way! Not even a good definition! [von Neumann (1931), Weigert (1992),
Sutherland, Beautiful Models (2004), Caux & Mossel (2011), Yuzbashyan & Shastry (2013)]

No natural notion of a nontrivial integral of motion: for any H there 1s a full set of H,,

such that [Hz,Hk] — [Hk,H] — 0

N . N
Alternatively, can
H = E :En|n><n|, Hy, = |k) (K| consider powers of H Hy = ZanH”
n=1 n=1



Why is it important? — Integrability enters mainstream

Quantum Newton’s cradle

Kinoshita, Wenger, Weiss,
Nature (2006)
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“87Rb atoms ... do not noticeably equilibrate even after thousands of collisions. Our
results are probably explainable by the well-known fact that a homogeneous 1D Bose

gas with point-like collisional interactions is integrable.”



week ending

PRL 111, 057002 (2013) PHYSICAL REVIEW LETTERS 2 AUGUST 2013

Higgs Amplitude Mode in the BCS Superconductors Nb;., Ti,N Induced
by Terahertz Pulse Excitation | T T | |

(@) 7pump/7a=0.57

Ryusuke Matsunaga,l Yuki 1. Hamada,' Kazumasa Makise,2 Yoshinori Uzawa,3
Hirotaka Terai,” Zhen Wang,2 and Ryo Shimano'
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Previous RU Physics Colloquium, September 2008: “New superfluid states of
fermionic matter in and out of (far from) equilibrium”

k endi
PRL 96, 097005 (2006) PHYSICAL REVIEW LETTERS 10 MARCH 2006

Relaxation and Persistent Oscillations of the Order Parameter in Fermionic Condensates
Emil A. Yuzbashyan,' Oleksandr Tsyplyatyev,” and Boris L. Altshuler’*

We determine the limiting dynamics of a fermionic condensate following a sudden perturbation

Integrability of Hgcs

J

|A(2)] cosS(2At + @)
=1+ a .
Ao At

(1)

|A(t)| — const, but the condensate (BCS superconductor) doesn’t equilibrate

e.g. other degrees of freedom continue to oscillate and Ay < Ag = ground state gap



Order parameter dynamics

a
8A(typ) = Cy + Cytyy + —— cos(2nfty, + ¢)

tpp E. Yuzbashyan et al.,
PRL 96, 230404 (2006).
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R. Matsunaga et al., PRL111, 057002 (2013)
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Integrable systems do not equilibrate.
Do they follow Generalized Gibbs Ensemble (GGE)?

1 A
15 — EB_ 2k Bkaa [HMH]{:] — [Ha Hk] =0

= GGE fails for 1D Heisenberg spin chains
Goldstein & Andrei, Phys. Rev. A (2014); Pozsgay et. al. PRL (2014)

= Does work for 1D Heisenberg spin chains if newly discovered integrals are added
Ilievski et. al. PRL (2015)

Need to know what quantum integrability is, i.e. what is a complete
set of allowed H,! Otherwise, GGE is essentially unfalsifiable



Signatures (?) of quantum integrability
= [ntegrals of motion
= No equilibration: Generalized Gibbs Ensemble

= Exact solution for the energy spectrum via
Bethe’s Ansatz

= (Crossings of energy levels as functions of 10—
interaction or external field strength (seen as
resonances in e.g. relaxation rates) L .

0.2 04 06 0.8 1.C
= Energy levels {£,} have Poisson statistics, 1.e. %% -
behave as independent random numbers 10—
(observed directly in small systems) s

In the absence of a clear notion, have to verify each property independently on
a case by case basis.

Cannot predict them as in classical integrability



Properties of quantum integrable systems: Exact Solution
Example: 1D Hubbard model for benzene molecule

T\ A s At .
H(u) = E (€jsCit1s + Cj1q 4C5s) +u E :annji
7,s=Tl '

hopping + onsite interaction
Electrons on a hexagon,

6 sites, 3 spin-up, 3 spin-down 400 x 400 matrix linear in

Exact Solution via Bethe’s Ansatz: Lieb and Wu (1969)

JSik; _ ﬁ Ao —sink; —iu/4 ﬁ Ao —Ag +iu/2 H Ag —sink; —iu/4
B Ay —sink; +iu/4’ Ay — Ag +iu/2 - Ag —sink; —iu/4

9 coupled nonlinear equations

6
— Z 2 cos k;
j=1

But cf. det(H — E[) =0



Properties of quantum integrable systems: Integrals of motion
Example: 1D Hubbard model

H(u) = Z (C;LSCJHS + C;L+1 sCjs) + uzﬁﬂﬁji

7,8=T4
U’) = —1 Z (é;r'—i—QséjS o éjscj+28 — Z j+1sCJS o jscj+18)(ﬁj+1,—8 + ﬁ’%—s - 1)
J,s=Tl j,s=11
) ) Shastry, PRL (1986)
|H(u), Hi(u)] =0, for all u
Hy(u), Hs(u), Hy(u), ... — infinitely many integrals from Shastry’s transfer matrix

The Hamiltonian and the first integral are linear in a real parameter u



Properties of quantum integrable systems: Level crossings
Example: 1D Hubbard model for benzene molecule

H(u)= Y (el ejp1s+ 81,85 +ud nyiy
jos=11 j

ulr)

Electrons on a hexagon,

6 cites, 3 spin-up, 3 spin-down \/

400 x 400 matrix linear in u /
Q: How do eigenvalues look as functions of u?

r

Fic. 27

Noncrossing rule: Quantum Mechanics
“Thus we reach the result that...the intersection
of terms of like symmetry 1s impossible (E.
Wigner and J. von Neumann 1929)”

Hunil (127) In. other words, for a typical H(u) energy levels
with the same quantum numbers (spin,
momentum etc.) never cross.

Physics 502



Properties of quantum integrable systems: Level crossings
Example: 1D Hubbard model for benzene molecule

H(u)= ) (&8s +8,1,8) +u) iy
jrs=11 j

Electrons on a hexagon,
6 cites, 3 spin-up, 3 spin-down
400 x 400 matrix linear in u

Q: How do eigenvalues look as functions of u?
1.5 E

1.0

“The noncrossing rule is apparently
violated in the case of the 1d Hubbard °° | =
Hamiltonian for benzene molecule...” o, o o o 1

Heilmann and Lieb (1971)

-0

-15
(All) energy levels (14) for a certain
complete set of quantum numbers



Properties of quantum integrable systems: Level crossings
Counterexample: BCS model

Hpcs = ) 2687 —u Y 5787 =) 2e:H,
i i,7 i

single-particle + superconducting interactions

Integrals of motion for BCS
(Gaudin magnets)
- - - A éz . éj

[H;(u), Hj(u)] = [Hpes(v), Hi(w)] =0 Hi(u) = &7 — “Z
J 70

67;—63'

(): Are crossings really a

signature of integrability? Why
don’t they always happen? Can
we predict them? their number?

(All) energy levels (10) for a certain complete
set of quantum numbers for the BCS model



Statistics of energy levels {E .} — what to expect?

A

H — complex system, e.g. heavy nucleus, disordered metal, quantum
dot, generic many-body interacting system etc. .

[

Q: What can we say about its energy levels {E }? (2@ ®
/ |

B

Wigner (1950s): model by a random matrix H consistent
with basic space-time symmetries, i.e. choose the

Hamiltonian “‘at random” Wigner Dyson

“We picture a complex nucleus as a black box...we shall consider an ensemble of
Hamiltonians, each of which can describe a different nucleus.” (Dyson 1962)

Statistical independence of H;; plus invariance of P(H) with 5
respect to arbitrary change of basis P(O" HO) = P(H) |:> P(H) = Cexp(~atrH”)
Gaussian ensemble
of random matrices

Time reversal inv. (no B-field) — H; are real: Gaussian Orthogonal Ensemble (GOE)



Statistics of energy levels {£,} — Random Matrix Theory (RMT)

E _E o Poisson
Nearest-neighbor  Sn = nt 5 < sl /
level spacing: f
p g 6 = <En—|—1 - En> 08 JGOE
Time reversal inv. (GOE): P( 3) — T se” 3s” a
Wigner surmise, 2 o2
Wigner-Dyson statistics ' ‘ ~

GOE & Poisson: two universal distributions

H,;;} random uncorrelated =— { F,, } correlated, level repulsion: P(0) =0
J

ulr)

{E,} random uncorrelated = Poisson statistics, P(s) = e~*, no repulsion
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Universality of Random Matrix Theory (RMT)

Pictures from: Y. Alhassid, Rev. Mod. Phys. 72, 850 (2000); R.L. Weaver, J. Acoust. Soc.
Am. 85, 1005 (1989); N. Anantharaman & A. Backer, IAMP News Bulletin, April 2013
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Smooth solid line in all graphs: GOE

Neutron & proton
1 resonances measured in
{ several heavy nuclei

2D chaotic motion

Exp. realization:
microwave cavity,

Sridhar, PRL (1991)
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(3D Anderson

model at w/t =2)

P(s)

Acoustic resonances
in Al blocks



Universality of Random Matrix Theory (RMT)

Neutron & proton

1 resonances measured in

several heavy nuclei

2D chaotic motion
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RMT: quantum chaos, long-time
dynamics of interacting many-body
Hamiltonians, quantum
chromodynamics, fractional quantum
Hall, superconductivity, number theory,
neuroscience, finance etc.

Do Swedish pines diagonalize
random matrices? Le Caer (1989).

Physics 681




Properties of quantum integrable systems: Poisson statistics
Example: 1D Hubbard model

1 || i T T i' k T l )
Poilblank et.al.
@) | Europhys. Lett. (1993)
@ 4 Similarly to RMT
: observed 1n
1 1ntegrable systems
Q
0 L

Level spacing distribution for a Hubbard chain with 12
sites at 1/4 filling, total momentum P = 7 /6, spin § =0



Properties of quantum integrable systems: Poisson statistics
Counterexample: BCS Hamiltonian

Q: Is Poisson statistics a signature of
Poisson integrability? Is BCS an exception? Why?

1.0

(ER 3 5
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0.0
(

Level spacing distribution for the BCS Hamiltonian
in a 5000 x 5000 same symmetry sector

See also Relano, Dukelsky et. al. PRE (2004)



Notion of Quantum Integrability: \What are we looking for?

Definition: Quantum (matrix) Hamiltonian
1s integrable if...

% Classical integrability has it!

Consequences:
1. Exact Solution

2. Energy level crossings: why sometimes there
are none? How many crossings to expect?

3. Poisson level statistics and exceptions —
need ensembles of integrable models for this.

4. Generalized Gibbs Ensemble for dynamics?




Can we develop a similarly sound notion of integrability in Quantum
Mechanics — for N x N Hermitian matrices (Hamiltonians)?

H(u) = Z ( ol G sCit1s +C;r+1scjs +UZ”JT”J¢
J,s=Tl J

=0 T (e — AC . .
U) = 1 (Cj—i—QSCjS - CJSCJ+28 — j—i—lsCJS - jsCJ+1S)(nj+1,—S T Mj,—s — 1)
J,s=Tl j,s=11

The Hamiltonian and at least one other integral of motion are linear in a real parameter
u. This integral 1s sufficient for explaining the level crossings. Same 1s the case of other
parameter-dependent integrable lattice models (BCS, 1D Heisenberg).

For any given number of sites:
H(u)=T+uV, Hi(u)=T1 +uVi, wu — real parameter

T, V,T1,V1 — N x N Hermitian matrices



Proposed solution: introduce & fix parameter dependence
Let H(u) =T 4+ uV, u — real parameter, T,V — N x N Hermitian matrices

Suppose we require a commuting partner also linear in u.

Hl(U) = T1 -+ ’LLVl

|H(u), Hi(u)] = 0 for all u

V, Vi) =0, [T,Vi]=[T1,V], [T,Ti]=0

These commutation relations severely constraint matrix elements of 7. For a
generic/typical H(u) — no commuting partners except itself and identity. Now
can separate generic (no integrals) from special (integrable).



N x N Hamiltonians linear in a parameter separate into two
distinct classes = good notion of integrability

H(u) =T +uV No comm}lting.partnel.’s linear in u other than
itself and 1dentity (typical) — nonintegrable,
@ need N?/2 real parameters to specify H(u)

Nontrivial commuting partners H(u)=T,+uV, exist —
integrable, turns out need less than 4N parameters —
measure zero in the space of linear Hamiltonians

Owusu & Yuzbashyan, J. Phys. A (2011)
Yuzbashyan & Shastry, J. Stat. Phys. (2013)

Classification by the number n of integrals of motion

n = N - 1 (maximum possible) — type 1 integrable system
n=N-2—type?2
n=N-3—type3

n=N-M-—type M



Definition: A matrix Hamiltonian H = Hg(u) = Ty + uVj is
integrable if it has n > 1 linearly independent commuting
partners H;(u) = T; + uV; discounting multiples of the identity:.

H;(u),H;j(u)] =0 for all wand 4,5 =0,1,...,n—1

General member of the commuting family: H(u Z d; H;(



What can we achieve with this notion of quantum integrability? —
almost everything we wanted and more!!

Explicitly Construct integrable models with any prescribed number # of integrals!

i

Simplest case: n = N - 1 (type 1 — max # of integrals — analog of classical integrability)



Simplest case: n = N - 1 (type | — max # of integrals — analog of classical integrability)

Every type 1 family 1s uniquely specified by a choice of a Hermitian matrix and a
vector and vice versa

Hermitian matrix E Arbitrary vector |v)

U

N commuting N x N Hermitian matrices H;(u)

General member of the commuting family: H(u) = Z d;H;(u) =T +uV

To pick H(u), pick N arbitrary d; or, equivalently, pick a matrix T (or V')
dp — d d; —d
H(u =u =) [H(u =d,, —u 2 = d
H@ln = w0 (B2 [H @) = d > (2=2=)
e, — eigenvalues of F, v — components of |v)
(2N arbitrary real parameters to pick a commuting family)

dy — eigenvalues of T' — another N arbitrary real numbers to pick
a specific Hamiltonian within the family

Constructed all n = N-1, N-2, N-3 (types 1, 2, 3) and some for arbitrary other n



What can we achieve with this notion of quantum integrability? —
almost everything we wanted and more!!

= Exact solution through a single algebraic equation for all types
(cf. Bethe’s Ansatz)

N 2 2

(typel) Y ~—— =u, Ej= Aik%a WZZ;]_@.
J

g=1 J

= Number of level crossings as a function of type, i.e. the number (n) of
integrals of motion

# of crossings = (N* =5N +2)/2+n -2k, k=1,2,...
Typically =~ N2/2 crossings.
Any type 1 Hamiltonian has at least one crossing.

But for higher types it is also possible to have no crossings.

Owusu &Yuzbashyan, J. Phys. A (2011); Yuzbashyan, Shastry, Scaramazza, PRE (2016)



Integrable Matrix Theory (IMT) — ensemble theory of quantum
iIntegrability

Two matrices T, E & vector |v) <= type 1 H(u) =T +uV

Other types arise similarly from two commuting matrices and a vector

To generate an integrable matrix with any prescribed number of
integrals — generate 7, E and |y>



Integrable Matrix Theory (IMT) — ensemble theory of quantum
iIntegrability

Two matrices T, E & vector |v) <= type 1 H(u) =T + uV

Other types arise similarly from two commuting matrices and a vector

To generate an ensemble of integrable matrices with any prescribed
number of integrals — generate an ensemble of 7, E and |y>

Probability density function P(7, E, y) from rotational invariance as in
Random Matrix Theory
T, E — random matrices, e.g. from GOE, |v) — random vector

Now can study ensembles of integrable matrices and obtain
integrable counterparts of the RMT results as opposed to only a
spectral statistics of isolated integrable models!!



Integrable Matrix Theory (IMT) — ensemble theory of quantum
iIntegrability
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From Ben Simon’s group website Regularity by Jackal Ennui: “A little ode... to
regularity and chaos”

RMT — theory of quantum chaos IMT — theory of quantum regularity



Integrable Matrix Theory, Level Statistics

I.  Statistics are typically Poisson as long as the number of integrals (= size-
type) 1sn’t too small

1.0 -

1 o _H)=T+uV

Poisson

~ 06"
Scaramazza, Shastry, =
Yuzbashyan, PRE (2016) 04l

Nearest neighbor level spacing distribution for a 4000 x 4000 time
reversal invariant integrable Hamiltonian H(u) =T 4+ uV at u =1

n—1
General member of the commuting family: H(u) = Z d;H;(u)
i=0

Poisson because of superposition of many independent spectra



Integrable Matrix Theory, Level Statistics

I.  Statistics are typically Poisson as long as the number of integrals (= size-
type) isn’t too small
II. There are two exceptions to Poisson statistics
A. There 1s a single, 1solated value of the coupling u = u, where the level
statistics of H(u) = T+uV are Wigner-Dyson (here u, = 0).

T, E — random matrices, e.g. from GOE, |v) — random vector



Integrable Matrix Theory, Level Statistics

I.  Statistics are typically Poisson as long as the number of integrals (= size-
type) 1sn’t too small
II. There are two exceptions to Poisson statistics
A. There 1s a single, 1solated value of the coupling u = u, where the level
statistics of H(u) = T+uV are Wigner-Dyson (here u, = 0).

But it reverts to Poisson already at (v — ug) o< 1/N

1.0 o
o Brody parameter|o as a function of log, ()
, Brody distribution:
0.6 i 7 w1
3 7 P(s,w) = as“e™ %
0.4 - 7
[ e N =500 ] T 2
------ N = 1000 Y ] = Tge— 25 — 1
0.2F = = = N=2000 i P(S7 1) 5 se 4 . ngner
— — N=4000 ‘ borcson | P(s,0) =e° — Poisson
0.0 7 Lo I "-T. | T" N B
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
log n (u)

N x N type 1, number of integrals = N — 1



Exceptions to Poisson Statistics in IMT

A. There 1s a single, 1solated value of the coupling # = u, where the level
statistics of H(u) = T+ulV are Wigner-Dyson.

T, E — random matrices, e.g. from GOE, |v) — random vector

A. Statistics are non-Poisson when normally uncorrelated parameters become
correlated (atypical integrable model, special member of the family)

T = f(F), d; = f(e;) — non-Poisson with strong level repulsion,
e.g. BCS model has d; = ¢; (all-to-all energy-independent interactions)

General member of the commuting family: H(u) = Z d;H;(u) =T 4+ uV

Most general type 1 integrable model:

H ()] km = Y Ym (dk — dm) , [H(w)]mm = dm —u Z v (d] — dm)

Ek — Em




Exceptions to Poisson Statistics in IMT

A. There 1s a single, 1solated value of the coupling # = u, where the level

statistics of H(u) = T+ulV are Wigner-Dyson.

T, E — random matrices, e.g. from GOE, |v) — random vector

A.

Statistics are non-Poisson when normally uncorrelated parameters become
correlated (atypical integrable model, special member of the family)

Reverts to Poisson at deviations § oc 1/N from such special members
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Brody parameter o as a function of logy (&)

Brody distribution:

P(s,w) = as¥e s

P(s,1) = %Se_%82 — Wigner

P(s,0) = e~® — Poisson

D; — O(1) random number



Q: How many nontrivial integrals of motion must a system have so
that its level statistics are Poisson?

k
# ofnoptrivial inteigrals = H(u) = Z d;H;(u), k<N-—M
Size — Type=N-M —

= N = 2000
06 \ ’ — = = M= 1000
0.4

1 o0z2f

0.0

Brody parameter w as a function of k£ for N x N type M matrices.
Fit: aexp(—bk/InN). b= (1.13,1.04;0.99, 1.03) for M = (250, 480; 1000, 1980)

w=1- GOE, w =0 — Poisson

# of integrals needed =~ In N = log of Hilbert space dim o< particle #
Scaramazza, Shastry, Yuzbashyan, PRE (2016)



Proposed a simple notion of integrability for parameter-dependent N x N Hamiltonians
|H(u), Hy(u)] = 0 for all u

s

Consequences:
1. Exact solution in terms of a single algebraic equation

1. # of level xings as function of size and # of integrals. # of xings varies within the
commuting family. Typically N2/2 xings, but can also have no xings when the # of
integrals is less then maximal

1. Integrable Matrix Theory — theory of quantum regularity. Typical statistics are
Poissonian when the # of integrals > In N. Guaranteed Wigner-Dyson at isolated
value of the parameter and for special, “correlated members” of the commuting
family (explains BCS). Further: ergodicity etc.

1. Generalized Gibbs Ensemble works when the # of integrals are maximal. Has to do
with localization of the eigenstates of H(u). Does it work for fewer integrals?

1. Solvable multi-state Landau-Zener problems are integrable matrices. Can we solve

new such problems? H(t) = A+tB, where A, B - N x N Hermitian matrices.
t goes from —oo to +00. Determine p(i — k)
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