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Classical Integrability 

1D Hamiltonians
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Definition: H(p,q) is integrable if it has n (maximum possible number)   
of functionally independent Poisson-commuting integrals 

H(p, q), where q = (q1, . . . , qn); p = (p1, . . . , pn); i.e. n degrees of freedom

§ Unambiguous separation of integrable from nonintegrable (generic)
§ Exact solution, various properties that don’t have to be verified on a case 

by case basis, regular vs. chaotic dynamics

{Hi(p, q), Hj(p, q)} = 0, i, j = 0, . . . , n� 1; H0(p, q) ⌘ H(p, q)
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Classical Regularity vs. Classical Chaos

regular, quasiperiodic motion Now “chaos is the sole ruler of the world”
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Double pendulum: cross-sections of trajectories in 4D phase space 



Q: What is quantum integrability? How is it defined?  

Example: Hubbard model 
for benzene molecule

Given a matrix H how do we 
tell if it’s integrable?
Can we randomly generate such 
integrable matrices?  

H =

0

BBBB@

⇥ 0 0 0 0
0 ⇥ 0 0 0
0 0 ⇥ 0 0
0 0 0 ⇥ 0
0 0 0 0 ⇥

1

CCCCA

No way! Not even a good definition! [von Neumann (1931), Weigert (1992), 
Sutherland, Beautiful Models (2004), Caux & Mossel (2011), Yuzbashyan & Shastry (2013)]

No natural notion of a nontrivial integral of motion: for any H there is a full set of Hk
such that

Alternatively, can 
consider powers of H

[Hi, Hk] = [Hk, H] = 0

H =
NX

n=1

En|nihn|, Hk = |kihk| Hk =
NX

n=1

anH
n

Think finite N ⇥N matrix Hamiltonian

Various quantum many-body lattice models (e.g. 1D Hubbard, 1D Heisenberg magnets, 
BCS) are called “integrable”. What does it mean?



Why is it important? – Integrability enters mainstream
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A quantum Newton’s cradle
Toshiya Kinoshita1, Trevor Wenger1 & David S. Weiss1

It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable1,2. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space3. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 87Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue4–6, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.
To see qualitatively why 1D gases might not thermalize, consider

the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they
simply exchange momenta. Clearly, the momentum distribution of a
1D ensemble of particles will not be altered by such pairwise
collisions. The well-known behaviour of Newton’s cradle (see
Fig. 1a) is most easily understood in this way. Even when several
balls are simultaneously in contact, particles in an idealized Newton’s
cradle just exchange specific momentum values, though the expla-
nation is more subtle7. Generalization of the Newton’s cradle to
quantum mechanical particles lends it a ghostly air. Rather than just
reflecting off each other, colliding particles can also transmit through
each other. When the particles are identical, the final states after
transmission and reflection are indistinguishable.
In general, correlations and overlap among 1D Bose gas wavefunc-

tions complicate the picture of independent particles colliding as in a
Newton’s cradle. In fact, there are circumstances in which 1D
momentum distributions are known to change in time. For example,
when weakly coupled bosons are released from a trap, the conversion
of mean field energy to kinetic energy changes the momentum
distribution. In the Tonks–Girardeau limit of infinite strength
interactions8, although the 1D bosons interact locally like non-
interacting fermions, their momentum distribution is not fermio-
nic9,10. When a Tonks–Girardeau gas is released from a trap and
expands in one dimension, its momentum distribution evolves into
that of a trapped Fermi gas11–13. The quantum Newton’s cradle view
of particles colliding with each other and either reflecting or
transmitting can only be applied when the kinetic energy of the
collision greatly exceeds the energy per atom at zero temperature at

the prevailing density14. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks–Girardeau
regime, where only pairwise collisions can occur15, to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions15–17. In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.
We start our experiments with a Bose–Einstein condensate (BEC)

loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light trapsmakes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping11. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, "q r (where q r/2p ¼ 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in
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Figure 1 |Classical and quantumNewton’s cradles. a, Diagram of a classical
Newton’s cradle. b, Sketches at various times of two out of equilibrium
clouds of atoms in a 1D anharmonic trap,U(z). At time t ¼ 0, the atoms are
put into a momentum superposition with 2"k to the right and 2"k to the
left. The two parts of the wavefunction oscillate out of phase with each other
with a period t. Each atom collides with the opposite momentum group
twice every full cycle, for instance, at t ¼ 0 and t/2. Anharmonicity causes
each group to gradually expand, until ultimately the atoms have fully
dephased. Even after dephasing, each atom still collides with half the other
atoms twice each cycle.
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“87Rb atoms … do not noticeably equilibrate even after thousands of collisions. Our 
results are probably explainable by the well-known fact that a homogeneous 1D Bose 
gas with point-like collisional interactions is integrable.”
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All the curves in Fig. 3 are non-gaussian. For comparison, we have
created equilibrium 1D Bose gases with the same r.m.s. momentum
as the non-equilibrium distributions we study here. To do so, we start
with an equilibrium 3D Bose gas at an elevated temperature and
adiabatically turn on the 2D lattice. The resultant f(p ex) are nearly
perfectly gaussian. Thus, to the extent that an observed f(p ex) is not
gaussian, it has not thermalized.
Heating and loss affect the evolution of the distribution. We have

studied these processes by watching how f(p ex) evolves without any
grating pulses (see Supplementary Information). Some loss (20% or
less, depending on go) comes in the first couple of hundred milli-
seconds from three-body inelastic collisions. There is also 15% per
second loss to background gas collisions. Spontaneous emission
caused by the lattice light heats some atoms, and by leaving some
atoms in unlevitated magnetic sublevels, causes a 30% per second
loss. This last loss in turn causes most of the heating, as exiting atoms
transfer some of the momentum they pick up on their way out to
atoms that remain.
To account for loss and heating in the time evolution shown in

Fig. 3, we project how already dephased distributions would evolve

without thermalization. Specifically, we take f(p ex) at a time
to ¼ 15t, rescale it to account for loss during an observation time,
tobs, and convolve it with gaussian widths to capture the effect of the
independently measured heating during tobs (see Supplementary
Information). The blue curves in Fig. 4 were projected with a two-
component model that accurately reflects the measured heating, for
go (gd) ¼ 4 (18), 1 (3.2) and 0.62 (1.4), where the coupling strength
after dephasing, gd, is calculated using the reduced n1D that prevails
at to. The green curves are the result of a simpler single-component
projection. The similarity of the blue and green lines illustrates the
robustness of our projections (see Supplementary Information). The
red curves show the actual distributions after tobs.
The actual and projected curves overlap reasonably well, with

reduced x2 values of 1.2, 1.35 and 2.5 for Fig. 4a, b and c, respectively
(using the blue curves). In each case, the difference between the
projected and actual curves is far smaller than the difference between
either of them and a thermal distribution. To highlight the non-
gaussian shape of Fig. 4c, we have superimposed a gaussian with the
same atom number and r.m.s. width as the data. The slight discre-
pancies that exist between the actual and projected curves may result
from the ,25% loss of atoms during tobs, which reduces the inter-
action energy contribution to f(pex). By assuming that any deviation
between the projected and actual distributions is a step along the way
to thermalization, we conservatively determine a lower bound on the
thermalization time constant, t th (see Methods). t th is at least 390t,
1,910t and 200t for gd ¼ 18, 3.2 and 1.4, respectively. The data imply
that each atom continues to oscillate in the trap with the same peak
momentum it was given initially, as if there were no collisions.
Although collisions have no dynamical effect, we would like to

roughly keep track of how many have occurred. Each atom passes
N tube/2 atoms every half cycle. The probability of reflection, R, in a
pairwise collision of 1D bosons with centre of mass momentum 2"k
was calculated in ref. 22. In the limit where (2ka 1D)

2 .. 1,
R ¼ (2ka1D)

22. For our confinement parameters, R ¼ 1/22. There-
fore, in the first full cycle, the number of 2"k collisions is N tube, with
r ¼ N tube/22 reflections. After dephasing within a tube, each atom
has as many collisions, but at centre of mass momenta that range
from 2"k to near 0. As the relative velocity decreases, R increases
quadratically (until it saturates), but the ability of a collision to
redistribute momentum is reduced roughly quadratically. Accord-
ingly, we use the r derived above to keep track of reflections even after
the atoms have dephased. For the conditions in Fig. 4a, b and c, the
average number of collisions that have occurred per atom during tobs
are 600, 2,750 and 6,250, respectively, and the average number of
reflections are 27, 125 and 285. Using the results from Fig. 4, we can
set lower limits on the number of reflections required for thermal-
ization of 710, 9,600 and 2,300 for gd ¼ 18, 3.2 and 1.4, respectively.
These limits are obviously much larger than the 2.7 collisions that
characterize thermalization in a 3D gas23.
To experimentally confirm the existence of collisions in this

system, despite their lack of consequence in one dimension, we
apply the grating pulses without ever having turned on the 2D optical
lattice, and so create non-equilibrium momentum distributions in
three dimensions. Two BECs with different centre of mass velocities
collide every half cycle. At the quarter cycle times, the two BECs are
well separated spatially. This implies that collisions occur well above
the Landau critical velocity, allowing particles to scatter out of the
macroscopically occupied states24. We observe thermalization in a
two-step process. Atoms first scatter into a spherical shell in velocity,
which corresponds to the outgoing s-wave. They then scatter into a
broad range of final states. Even though the 3D densities are nearly an
order of magnitude lower than in the 1D tubes, thermalization
occurs on a ,2t timescale.
The absence of damping in 1D Bose gases has several potential

applications. Atoms undergoing Bloch oscillations in quantum
degenerate gases are candidate force sensors25. Fermions have
emerged as better for this purpose than bosons, because the absence

Figure 4 | Projected versus actual f(pex) for various gd, the dephased
average peak coupling strength. The blue and green curves are f(p ex) for
to ¼ 15t, rescaled to account for loss and convolved with the known heating
during tobs. The blue curve’s heating model is more sophisticated than that
of the green curve, but the results are insensitive to the details. The red
curves are the actual distributions at to þ tobs. a, gd ¼ 18 and tobs ¼ 15t.
b, gd ¼ 3.2 and tobs ¼ 25t. c, gd ¼ 1.4 and tobs ¼ 25t. The dashed line in c
is a gaussian with the same number of atoms and r.m.s. width as the actual
distribution. To the extent that the actual distribution conforms to the
projected distribution rather than to a gaussian, the atoms have not
thermalized.
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Higgs Amplitude Mode in the BCS Superconductors Nb1-xTixN Induced
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Ultrafast responses of BCS superconductor Nb1-xTixN films in a nonadiabatic excitation regime were

investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation

with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response

in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS

gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the

order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast

manipulation of the superconducting order parameter by optical means.

DOI: 10.1103/PhysRevLett.111.057002 PACS numbers: 74.40.Gh, 74.25.Gz, 78.47.J!

With spontaneous breaking of continuous symmetry,
two types of collective excitations associated with the
order parameter emerge. One is the gapless phase mode
called as the Nambu-Goldstone mode, and the other is the
gapped amplitude mode also referred to as the Higgs mode
from the analogy to the Higgs boson in particle physics
[1,2], as schematically shown in Fig. 1(a). Recently, the
Higgs amplitude mode has been observed in strongly
interacting superfluid phases of bosonic ultracold atoms
in optical lattices by means of Bragg spectroscopy [3] and
lattice modulation [4]. The studies of the Higgs mode
realized on tabletop experiments would provide substantial
platforms for exploring the nature of symmetry-broken
states in quantum many-body physics. In condensed matter
systems, the amplitude mode has been widely observed in
charged density wave (CDW) systems by Raman or pump-
probe spectroscopy [5–8] and in an antiferromagnet by
neutron spectroscopy [9]. However, the observation of the
amplitude mode in fermionic condensates has been limited
to the specific cases of superconducting CDW compound
NbSe2 [10,11] andp-wave superfluid

3He [12,13]. Then, we
can pose a question as to whether the Higgs mode in a pure
metallic BCS superconductor (SC), which does not couple
to the radiation field, can be observed experimentally.

The amplitude mode in the BCS order parameter has
been anticipated to appear in a response to a fast perturba-
tion in nonadiabatic regime [14–23]. Depending on the
perturbation strength, the nonequilibrium dynamics would
exhibit a persistent oscillation, a transient oscillation
obeying a power-law decay, or a quantum quench of the
order parameter which cannot be described by the time-
dependent Ginzburg-Landau theory or the Boltzmann
equation [16,17]. A sudden switching of the pairing inter-
action by using Feshbach resonance in ultracold atoms [24]
is one promising way to realize such a nonequilibrium

state, while it still remains experimentally challenging.
An alternative way to induce the transient oscillation of
the order parameter has been proposed in conventional
metallic BCS SCs [19]. When a BCS ground state is non-
adiabatically excited by a short laser pulse, the coherence
between different quasiparticle (QP) states leads to the
oscillation of the order parameter. Such a nonadiabatic
excitation for BCS superconductivity requires a short
pump pulse with the duration !pump small enough com-
pared to the response time of the BCS state characterized
by the BCS gap ! as !! ¼ "=!!1. Here a near-visible
femtosecond optical pulse is not applicable, because the
huge excess energies of photoexcited hot electrons in the
order of electronvolts are transferred to the generation
of large amounts of high-frequency phonons (@!> 2!),
which in turn induce the Cooper pair breaking. This pro-
cess destroys the nonadiabatic excitation condition even
if one uses the laser pulse much shorter than !! [25,26].
Therefore, to ensure the nonadiabatic excitation, it is nec-
essary to use a short pump pulse with its photon energy
resonant to the BCS gap which is typically located in
terahertz (THz) frequency range [19]. With the recent
development of THz technology, such an intense and
monocyclelike THz pulse has become available [27], mak-
ing it possible to investigate the THz nonlinear response
in a variety of materials [28–32]. In an s-wave SC of NbN
film, the ultrafast pair breaking and the following QP
dynamics have been investigated by the intense THz
pump-THz probe (TPTP) spectroscopy [26]. Nonlinear
THz transmission experiments in NbN have also been
reported recently [33,34].
In this Letter, we investigated the coherent transient

dynamics of superconducting Nb1-xTixN films after the
THz pulse excitation in the nonadiabatic excitation regime.
The time-domain oscillation of the order parameter was
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observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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is heavily damped in the strong excitation limit. At each
excitation level, !Eprobe asymptotically reaches to a con-
stant value accompanied by the damped oscillation.
Besides the oscillation, !Eprobe shows a slow increase at
tpp > 2 ps to the constant value, indicating the gradual
decrease of the gap energy. Such a slow decrease of the
gap energy after the pump pulse irradiation has also been
observed in the previous near-visible optical pump experi-
ments, where the excess photon energy of the pump pulse
gives rise to the generation of phonons which in turn
causes the pair breaking in a slower time scale [25,26].
Meanwhile, a recent calculation using the nonequilibrium
dynamical mean-field theory [23] has also showed that
such a slow thermalization dynamics can occur as a unique
character of a nonequilibrium state, even without taking
into account the interaction with the phonon system. In the
present experiment, whereas the central photon energy of
the pump THz pulse is resonant to the gap energy, the high-
frequency components of the pump THz pulse larger than
the gap energy bring the excess energy to the QP system.
Therefore, the slow increase in Fig. 2(a) can be attributed
to the thermalization process of the excess energy.

As shown by the solid curves in Fig. 2(a), the oscillating
part of !EprobeðtppÞ is fitted by the following equation

!EprobeðtppÞ ¼ C1 þ C2tpp þ a
cosð2"ftpp þ ’Þ

ðtpp % t0Þb ; (1)

where C1, C2, a, b, ’, f, and t0 are parameters. The first
term indicates the nonoscillating part of the gap energy.

The second term is introduced to reproduce the gradual
decrease of the gap energy, which is attributed to the
thermalization process as described above. The third term
describes the order parameter oscillation with the power-
law decay as theoretically predicted [14,16,17]. Figure 2(b)
shows the oscillation frequency f obtained from the fits at
various pump intensities. Here we also plot the values of
2! at tpp ¼ 8 ps where the oscillation is damped, which
indicates the asymptotic value 2!1 of the gap energy after
the pump. Because of the slow change of the order
parameter in this temporal region, we evaluated 2!1
from the observed !Eprobeðtpp ¼ 8 psÞ by using the corre-

spondence in Fig. 1(f). The decrease of 2!1 as a function
of the pump intensity represented in Fig. 2(b) is reasonable
because the increase of the excited QP density causes the
gap reduction. The fitted values f and their pump-intensity
dependence are in excellent agreement with 2!1, which is
a characteristic feature of the order parameter oscillation
predicted in the theoretical studies [16,17]. Therefore, this
result strongly suggests that the oscillatory signal arises
from the collective Higgs amplitude mode anticipated in
the nonadiabatic excitation condition. Note that the oscil-
latory signal is observed in the cross-linear polarization
configuration of the TPTP experiments, which also indi-
cates its origin as the Higgs mode of isotropic s-wave SCs.
It is intriguing that the polarization dependent TPTP
experiments would elucidate the nature of symmetry of
such collective modes.
Figure 2(c) shows the fitted parameter b, the power-law

index for decay of the oscillation, as a function of the
pump intensity. The theoretical studies have shown that
within the linear approximation the oscillation decays with
b ¼ 0:5 for the weak-coupling BCS case due to the mixing
of the collective mode and QP states [14–16], and with
b ¼ 1:5 for the strong-coupling case [21]. Our result shows
that b changes from about 1 to 3 depending on the pump
intensity. Such a rapid decay depending on the excitation
intensity could be considered as a signature of the over-
damped oscillation of the order parameter [16,17].
The dynamics after the THz pulse excitation was also

investigated in the frequency domain. Figure 3(a) shows
the temporal evolution of the real-part optical conductivity
spectra #1ð!Þ as a function of tpp, obtained from the

TPTP spectroscopy in the two-dimensional time domains.
The optical conductivity spectrum #1ð!; tppÞ at each delay
time tpp was calculated from the waveform of the trans-

mitted probe E field. Figure 3(b) shows the #1ð!Þ spectra
at each tpp indicated by the white dotted lines in Fig. 3(a).
For comparison, Fig. 3(b) also shows the #1ð!Þ spectra
before the pump (tpp ¼ %2 ps) as the black dotted curves.
The temporal oscillation of the conductivity spectrum is
clearly seen, suggesting the oscillation of the gap energy.
However, the oscillation of the onset of the gap is not clear,
which might be obscured by the smooth onset of the
conductivity gap as observed even without the pump in

86420-2-4

1

0

nJ/cm
2

 9.6
 8.5
 7.9
 7.2
 6.4
 5.6
 4.8
 4.0

3

2

1

0
105

0.8

0.6

0.4

0.2

0.0

 
        

(a)

(b)

2

(c)

pump/ =0.57

Pump Energy (nJ/cm2)

b
f(

T
H

z)

tpp (ps)

E
pr

ob
e(

t g
at

e=
t 0

) 
 (

ar
b.

 u
ni

ts
)

f

τ τ

FIG. 2 (color online). (a) The open circles show the temporal
evolution of the change of the probe E field, !Eprobe, at tgate ¼ t0
as a function of tpp in sample A at 4 K. The solid curves show

the fitted results with Eq. (1). (b) The oscillation frequency f
obtained from the fits and the asymptotic gap energy 2!1 as a
function of the pump intensity. (c) The power-law decay index b
as a function of the pump intensity.
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Response of fermionic condensates to fast perturbations
is a long-standing problem [1–12]. The main difficulty is to
describe the time evolution in the nonadiabatic regime
when a nonequilibrium state of the condensate is created
on a time scale shorter than the energy relaxation time.
In this case the evolution of the system cannot be described
in terms of a quasiparticle spectrum or a single time-
dependent order parameter !!t" and particle-hole excita-
tions [13]. One has to account for the dynamics of individ-
ual Cooper pairs, making it a complex many-body
problem.

The nonadiabatic regime can be accessed experimen-
tally in ultracold Fermi gases, where the strength of pairing
between fermions can be rapidly changed [14]. Non-
adiabatic measurements can be also performed in quantum
circuits utilizing nanoscale superconductors where the dy-
namics can be initiated by fast voltage pulses [15].

Here we consider a BCS condensate that is out of
equilibrium at t # 0 and study its time evolution for t >
0. Given the state of the system at t # 0, we predict the
dynamics with no need for actually solving equations of
motion. We show that possible initial states fall into two
categories. In the first case, j!!t"j asymptotes to a constant
value !1 <!0. The approach to !1 is oscillatory with a
1=

!!
t
p

decay,

j!!t"j
!1

# 1$ a cos!2!1t$!"!!!!!!!!!
!1t

p : (1)

Constants a and ! depend on the initial state. This is
realized, e.g., when the pairing strength is abruptly
changed, while the system is in the paired ground state.
In the second case, j!!t"j oscillates persistently with sev-
eral incommensurate frequencies. We propose a topologi-
cal classification of initial states, which extends the
concept of excitation spectrum to the nonlinear regime. If
a state is in the same class as the paired ground state,

Eq. (1) applies. Other states are topologically distinct, in
which case persistent oscillations occur.

Our approach explains differences between previous
studies of condensate dynamics. Linear analysis around
the ground state yields [3] damped oscillations with a
frequency 2!0, where !0 is the equilibrium BCS gap.
Equation (1) generalizes this result to the nonlinear case
and a wide range of initial conditions. An oscillatory decay
following a change in the coupling strength was observed
numerically [8,11]. We will see that this is due to the fact
that initial states of Refs. [3,8,11] are in the same class as
the BCS ground state. Undamped periodic oscillations of
j!!t"j have been found in Refs. [4–6]. They were also seen
numerically for initial states close to a normal state [7]. In
contrast, Ref. [12] also starts from the normal state, but
obtains a saturation to !1 # !0=2. It turns out [16] that
this occurs if the initial state is a paired state with a small
seed gap !in % !0. Quasiperiodic oscillations of the order
parameter [9,10] can also be realized (see below).

In the nondissipative regime, dynamics of the conden-
sate can be described by the BCS model. Here we are
interested in the thermodynamic limit, in which case one
can use the BCS mean-field approach [1]. Using
Anderson’s pseudospin representation [1], one can de-
scribe the mean-field evolution by a classical spin Hamil-
tonian [9] H # P

j2"js
z
j & g

P
j;ks$j s

&
k , where "j are

single-particle energies and s'j # sxj ' isyj . Dynamical
variables sj are vectors of fixed length, jsjj # 1=2. The
BCS order parameter is !!t" # !x & i!y # g

P
js&j .

Equations of motion are

_s j # bj ( sj bj # !&2!x;&2!y; 2"j": (2)

Consider the Fourier transform of the absolute value of
the order parameter j!!t"j. In the thermodynamic limit the
frequency spectrum in general consists of continuum and
discrete parts. Let the discrete part contain k incommensu-
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in terms of a quasiparticle spectrum or a single time-
dependent order parameter !!t" and particle-hole excita-
tions [13]. One has to account for the dynamics of individ-
ual Cooper pairs, making it a complex many-body
problem.

The nonadiabatic regime can be accessed experimen-
tally in ultracold Fermi gases, where the strength of pairing
between fermions can be rapidly changed [14]. Non-
adiabatic measurements can be also performed in quantum
circuits utilizing nanoscale superconductors where the dy-
namics can be initiated by fast voltage pulses [15].

Here we consider a BCS condensate that is out of
equilibrium at t # 0 and study its time evolution for t >
0. Given the state of the system at t # 0, we predict the
dynamics with no need for actually solving equations of
motion. We show that possible initial states fall into two
categories. In the first case, j!!t"j asymptotes to a constant
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realized, e.g., when the pairing strength is abruptly
changed, while the system is in the paired ground state.
In the second case, j!!t"j oscillates persistently with sev-
eral incommensurate frequencies. We propose a topologi-
cal classification of initial states, which extends the
concept of excitation spectrum to the nonlinear regime. If
a state is in the same class as the paired ground state,

Eq. (1) applies. Other states are topologically distinct, in
which case persistent oscillations occur.

Our approach explains differences between previous
studies of condensate dynamics. Linear analysis around
the ground state yields [3] damped oscillations with a
frequency 2!0, where !0 is the equilibrium BCS gap.
Equation (1) generalizes this result to the nonlinear case
and a wide range of initial conditions. An oscillatory decay
following a change in the coupling strength was observed
numerically [8,11]. We will see that this is due to the fact
that initial states of Refs. [3,8,11] are in the same class as
the BCS ground state. Undamped periodic oscillations of
j!!t"j have been found in Refs. [4–6]. They were also seen
numerically for initial states close to a normal state [7]. In
contrast, Ref. [12] also starts from the normal state, but
obtains a saturation to !1 # !0=2. It turns out [16] that
this occurs if the initial state is a paired state with a small
seed gap !in % !0. Quasiperiodic oscillations of the order
parameter [9,10] can also be realized (see below).

In the nondissipative regime, dynamics of the conden-
sate can be described by the BCS model. Here we are
interested in the thermodynamic limit, in which case one
can use the BCS mean-field approach [1]. Using
Anderson’s pseudospin representation [1], one can de-
scribe the mean-field evolution by a classical spin Hamil-
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e.g. other degrees of freedom continue to oscillate and�1 < �0 = ground state gap
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describe the time evolution in the nonadiabatic regime
when a nonequilibrium state of the condensate is created
on a time scale shorter than the energy relaxation time.
In this case the evolution of the system cannot be described
in terms of a quasiparticle spectrum or a single time-
dependent order parameter !!t" and particle-hole excita-
tions [13]. One has to account for the dynamics of individ-
ual Cooper pairs, making it a complex many-body
problem.

The nonadiabatic regime can be accessed experimen-
tally in ultracold Fermi gases, where the strength of pairing
between fermions can be rapidly changed [14]. Non-
adiabatic measurements can be also performed in quantum
circuits utilizing nanoscale superconductors where the dy-
namics can be initiated by fast voltage pulses [15].

Here we consider a BCS condensate that is out of
equilibrium at t # 0 and study its time evolution for t >
0. Given the state of the system at t # 0, we predict the
dynamics with no need for actually solving equations of
motion. We show that possible initial states fall into two
categories. In the first case, j!!t"j asymptotes to a constant
value !1 <!0. The approach to !1 is oscillatory with a
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realized, e.g., when the pairing strength is abruptly
changed, while the system is in the paired ground state.
In the second case, j!!t"j oscillates persistently with sev-
eral incommensurate frequencies. We propose a topologi-
cal classification of initial states, which extends the
concept of excitation spectrum to the nonlinear regime. If
a state is in the same class as the paired ground state,

Eq. (1) applies. Other states are topologically distinct, in
which case persistent oscillations occur.

Our approach explains differences between previous
studies of condensate dynamics. Linear analysis around
the ground state yields [3] damped oscillations with a
frequency 2!0, where !0 is the equilibrium BCS gap.
Equation (1) generalizes this result to the nonlinear case
and a wide range of initial conditions. An oscillatory decay
following a change in the coupling strength was observed
numerically [8,11]. We will see that this is due to the fact
that initial states of Refs. [3,8,11] are in the same class as
the BCS ground state. Undamped periodic oscillations of
j!!t"j have been found in Refs. [4–6]. They were also seen
numerically for initial states close to a normal state [7]. In
contrast, Ref. [12] also starts from the normal state, but
obtains a saturation to !1 # !0=2. It turns out [16] that
this occurs if the initial state is a paired state with a small
seed gap !in % !0. Quasiperiodic oscillations of the order
parameter [9,10] can also be realized (see below).

In the nondissipative regime, dynamics of the conden-
sate can be described by the BCS model. Here we are
interested in the thermodynamic limit, in which case one
can use the BCS mean-field approach [1]. Using
Anderson’s pseudospin representation [1], one can de-
scribe the mean-field evolution by a classical spin Hamil-
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⇢̂ =
1

Z
e�

P
k �kĤk , [Hi, Hk] = [H,Hk] = 0

§ GGE fails for 1D Heisenberg spin chains                                                            
Goldstein & Andrei, Phys. Rev. A (2014); Pozsgay et. al. PRL (2014)

§ Does work for 1D Heisenberg spin chains if newly discovered integrals are added                                      
Ilievski et. al. PRL (2015)

Integrable systems do not equilibrate.
Do they follow Generalized Gibbs Ensemble (GGE)?

Need to know what quantum integrability is, i.e. what is a complete 
set of allowed Hk! Otherwise, GGE is essentially unfalsifiable



§ Exact solution for the energy spectrum via 
Bethe’s Ansatz 

§ Crossings of energy levels as functions of 
interaction or external field strength (seen as 
resonances in e.g. relaxation rates)

§ Energy levels {En} have Poisson statistics, i.e. 
behave as independent random numbers 
(observed directly in small systems)

Signatures (?) of quantum integrability

In the absence of a clear notion, have to verify each property independently on 
a case by case basis. 

Cannot predict them as in classical integrability



Properties of quantum integrable systems: Exact Solution
Example: 1D Hubbard model for benzene molecule

Electrons on a hexagon,          
6 sites, 3 spin-up, 3 spin-down

hopping + onsite interaction

Ĥ(u) =
X

j,s="#
(ĉ†jsĉj+1 s + ĉ†j+1 sĉjs) + u

X

j

n̂j"n̂j#

Exact Solution via Bethe’s Ansatz: Lieb and Wu (1969)

e6ikj =
3Y

�=1

�� � sin kj � iu/4

�� � sin kj + iu/4
,

3Y

�=1

�� � �⇥ + iu/2

�� � �⇥ + iu/2
= �

6Y

j=1

�⇥ � sin kj � iu/4

�⇥ � sin kj � iu/4

9 coupled nonlinear equations

But cf.

400⇥ 400 matrix linear in u

E = �
6X

j=1

2 cos kj

det(H � EI) = 0



Properties of quantum integrable systems: Integrals of motion
Example: 1D Hubbard model

Ĥ(u) =
X

j,s="#
(ĉ†jsĉj+1 s + ĉ†j+1 sĉjs) + u

X

j

n̂j"n̂j#

Ĥ1(u) = �i
X

j,s="#
(ĉ†j+2sĉjs � ĉ†jsĉj+2s)� iu

X

j,s="#
(ĉ†j+1sĉjs � ĉ†jsĉj+1s)(n̂j+1,�s + n̂j,�s � 1)

[

ˆH(u), ˆH1(u)] = 0, for all u
Shastry, PRL (1986)

ˆH2(u), ˆH3(u), ˆH4(u), . . . – infinitely many integrals from Shastry’s transfer matrix

The Hamiltonian and the first integral are linear in a real parameter u



Properties of quantum integrable systems: Level crossings
Example: 1D Hubbard model for benzene molecule

Ĥ(u) =
X

j,s="#
(ĉ†jsĉj+1 s + ĉ†j+1 sĉjs) + u

X

j

n̂j"n̂j#

Electrons on a hexagon,          
6 cites, 3 spin-up, 3 spin-down

Hund (1927)

Noncrossing rule: 
“Thus we reach the result that…the intersection 
of terms of like symmetry is impossible (E. 
Wigner and J. von Neumann 1929)”

In other words, for a typical H(u) energy levels 
with the same quantum numbers (spin, 
momentum etc.) never cross.

400⇥ 400 matrix linear in u

Q: How do eigenvalues look as functions of u?

Ph
ys

ic
s 5

02
 



Properties of quantum integrable systems: Level crossings
Example: 1D Hubbard model for benzene molecule

Ĥ(u) =
X

j,s="#
(ĉ†jsĉj+1 s + ĉ†j+1 sĉjs) + u

X

j

n̂j"n̂j#

Electrons on a hexagon,          
6 cites, 3 spin-up, 3 spin-down
400⇥ 400 matrix linear in u

Q: How do eigenvalues look as functions of u?

(All) energy levels (14) for a certain 
complete set of quantum numbers

“The noncrossing rule is apparently 
violated in the case of the 1d Hubbard 
Hamiltonian for benzene molecule…”

Heilmann and Lieb (1971)



ĤBCS =
X

i

2"iŝ
z
i � u

X

i,j

ŝ�i ŝ
+
j =

X

i

2"iĤi

single-particle + superconducting interactions

E

u

Integrals of motion for BCS 
(Gaudin magnets)

Ĥi(u) = ŝzi � u
X

j 6=i

ŝi · ŝj
�i � �j

Properties of quantum integrable systems: Level crossings
Counterexample: BCS model

(All) energy levels (10) for a certain complete 
set of quantum numbers for the BCS model

[Ĥi(u), Ĥj(u)] = [ĤBCS(u), Ĥi(u)] = 0

Q: Are crossings really a 
signature of integrability? Why 
don’t they always happen? Can 
we predict them? their number?



Statistics of energy levels {En} – what to expect?

complex system, e.g. heavy nucleus, disordered metal, quantum 
dot, generic many-body interacting system etc.

Ĥ –

Q: What can we say about its energy levels {En}?

Wigner Dyson

Statistical independence of Hij plus invariance of P(H) with 
respect to arbitrary change of basis P (OTHO) = P (H)

Gaussian ensemble 
of random matrices

Time reversal inv. (no B-field) – Hij are real: Gaussian Orthogonal Ensemble  (GOE)

P (H) = C exp(�a trH2
)

“We picture a complex nucleus as a black box…we shall consider an ensemble of 
Hamiltonians, each of which can describe a different nucleus.” (Dyson 1962)

Wigner (1950s): model by a random matrix H consistent 
with basic space-time symmetries, i.e. choose the 
Hamiltonian “at random”
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Statistics of energy levels {En} – Random Matrix Theory (RMT)

Nearest-neighbor
level spacing: 

sn =
En+1 � En

�
,

� = hEn+1 � Eni

P (s) =
⇡

2
se�

⇡
4 s2Time reversal inv. (GOE):

Wigner surmise,
Wigner-Dyson statistics

GOE

{Hij} random uncorrelated =) {En} correlated, level repulsion: P (0) = 0

{En} random uncorrelated =) Poisson statistics, P (s) = e�s
, no repulsion

Poisson

GOE & Poisson: two universal distributions



Universality of Random Matrix Theory (RMT)

ments are seen at avoided crossings of single-particle
levels. Overall, a simple single-particle model plus con-
stant charging energy, supplemented by a perturbative

treatment of the exchange interaction, can explain quali-
tatively the observed pattern of addition energies versus
magnetic field. A good quantitative agreement is ob-
tained when compared with Hartree-Fock calculations
of a few-electron system.

Hartree-Fock calculations—feasible in small dots—
become impractical for dots with several hundred elec-
trons. Moreover, many of the lateral dots with N!50
electrons often have no particular symmetry. Scattering
of an electron from the irregular boundaries of such dots
leads to single-particle dynamics that are mostly chaotic.
Measured quantities such as the dot’s conductance and
addition spectrum display ‘‘random’’ fluctuations when
various parameters (e.g., shape and magnetic field) are
varied. We are entering the statistical regime, in which
new kinds of questions are of interest. For example,
rather than trying to calculate the precise, observed se-
quence of conductance peaks in a specific dot, we can
study the statistical properties of the dot’s conductance
sampled from different shapes and applied magnetic
fields.

Classical chaos, i.e., the exponential sensitivity of the
time evolution of a dynamical system to initial condi-
tions, is well understood not only in closed systems but
also in open scattering systems (e.g., quantum dots) as-
suming that the particle spends sufficient time in the fi-
nite scattering regime (e.g., the dot) before exiting into
the asymptotic regime (e.g., the leads). In describing
transport through coherent systems, we are interested in
the quantum manifestations of classical chaos. The link
between classical and quantum chaos was first estab-
lished in 1984 with the Bohigas-Giannoni-Schmit (BGS)
conjecture (Bohigas, Giannoni, and Schmit, 1984) that
the statistical quantal fluctuations of a classically chaotic
system are described by random-matrix theory (RMT).
These authors found that the statistical properties of
!700 eigenvalues of the Sinai billiard—a 2D classically
chaotic system—follow the predictions of RMT. Figure
4(b) compares the nearest-neighbor spacing distribution
of the Sinai billiard’s eigenvalues (histogram) with the
same distribution calculated from RMT (solid line).

Random-matrix theory differs in a fundamental way
from the conventional statistical approach. Rather than
declaring ignorance with respect to the microscopic dy-
namical state of the system, we declare ignorance with
respect to the Hamiltonian itself (Balian, 1968). The
only relevant information is the system’s fundamental
space-time symmetries, and otherwise the Hamiltonian
can be chosen ‘‘at random.’’ This revolutionary idea was
introduced by Wigner in the 1950s to explain the spec-
tral properties of a complex many-body system, the
compound nucleus, and was developed by Dyson,
Mehta, and others in the early 1960s. Since RMT has no
scale (its only physical parameter is determined by the
mean level spacing " which scales out if all energies are
measured in units of "), it leads to universal predictions.
For example, neutron and proton resonances measured
in heavy nuclei and collected in the so-called nuclear
data ensemble (Bohigas, Haq, and Pandey, 1983) were
found to obey the predictions of RMT. In particular, the

FIG. 4. The universality of RMT. The nearest-neighbor level-
spacing distribution P(s) (where s is the spacing in units of the
mean level spacing) in (a) a compound nucleus, (b) a 2D cha-
otic system, and (c) a disordered system, compared with the
Wigner-Dyson distribution (solid lines) predicted by RMT.
Dashed lines show the Poisson distribution describing P(s) for
a random sequence of levels. Panel (a) shows P(s) for the
nuclear data ensemble — 1726 neutron and proton resonances
measured in several heavy nuclei. From Bohigas, Haq and
Pandey (1983). Panel (b) is P(s) for 700 eigenvalues of the
Sinai billiard, a classically chaotic system. The eigenfunctions
vanish at the boundaries indicated by the inset. From Bohigas,
Giannoni, and Schmit (1984). Panel (c) illustrates P(s) for a
3D Anderson model (open squares) in its diffusive regime with
on-site disordered potential w/t"2 (see Sec. III.A.3). From
Dupuis and Montambaux (1991).
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Figure 0.7. The billiards in a square with a circular scatterer (so-
called Sinai-billiard), in a stadium shaped boundary and in the car-
dioid are examples for chaotic dynamics, more precisely, they are
proven to be ergodic, mixing, K–systems and Bernoulli. The resulting
orbits show irregular dynamics.

Figure 0.8. Trajectories started in the same point but with different
initial angles stay close to each other in the case of integrable dynamics
while for the chaotic systems a strong defocussing occurs. This is
the origin of the chaotic properties and illustrates the exponential
sensitivity on the initial conditions in such systems.

propagate like in a billiard: in straight lines as long as the movement is free, and bouncing
on obstacles in the usual way (angle of incidence = angle of reflection). Figures 0.6 and
0.7 show individual billiard trajectories for several well known billiards. Figure 0.8 shows
the emission of a beam of trajectories in a small angular interval. According to the semi-
classical approximation, the wave emitted by one point source will disperse in the same
way. However, as the name indicates, this is only an imperfect description of what actually
happens. The dispersion of rays explains only the initial dispersion of the wave-packet.
The smaller the wavelength, the smaller the error: the semiclassical approximation is well-
adapted to describe the propagation of waves with small wavelength and large frequency.
This approximation gives for instance the link between Huygens’ wave theory of light and
the geometric optics of Descartes. The mathematical technique that allows to formalize

Disordered metal 
(3D Anderson 
model at w/t = 2)

Smooth solid line in all graphs: GOE
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FIG. 5. Combined normalized spacings 
histogram for blocks A and B. A total of 313 
spacings are plotted. The prediction of the 
GOE is also plotted (solid curve), as are the 
predictions of the GUE and the Poisson pro- 
cess (dashed curves). The agreement with 
GOE is excellent. The reduced chi squares 
(0.1 •Y•o ) are, for the Poisson, 14.4; for the 
GUE 4.35; and for the GOE 0.431. 

dom process of maximum randomness. Such is, of course, 
not the case; there is spectral rigidity. Nevertheless, such an 
assumption allows one to construct a lower bound on the chi 
squares of the fits. The resulting reduced chi squares are 
given in the figure caption. It is clear that the Poisson and 
GUE theories can be ruled out with great confidence. The 
GOE chi square is 1.3 sigma less than 1.00, which indicates 
that the GOE predictions are fully consistent with the data. 

Because block C is expected to conform to the statistics 
of two superposed GOE spectra [ Eqs. (4) ], its histogram is 
analyzed separately in Fig. 6. Again, we find excellent agree- 
ment with the predictions of random matrix theory. In par- 
ticular, note the weakened level repulsion. 

The spectrally averaged number variances •2(L) are 

shown in Fig. 7 (a)-(c). Agreement appears to be good; cer- 
tainly GOE fits far better than does the GUE or the Poisson 
process. Quantitative assessment of the quality of the agree- 
ment is impossible without an estimate of sample errors. For 
this purpose the A3 statistic is the superior measure of rigid- 
ity inasmuch as the •A, 3 variances are known. 3ø 

The spectrally averaged A3's of blocks A, B, and C are 
shown in Fig. 8. Also shown are the predictions of random 
matrix theory and the standard expected deviations there- 
from. These error bars are taken from the theoretical model, 
not from the data. They are based on the Monte Carlo work 
of Haq et al. 3ø The error bar, for example at L = 10, in block 
A, was constructed from the known ensemble variance 
[ var •/•3 (10) • 0:007 ] (Ref. 30) and from the assumption 
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FIG. 6. Normalized spacing histogram for 
block C. A total of 137 spacings are plotted. 
The solid curve is the prediction of Eq. (4). 
Again the agreement is good. The reduced 
chi square of the fit is 1.18. 
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Universality of Random Matrix Theory (RMT)

ments are seen at avoided crossings of single-particle
levels. Overall, a simple single-particle model plus con-
stant charging energy, supplemented by a perturbative

treatment of the exchange interaction, can explain quali-
tatively the observed pattern of addition energies versus
magnetic field. A good quantitative agreement is ob-
tained when compared with Hartree-Fock calculations
of a few-electron system.

Hartree-Fock calculations—feasible in small dots—
become impractical for dots with several hundred elec-
trons. Moreover, many of the lateral dots with N!50
electrons often have no particular symmetry. Scattering
of an electron from the irregular boundaries of such dots
leads to single-particle dynamics that are mostly chaotic.
Measured quantities such as the dot’s conductance and
addition spectrum display ‘‘random’’ fluctuations when
various parameters (e.g., shape and magnetic field) are
varied. We are entering the statistical regime, in which
new kinds of questions are of interest. For example,
rather than trying to calculate the precise, observed se-
quence of conductance peaks in a specific dot, we can
study the statistical properties of the dot’s conductance
sampled from different shapes and applied magnetic
fields.

Classical chaos, i.e., the exponential sensitivity of the
time evolution of a dynamical system to initial condi-
tions, is well understood not only in closed systems but
also in open scattering systems (e.g., quantum dots) as-
suming that the particle spends sufficient time in the fi-
nite scattering regime (e.g., the dot) before exiting into
the asymptotic regime (e.g., the leads). In describing
transport through coherent systems, we are interested in
the quantum manifestations of classical chaos. The link
between classical and quantum chaos was first estab-
lished in 1984 with the Bohigas-Giannoni-Schmit (BGS)
conjecture (Bohigas, Giannoni, and Schmit, 1984) that
the statistical quantal fluctuations of a classically chaotic
system are described by random-matrix theory (RMT).
These authors found that the statistical properties of
!700 eigenvalues of the Sinai billiard—a 2D classically
chaotic system—follow the predictions of RMT. Figure
4(b) compares the nearest-neighbor spacing distribution
of the Sinai billiard’s eigenvalues (histogram) with the
same distribution calculated from RMT (solid line).

Random-matrix theory differs in a fundamental way
from the conventional statistical approach. Rather than
declaring ignorance with respect to the microscopic dy-
namical state of the system, we declare ignorance with
respect to the Hamiltonian itself (Balian, 1968). The
only relevant information is the system’s fundamental
space-time symmetries, and otherwise the Hamiltonian
can be chosen ‘‘at random.’’ This revolutionary idea was
introduced by Wigner in the 1950s to explain the spec-
tral properties of a complex many-body system, the
compound nucleus, and was developed by Dyson,
Mehta, and others in the early 1960s. Since RMT has no
scale (its only physical parameter is determined by the
mean level spacing " which scales out if all energies are
measured in units of "), it leads to universal predictions.
For example, neutron and proton resonances measured
in heavy nuclei and collected in the so-called nuclear
data ensemble (Bohigas, Haq, and Pandey, 1983) were
found to obey the predictions of RMT. In particular, the

FIG. 4. The universality of RMT. The nearest-neighbor level-
spacing distribution P(s) (where s is the spacing in units of the
mean level spacing) in (a) a compound nucleus, (b) a 2D cha-
otic system, and (c) a disordered system, compared with the
Wigner-Dyson distribution (solid lines) predicted by RMT.
Dashed lines show the Poisson distribution describing P(s) for
a random sequence of levels. Panel (a) shows P(s) for the
nuclear data ensemble — 1726 neutron and proton resonances
measured in several heavy nuclei. From Bohigas, Haq and
Pandey (1983). Panel (b) is P(s) for 700 eigenvalues of the
Sinai billiard, a classically chaotic system. The eigenfunctions
vanish at the boundaries indicated by the inset. From Bohigas,
Giannoni, and Schmit (1984). Panel (c) illustrates P(s) for a
3D Anderson model (open squares) in its diffusive regime with
on-site disordered potential w/t"2 (see Sec. III.A.3). From
Dupuis and Montambaux (1991).
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Figure 0.7. The billiards in a square with a circular scatterer (so-
called Sinai-billiard), in a stadium shaped boundary and in the car-
dioid are examples for chaotic dynamics, more precisely, they are
proven to be ergodic, mixing, K–systems and Bernoulli. The resulting
orbits show irregular dynamics.

Figure 0.8. Trajectories started in the same point but with different
initial angles stay close to each other in the case of integrable dynamics
while for the chaotic systems a strong defocussing occurs. This is
the origin of the chaotic properties and illustrates the exponential
sensitivity on the initial conditions in such systems.

propagate like in a billiard: in straight lines as long as the movement is free, and bouncing
on obstacles in the usual way (angle of incidence = angle of reflection). Figures 0.6 and
0.7 show individual billiard trajectories for several well known billiards. Figure 0.8 shows
the emission of a beam of trajectories in a small angular interval. According to the semi-
classical approximation, the wave emitted by one point source will disperse in the same
way. However, as the name indicates, this is only an imperfect description of what actually
happens. The dispersion of rays explains only the initial dispersion of the wave-packet.
The smaller the wavelength, the smaller the error: the semiclassical approximation is well-
adapted to describe the propagation of waves with small wavelength and large frequency.
This approximation gives for instance the link between Huygens’ wave theory of light and
the geometric optics of Descartes. The mathematical technique that allows to formalize

Disordered metal 
(3D Anderson 
model at w/t = 2)

RMT: quantum chaos, long-time 
dynamics of interacting many-body 
Hamiltonians, quantum 
chromodynamics, fractional quantum 
Hall, superconductivity, number theory, 
neuroscience, finance etc.

Do Swedish pines diagonalize 
random matrices? Le Caer (1989).
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0 1 2 s 3  

Fig. 3. - Hubbard chain of 12 sites at one-quarter filling, total momentum k = x/6 and total spin S = 0 
with parameters a)  U = 4 and V = 0, an integrable case; and b)  U = 4 and V = 4. 

interested in empirical methods of establishing integrability by looking at level statistics the 
stronger observation is the observed agreement with GOE. If, instead of the infinite number 
of subspaces of the integrable point there were a finite number of new conservation laws at a 
special point (for example at the supersymmetric point in higher dimension) we would find a 
law intermediate between the GOE and Poisson. In practice, however, this would appear 
more Poisson than GOE. In particular, a finite superposition of spectra, each with GOE 
statistics, has a non-zero probability density at zero repulsion P(0) # 0 [4] and rapidly 
approaches Poisson. Had we not known the integrability of the t- J model, we could probably 
have concluded little more than the existence of degenerate multiplets. 

In conclusion, random matrix theory, remarkably enough, works also for the N-body 
problem in quantum statistical mechanics. Even though classically, the symmetries are 
identical in the integrable or non-integrable Hamiltonians, complete integrability in the 
quantum case leads to Poisson statistics whereas the Wigner distribution for level repulsion 
occurs otherwise. While Poisson statistics may not be a characteristic of integrability, a 
Wigner distribution is probably a good test for the absence of integrability. 

* * *  
The computer simulations were done on the CRAY-2 of Centre de Calcul Vectoriel pour la 

Recherche (CCVR), Palaiseau, France. Support from CCVR is greatly appreciated. We 
would like to thank T. Hsu and A. D'AURIAC for sending us an unpublished account of 
calculations in general agreement with the numerical results (but with different boundary 
conditions) presented here. The computer programs for the Heisenberg and Hubbard models 
were adapted from those developed by T. Z. and H. J. SCHULTZ and F. M. and X. ZOTOS, 
respectively, to whom we are most grateful. We should like to thank C. SIRE and M. 
CAFFAREL for useful discussions. 
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Poisson

GOE

Poilblank et.al. 
Europhys. Lett. (1993)

Properties of quantum integrable systems: Poisson statistics
Example: 1D Hubbard model

Level spacing distribution for a Hubbard chain with 12
sites at 1/4 filling, total momentum P = ⇡/6, spin S = 0

Similarly to RMT 
observed in 
integrable systems
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See also Relano, Dukelsky et. al. PRE (2004)

Properties of quantum integrable systems: Poisson statistics
Counterexample: BCS Hamiltonian

Level spacing distribution for the BCS Hamiltonian
in a 5000⇥ 5000 same symmetry sector

Poisson

GOE

Q: Is Poisson statistics a signature of 
integrability? Is BCS an exception? Why?



Definition: Quantum (matrix) Hamiltonian H
is integrable if… 

Consequences:
1. Exact Solution
2. Energy level crossings: why sometimes there 

are none? How many crossings to expect?
3. Poisson level statistics and exceptions –

need ensembles of integrable models for this.
4. Generalized Gibbs Ensemble for dynamics?

Notion of Quantum Integrability: What are we looking for?

Classical integrability has it!



Can we develop a similarly sound notion of integrability in Quantum 
Mechanics – for    Hermitian matrices (Hamiltonians)? 

Ĥ(u) =
X

j,s="#
(ĉ†jsĉj+1 s + ĉ†j+1 sĉjs) + u

X

j

n̂j"n̂j#

Ĥ1(u) = �i
X

j,s="#
(ĉ†j+2sĉjs � ĉ†jsĉj+2s)� iu

X

j,s="#
(ĉ†j+1sĉjs � ĉ†jsĉj+1s)(n̂j+1,�s + n̂j,�s � 1)

The Hamiltonian and at least one other integral of motion are linear in a real parameter 
u. This integral is sufficient for explaining the level crossings. Same is the case of other 
parameter-dependent integrable lattice models (BCS, 1D Heisenberg). 

N ⇥N

For any given number of sites: 
H(u) = T + uV, H1(u) = T1 + uV1, u – real parameter

T, V, T1, V1 – N ⇥N Hermitian matrices



Proposed solution: introduce & fix parameter dependence

Suppose we require a commuting partner also linear in u:
H1(u) = T1 + uV1

These commutation relations severely constraint matrix elements of T. For a 
generic/typical H(u) – no commuting partners except itself and identity. Now 
can separate generic (no integrals) from special (integrable).

[V, V1] = 0, [T, V1] = [T1, V ], [T, T1] = 0

Let H(u) = T + uV , u – real parameter, T, V – N ⇥N Hermitian matrices

[H(u), H1(u)] = 0 for all u



N x N Hamiltonians linear in a parameter separate into two 
distinct classes = good notion of integrability

H(u) = T + uV No commuting partners linear in u other than 
itself and identity (typical) – nonintegrable, 
need N2/2 real parameters to specify H(u)

Nontrivial commuting partners Hk(u)=Tk+uVk exist –
integrable, turns out need less than  4N parameters –
measure zero in the space of linear Hamiltonians

Classification  by the number n of integrals of motion
n = N - 1 (maximum possible) – type 1 integrable system
n = N - 2 – type 2
n = N - 3 – type 3
…
n = N - M – type M
… 

Owusu &Yuzbashyan, J. Phys. A (2011)
Yuzbashyan & Shastry, J. Stat. Phys. (2013) 



Definition: A matrix Hamiltonian H ⌘ H0(u) = T0 + uV0 is
integrable if it has n > 1 linearly independent commuting
partners Hi(u) = Ti + uVi discounting multiples of the identity.

[Hi(u), Hj(u)] = 0 for all u and i, j = 0, 1, . . . , n� 1

General member of the commuting family: H(u) =
n�1X

i=0

diHi(u)



What can we achieve with this notion of quantum integrability? –
almost everything we wanted and more!!

§ Explicitly Construct integrable models with any prescribed number n of integrals!    

[Hi(u), Hj(u)] = 0, Hi(u) = Ti + uVi, Hj(u) = Tj + uVj

[Vi, Vj ] = 0, [Ti, Vj ] = [Tj , Vi], [Ti, Tj ] = 0

Simplest case: n = N - 1 (type 1 – max # of integrals – analog of classical integrability)



Simplest case: n = N - 1 (type 1 – max # of integrals – analog of classical integrability)

Every type 1 family is uniquely specified by a choice of a Hermitian matrix and a 
vector and vice versa  

Hermitian matrix E Arbitrary vector |��

N commuting N ⇥N Hermitian matrices Hi(u)

General member of the commuting family: H(u) =
X

i

diHi(u) = T + uV

[H(u)]km = u�k�m

✓
dk � dm
"k � "m

◆
, [H(u)]mm = dm � u

X

j 6=m

�2
j

✓
dj � dm
"j � "m

◆To pick H(u), pick N arbitrary di or, equivalently, pick a matrix T (or V )

"k – eigenvalues of E, �k – components of |�i
(2N arbitrary real parameters to pick a commuting family)

dk – eigenvalues of T – another N arbitrary real numbers to pick
a specific Hamiltonian within the family

Constructed all n = N-1, N-2, N-3 (types 1, 2, 3) and some for arbitrary other n



What can we achieve with this notion of quantum integrability? –
almost everything we wanted and more!!

§ Exact solution through a single algebraic equation for all types 
(cf. Bethe’s Ansatz)

NX

j=1

�2
j

�� ✏j
= u, Ek =

�2
k

�� ✏k
, |�i =

X

j

�j |ji
�� ✏j

(type 1)

§ Number of level crossings  as a function of  type, i.e. the number (n) of  
integrals of motion

# of crossings = (N2 � 5N + 2)/2 + n� 2k, k = 1, 2, . . .

Typically ⇡ N2/2 crossings.

Any type 1 Hamiltonian has at least one crossing.

But for higher types it is also possible to have no crossings.

�j , ✏j - given; solve for �

Owusu &Yuzbashyan, J. Phys. A (2011); Yuzbashyan, Shastry, Scaramazza, PRE (2016) 



Integrable Matrix Theory (IMT) – ensemble theory of quantum 
integrability

Other types arise similarly from two commuting matrices and a vector

To generate an integrable matrix with any prescribed number of 
integrals – generate T, E and |g>

Two matrices T,E & vector |�i () type 1 H(u) = T + uV



Integrable Matrix Theory (IMT) – ensemble theory of quantum 
integrability

To generate an ensemble of integrable matrices with any prescribed 
number of integrals – generate an ensemble of T, E and |g>

Probability density function P(T, E, g) from rotational invariance as in 
Random Matrix Theory

Now can study ensembles of integrable matrices and obtain 
integrable counterparts of the RMT results as opposed to only a 
spectral statistics of isolated integrable models!!

Other types arise similarly from two commuting matrices and a vector
Two matrices T,E & vector |�i () type 1 H(u) = T + uV

T,E – random matrices, e.g. from GOE, |�i – random vector



Integrable Matrix Theory (IMT) – ensemble theory of quantum 
integrability

RMT – theory of quantum chaos IMT – theory of quantum regularity

From Ben Simon’s group website Regularity by Jackal Ennui: “A little ode… to 
regularity and chaos”



I. Statistics are typically Poisson as long as the number of integrals (= size-
type) isn’t too small

2
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FIG. 1: (colour online) The level spacing distribution for a
4000⇥4000 real symmetric integrable matrix H(x) = xT +V
(defined in Sect. II), x = 1. This particular matrix is a sum of
200 linearly independent matrices that commute for all values
of the real parameter x. Note that the spacing distribution is
maximized at s = 0, a feature known as level clustering. The
smooth curve is a Poisson distribution, which is theorized to
be typical of integrable matrices. Compare to the generic real
symmetric matrix case in Fig. 2.
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RandomMatrix

FIG. 2: (colour online) The level spacing distribution of a
4000⇥4000 random real symmetric matrix with entries chosen
as independent random numbers from a normal distribution
with zero mean and unit variance. Such a matrix belongs to
the Gaussian orthogonal ensemble (GOE) of real symmetric
matrices, studied in random matrix theory (RMT). The main
feature of the spacing distribution here is its vanishing for
small spacings, also known as level repulsion. The smooth

curve is the Wigner surmise P (s) = ⇡
2 se

�⇡
4 s2 . Compare to

the integrable matrix case in Fig. 1.

not be represented as a collection of decoupled harmonic
oscillators.

Our main results are as follows. For a generic choice
of parameters, the level statistics of integrable matrices
H(x) are Poissonian in the limit of the Hilbert space size
N ! 1 if the number of conservation laws n scales at
least as logN . Exceptions to Poisson statistics fall into

two categories. First, it is always possible to construct
a commuting family that has any desired level spacing
distribution at a given isolated value, x = x

0

, of the cou-
pling (or external field) parameter. The statistics quickly
cross back over, however, to Poisson at deviations from
x
0

of size �x ⇠ N�1. Second, one obtains non-Poissonian
distributions by introducing correlations among the or-
dinarily independent parameters characterizing an inte-
grable matrix H(x); the reduced BCS model falls into
this category. The statistics again revert to Poisson at
O(N�1) deviations from such correlations. We also show
numerically that as N ! 1, integrable matrix ensembles
satisfy two distinct definitions of ergodicity with respect
to the nearest-neighbor spacing distribution P (s). Not
only are the statistics of a single matrix representative of
the entire ensemble, but the statistics of the j-th spacing
across the ensemble are independent of j.
In Sect. III, we present numerical results on the level

statistics of type-1 matrices, defined to be integrable ma-
trices H(x) with the maximum number n

max

= N � 1
of linearly independent commuting partners. Section IV
contains numerical results for integrable matrices with
n  n

max

. We present our analytical justification of nu-
merical results using perturbation theory in Sect. V. Fi-
nally, we give numerical results on ergodicity in Sect. VI.

II. BASIC NOTIONS

Refs. 12–14 contain a comprehensive account of the
rigorous definition of an integrable matrix, including mo-
tivating factors and connections to known quantum in-
tegrable models. Ref. 11 then uses this definition to
construct basis-independent ensembles of such matrices.
Here, we give a brief definition of integrable matrices be-
fore delving into their level statistics. We say that H(x)
is integrable if there exist n > 1 nontrivial linearly inde-
pendent N ⇥N Hermitian matrices Hi(x)

Hi(x) = xT i + V i such that

⇥
H(x), Hi(x)

⇤
= 0, [Hi(x), Hj(x)] = 0

for all x and i, j = 1, . . . , n.

(1)

Multiples of the identityH0(x) ⌘ (bx+c) are considered
trivial and linear independence is therefore understood
up to a multiple of the identity, i.e.

P
n

i=1

a
i

Hi(x) =
(bx + c) with real a

i

if and only if all a
i

= 0 and
b = c = 0. In addition, we impose an (optional) con-
dition that Hi(x) have no common x-independent sym-
metries – there is no constant matrix ⌦ ( 6= a ) such that
[⌦, Hi(x)] = 0 for all x and i. If there are such sym-
metries, Hi(x) are simultaneously block-diagonal and
Eq. (1) reduces to that for smaller matrices without x-
independent symmetries. Further, it follows that up to a
multiple of the identity H(x) must be a linear combina-

H(u) = T + uV

Integrable Matrix Theory, Level Statistics

Nearest neighbor level spacing distribution for a 4000⇥ 4000 time
reversal invariant integrable Hamiltonian H(u) = T + uV at u = 1

Scaramazza, Shastry, 
Yuzbashyan, PRE (2016)

Poisson because of superposition of many independent spectra

General member of the commuting family: H(u) =
n�1X

i=0

diHi(u)



I. Statistics are typically Poisson as long as the number of integrals (= size-
type) isn’t too small

II. There are two exceptions to Poisson statistics
A. There is a single, isolated value of the coupling u = u0  where the level 

statistics of H(u) = T+uV are Wigner-Dyson (here u0 = 0).

Integrable Matrix Theory, Level Statistics

T,E – random matrices, e.g. from GOE, |�i – random vector
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all type-1 matrices, i.e. independent of the number n of
basis matrices (conservation laws) in linear combination
as long as n > O(logN).

We fit all spacing distributions P (s) to the Brody
function1 P (s,!), where ! is the Brody parameter

P (s,!) = a(!)s!e�b(!)s

!+1

. (7)

The distribution in Eq. (7) has unit mean and norm with
appropriate choices of constants a(!) and b(!). It in-
terpolates between a Poisson distribution P (s) = e�s at

! = 0 and the Wigner surmise P (s) = ⇡

2

se�
⇡
4 s

2

at ! = 1,
and hence is a convenient fitting function. The Brody pa-
rameter ! can take all values ! > �1, which means it
also can detect enhanced level clustering or repulsion.

C. Crossover in coupling parameter x

Here we show that even if statistics are engineered to
be non-Poissonian at a given coupling value x = x

0

(we
set x

0

= 0), level clustering is restored at small devia-
tions from x

0

. For any N , the matrices T and V each
have eigenvalues that lie on an O(1) interval centered
about zero. We consider the primary type-1 construc-
tion encountered in Eq. (3) and explore the level statis-
tics of large matrices. In Fig. 3, we see qualitatively how
the statistics change with x when N = 4000. We find
that Poisson statistics dominate until a crossover begins
near N�1. Finally, only once x < N�1 do we find level
repulsion in integrable type-1 matrices.

To verify that the crossover scaling inferred from Fig. 3
is correct for all N � 1, in Fig. 4 we plot how the
Brody parameter ! (see Eq. (7)) evolves with x for vari-
ous choices of N . It turns out that !(x,N) can be fit to
a relatively simple function, for any N � 1

!(x,N) = ↵� � tanh

✓
log

N

x�X
0

Z

◆
. (8)

The numbers (↵,�, X
0

, Z) are fit parameters and take the
values (0.482, 0.474,�1.04, 0.157) in Fig. 4. Most impor-
tant is that for any N � 1 we find X

0

⇠ �1, which solid-
ifies our claim that the crossover occurs when x ⇠ N�1.
Analytical arguments explaining this scaling are given in
Sect. V.

D. Correlations between matrix parameters

In the eigenbasis of V , our parametrization of inte-
grable N ⇥N matrices is given in terms of about 3N in-
dependent parameters. Through an explicit construction
of the probability density function of integrable matri-
ces obtained through basis-independent considerations,
Ref. 11 shows that for a typical integrable matrix, d

i

and
"
i

are indeed uncorrelated. We see in this section that if
correlations are introduced between "

i

and d
i

, the statis-
tics become non-Poissonian. Small perturbations about

!"! !"# $"! $"# %"! %"# &"!

!"!

!"%

!"'

!"(

!")

$"!

*

+
�*⇥ x ⇥ N�1.5

x ⇥ N�1
x ⇥ 1

FIG. 3: (colour online) Crossover in coupling x of the level
statistics of type-1 integrable N⇥N matrices H(x) = xT+V ,
N = 4000. See Sect. III A for their parametrization. V is
a random matrix so that H(x = 0) is engineered to have
level repulsion. Each distribution contains the levels statis-
tics of a single matrix H(x) at a given value of x. Note that
level repulsion does not start to set in until x = N�1. Each
numerical distribution is fit to the Brody function P (s,!)
from Eq. (7); for couplings x =

�
1, N�1, N�1.5

�
the fits give

! = (0.94, 0.30, 0.01), respectively. The solid lines are ref-
erence plots of a Poisson distribution P (s) = e�s and the

Wigner Surmise P (s) = ⇡
2 se

�⇡
4 s2 . See Fig. 4 for more on this

crossover.
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!
�,⇥

⇤

N ⇥ 4000
N ⇥ 2000
N ⇥ 1000
N ⇥ 500

!"#$$"%

FIG. 4: (colour online) Crossover in level statistics with vari-
ation of coupling parameter x in type-1 integrable N ⇥ N
matrices H(x) = xT + V , quantified by the Brody parameter
!(x,N) from Eq. (7). The two important limits are ! = 0
for Poisson statistics and ! = 1 for random matrix (Wigner-
Dyson) statistics. Each plotted value !(x,N) is computed
for the combined level spacing distribution of several matri-
ces from the ensemble. We extract the crossover scale by
fitting !(x,N) to Eq. (8) (solid curve) to all curves simulta-
neously, where most notably X0 ⇠ �1 for all N investigated,
indicating that crossovers to Poisson statistics occur at cou-
plings x ⇠ N�1 for integrable matrices H(x) when H(x = 0)
is engineered to have level repulsion. The precise crossover
point is indicated by a vertical line.

Brody parameter w as a function of logN (u)

Brody distribution: 
P (s,!) = as!e�bs!+1

GOE

But it reverts to Poisson already at (u� u0) / 1/N

logN (u)

P (s, 1) = ⇡
2 se

�⇡
4 s2

– Wigner

P (s, 0) = e�s
– Poisson

N ⇥N type 1, number of integrals = N � 1

I. Statistics are typically Poisson as long as the number of integrals (= size-
type) isn’t too small

II. There are two exceptions to Poisson statistics
A. There is a single, isolated value of the coupling u = u0  where the level 

statistics of H(u) = T+uV are Wigner-Dyson (here u0 = 0).



Exceptions to Poisson Statistics in IMT   

A. There is a single, isolated value of the coupling u = u0  where the level 
statistics of H(u) = T+uV are Wigner-Dyson.

A. Statistics are non-Poisson when normally uncorrelated parameters become 
correlated (atypical integrable model, special member of the family)

[H(u)]km = u�k�m

✓
dk � dm
"k � "m

◆
, [H(u)]mm = dm � u

X

j 6=m

�2
j

✓
dj � dm
"j � "m

◆

General member of the commuting family: H(u) =
X

i

diHi(u) = T + uV

Most general type 1 integrable model:

T = f(E), di = f("i) – non-Poisson with strong level repulsion,

e.g. BCS model has di = "i (all-to-all energy-independent interactions)

T,E – random matrices, e.g. from GOE, |�i – random vector



Exceptions to Poisson Statistics in IMT   

A. There is a single, isolated value of the coupling u = u0  where the level 
statistics of H(u) = T+uV are Wigner-Dyson.

A. Statistics are non-Poisson when normally uncorrelated parameters become 
correlated (atypical integrable model, special member of the family)

Brody distribution: 
P (s,!) = as!e�bs!+1

P (s, 1) = ⇡
2 se

�⇡
4 s2

– Wigner

P (s, 0) = e�s
– Poisson

Reverts to Poisson at deviations � / 1/N from such special members

Di – O(1) random number
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FIG. 10: (colour online) Variation in the Brody parameter
!(�, N) when gi = �i(1+ �Gi) in the level statistics of N ⇥N
ansatz type-M integrable matrices H(x), Eq. (14), for various
N and M , x = 1. The ordered pairs given in the legend indi-
cate size and type (N,M) of the matrices used to generate the
curves. The number � is a parameter controlling the size of
the perturbation from correlation, and Gi is a O(1) random
number from a normal distribution. The crossover in � for
small M is very similar to the primary type-1 crossover in x
given in Fig. 4 and the primary type-1 correlation crossovers
in � in Figs. 7, 8. For larger M , correlations cannot be in-
troduced (see Eq. (21)). Although these matrices have fewer
than the maximum number of conservation laws, the crossover
still demonstrates the same universal scaling observed earlier;
fitting the numerical curves to !(�, N) given in Eq. (11) (solid
curves), with a crossover scale X0 ⇠ �1 (indicated by a verti-
cal line), we find again that deviations from correlation of size
N�1 are enough for statistics to revert to Poisson. Each plot-
ted value !(�, N) is computed for the combined level spacing
distribution of several matrices from the ensemble. For the
case of correlations in ansatz matrices, we actually choose all
�k > 0 in order to avoid pathological statistics in H(x).

matrices. Denoting n as the number of conservation laws
contained in a linear combination, the Brody parameter
!(n,N) once again decays exponentially:

!(n,N) = ae�(

b
lnN )n, (23)

where a and b are real constants that in principle depend
implicitly on N and M . We see from Fig. 11, N = 500,
that !(n,N) decays to zero in nearly the same way for
M = 470 as for M = 20. It is only for very large M ,
such as M = 497, that level clustering is forbidden, and
this only because we can use a maximum of 3 nontrivial
basis matrices. Similar behavior emerges for N = 2000
in Fig. 12. For all N and M tested, we find b ⇠ 1 so that
in order to obtain Poisson statistics in ansatz type-M
integrable N ⇥ N matrices with n conservation laws in
linear combination, we establish the same upper bound
on n

min

as in Sect. III E, namely n
min

< O(N↵) where
0 < ↵ < 1.
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FIG. 11: (colour online) Graph of the Brody parameter
!(n,N) (Eq. (7)) vs. number n of ansatz type-M basis ma-
trices Hi(x), see Eq. (18), contained in linear combination
H(x) =

Pn
i=1 giH

i(x) for N = 500, x = 1. The fits pre-
sume exponential decay and are expressed in terms of two
parameters (a, b) from Eq. (13). For M = (250, 480) we find
the decay constant b = (1.13, 1.04), indicating that we only
need nmin ⇠ logN conservation laws for Poisson statistics
to emerge, independent of type. We do not observe Poisson
statistics for M = 497 because the maximum number of non-
trivial basis matrices is 3 in this case, and we see that we
need at least ⇠ 15 conservation laws for Poisson statistics to
start emerging for N = 500. See Fig. 12 for a similar plot for
N = 2000 and Fig. 9 for the same concept in type-1 matrices
in the primary parametrization. Each plotted value !(n,N)
is computed for the combined level spacing distribution of
several matrices from the ensemble.

V. ANALYTICAL RESULTS: PERTURBATION
THEORY

Some of the numerical observations found in Sects. III
and IV can be understood using perturbation theory in
the parameter x. We restrict our analysis to the pri-
mary type-1 parametrization because our arguments for
this case are much more transparent than for the ansatz
construction. The analysis for ansatz matrices is similar.
The eigenvalues ⌘

m

(x) of H(x) to first order in x are
given by the second equation in (3), where we set con-
stant |�

j

|2 = N�1 for clarity and to achieve proper scal-
ing for large N

⌘
m

(x) ⇡ d
m

� x

N

X

j 6=m

✓
d
m

� d
j

"
m

� "
j

◆
. (24)

The first term comes from V , which we take to have a
Wigner-Dyson P (s), and the second term from T , which
is determined by the integrability condition and whose
level statistics we do not control. Let us estimate the x
at which the two terms in Eq. (24) become comparable.
Without loss of generality we can take d

k

= O(N0) =
O(1) and we must also take "

k

= O(1) so that T and
V scale in the same way for large N . Suppose "

k

are
ordered as "

1

< "
2

< · · · < "
N

. When d
k

and "
k

are

(N,M)

di = (1 + �Di)"i
Brody parameter w as a function of logN (d )

N ⇥N type M, number of integrals = N �M , u = 1

T,E – random matrices, e.g. from GOE, |�i – random vector



Q: How many nontrivial integrals of motion must a system have so 
that its level statistics are Poisson? 

# of nontrivial integrals = 
Size – Type = N - M 9
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FIG. 10: (colour online) Variation in the Brody parameter
!(�, N) when gi = �i(1+ �Gi) in the level statistics of N ⇥N
ansatz type-M integrable matrices H(x), Eq. (14), for various
N and M , x = 1. The ordered pairs given in the legend indi-
cate size and type (N,M) of the matrices used to generate the
curves. The number � is a parameter controlling the size of
the perturbation from correlation, and Gi is a O(1) random
number from a normal distribution. The crossover in � for
small M is very similar to the primary type-1 crossover in x
given in Fig. 4 and the primary type-1 correlation crossovers
in � in Figs. 7, 8. For larger M , correlations cannot be in-
troduced (see Eq. (21)). Although these matrices have fewer
than the maximum number of conservation laws, the crossover
still demonstrates the same universal scaling observed earlier;
fitting the numerical curves to !(�, N) given in Eq. (11) (solid
curves), with a crossover scale X0 ⇠ �1 (indicated by a verti-
cal line), we find again that deviations from correlation of size
N�1 are enough for statistics to revert to Poisson. Each plot-
ted value !(�, N) is computed for the combined level spacing
distribution of several matrices from the ensemble. For the
case of correlations in ansatz matrices, we actually choose all
�k > 0 in order to avoid pathological statistics in H(x).

matrices. Denoting n as the number of conservation laws
contained in a linear combination, the Brody parameter
!(n,N) once again decays exponentially:

!(n,N) = ae�(

b
lnN )n, (23)

where a and b are real constants that in principle depend
implicitly on N and M . We see from Fig. 11, N = 500,
that !(n,N) decays to zero in nearly the same way for
M = 470 as for M = 20. It is only for very large M ,
such as M = 497, that level clustering is forbidden, and
this only because we can use a maximum of 3 nontrivial
basis matrices. Similar behavior emerges for N = 2000
in Fig. 12. For all N and M tested, we find b ⇠ 1 so that
in order to obtain Poisson statistics in ansatz type-M
integrable N ⇥ N matrices with n conservation laws in
linear combination, we establish the same upper bound
on n

min

as in Sect. III E, namely n
min

< O(N↵) where
0 < ↵ < 1.
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FIG. 11: (colour online) Graph of the Brody parameter
!(n,N) (Eq. (7)) vs. number n of ansatz type-M basis ma-
trices Hi(x), see Eq. (18), contained in linear combination
H(x) =

Pn
i=1 giH

i(x) for N = 500, x = 1. The fits pre-
sume exponential decay and are expressed in terms of two
parameters (a, b) from Eq. (13). For M = (250, 480) we find
the decay constant b = (1.13, 1.04), indicating that we only
need nmin ⇠ logN conservation laws for Poisson statistics
to emerge, independent of type. We do not observe Poisson
statistics for M = 497 because the maximum number of non-
trivial basis matrices is 3 in this case, and we see that we
need at least ⇠ 15 conservation laws for Poisson statistics to
start emerging for N = 500. See Fig. 12 for a similar plot for
N = 2000 and Fig. 9 for the same concept in type-1 matrices
in the primary parametrization. Each plotted value !(n,N)
is computed for the combined level spacing distribution of
several matrices from the ensemble.

V. ANALYTICAL RESULTS: PERTURBATION
THEORY

Some of the numerical observations found in Sects. III
and IV can be understood using perturbation theory in
the parameter x. We restrict our analysis to the pri-
mary type-1 parametrization because our arguments for
this case are much more transparent than for the ansatz
construction. The analysis for ansatz matrices is similar.
The eigenvalues ⌘

m

(x) of H(x) to first order in x are
given by the second equation in (3), where we set con-
stant |�

j

|2 = N�1 for clarity and to achieve proper scal-
ing for large N
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� x
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The first term comes from V , which we take to have a
Wigner-Dyson P (s), and the second term from T , which
is determined by the integrability condition and whose
level statistics we do not control. Let us estimate the x
at which the two terms in Eq. (24) become comparable.
Without loss of generality we can take d

k

= O(N0) =
O(1) and we must also take "

k

= O(1) so that T and
V scale in the same way for large N . Suppose "

k

are
ordered as "

1

< "
2

< · · · < "
N

. When d
k

and "
k

are
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FIG. 12: (colour online) Graph of the Brody parameter
!(n,N) (Eq. (7)) vs. number n of ansatz type-M basis ma-
trices Hi(x), see Eq. (18), contained in linear combination
H(x) =

Pn
i=1 giH

i(x) for N = 2000, x = 1. The fits pre-
sume exponential decay and are expressed in terms of two
parameters (a, b) from Eq. (13). For M = (1000, 1980) we
find the decay constant b = (0.99, 1.03), indicating that we
only need nmin ⇠ logN conservation laws for Poisson statis-
tics to emerge, independent of type. We do not observe Pois-
son statistics for M = 1997 because the maximum number of
nontrivial basis matrices is 3 in this case, and we see that we
need at least ⇠ 20 conservation laws for Poisson statistics to
start emerging for N = 2000. See Fig. 11 for a similar plot for
N = 500 and Fig. 9 for the same concept in type-1 matrices
in the primary parametrization. Each plotted value !(n,N)
is computed for the combined level spacing distribution of
several matrices from the ensemble.

uncorrelated d
m

� d
j

is O(1) when j is close to m, i.e.
when ("

m

� "
j

) = O(N�1). The second term in Eq. (24)
is then xc

m

lnN , where c
m

= O(1) is a random number
only weakly correlated with d

m

. We performed simple
numerical tests that confirm this scaling argument.

If we now order d
m

, c
m

in general will not be ordered,
i.e. if d

m+1

> d
m

is the closest level to d
m

and there-
fore (d

m+1

� d
m

) = O(N�1), the corresponding di↵er-
ence (c

m+1

� c
m

) = O(1). The contributions to level-
spacings from the two terms in Eq. (24) become compa-
rable for x = x

c

⇡ 1/(N lnN). It makes sense that the
second term introduces a trend towards a Poisson dis-
tribution because it is a (nonlinear) superposition of "

k

and d
k

– eigenvalues of two uncorrelated random matri-
ces. Thus, we expect a crossover from Wigner-Dyson to
Poisson statistics at x = x

c

. In our numerics we observe
x
c

⇠ N�1 likely because we do not reach large enough
N to detect the log component of the crossover.

This argument breaks down when d
k

= f("
k

), since in
this case (d

m

�d
j

) = O(N�1) when ("
m

�"
j

) = O(N�1).
The two terms in Eq. (24) become comparable only at
x = O(1); moreover, the second term no longer trends
towards Poisson statistics. Relaxing the correlation be-
tween d

k

and "
k

with d
k

= f("
k

)(1 + �D
k

), D
k

= O(1),
and going through the same argument, one expects a

crossover to Poisson statistics at � = O(1/N lnN) when
x = O(1).
We can gain additional insight into the case of corre-

lated d
i

and "
i

from the BCS Hamiltonian. As mentioned
earlier, in this case d

i

= "
i

. According to Eq. (10) the
eigenvalues are

⌘
m

(x) = x
NX

k=1

"
k

�2

k

�
m

� "
k

= �
m

� x
NX

k=1

�2

k

, (25)

where we used Eq. (5). It also follows from Eq. (5) that
�
m

lie between consecutive "
i

and therefore ⌘
m

(x) can
have no crossings characteristic of the Poisson distribu-
tion at any finite x.
What is the scale of the perturbation of the d

k

’s needed
to create such a crossing? Let us, for example, modify a
single d

k

d
k

= "
k

+ ��
ik

(26)

where �
ik

is a Kronecker-� function and � a small per-
turbation. We can write out the ⌘

m

explicitly as

⌘
m

= �
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� x
X
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+ x�
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i

�
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(27)

and after a few steps of algebra we find that
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(28)
Since there are no crossings in the � spectrum we can say
that the condition for a crossing of ⌘

m

is

1

x
=

��2

i

(�
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i

)(�
m

� "
i

)
. (29)

We can extract the scale of � by recalling that �2

i

⇠ N�1

and (�
m

� "
i

) ⇡ ("
m

� "
i

) ⇡ (m� i)/N . Finally, for the
case x ⇠ O(1) we find

� ⇠ (m� i)2

N
. (30)

So a perturbation of d
i

in the BCS problem need only be
O(N�1) to produce a crossing at finite x.
The level repulsion observed in basis matrices is a con-

sequence of the level repulsion implicit in the parame-
ters �

i

, independent of the choice of "
i

. Indeed, basis
matrices Hk(x) in the primary type-1 parametrization,

Eq. (3), have eigenvalues ⌘k
m

(x) =
1

�
m

� "
k

, which is a

smooth function of �
m

except near "
k

. The ⌘k
m

(x) there-
fore inherit the level repulsion of the �

m

, which interlace
the "

m

and therefore repel each other regardless of the
statistics of "

i

(see Fig. 6). Analogous reasoning applies
to ansatz basis matrices.

H(u) =
kX

i=1

diHi(u), k  N �M

Brody parameter ! as a function of k for N ⇥N type M matrices.

Fit: a exp(�bk/ lnN). b = (1.13, 1.04; 0.99, 1.03) for M = (250, 480; 1000, 1980)

N = 500 N = 2000

! = 1 – GOE, ! = 0 – Poisson

# of integrals needed ⇡ lnN = log of Hilbert space dim / particle #

Scaramazza, Shastry, Yuzbashyan, PRE (2016)



Proposed a simple notion of integrability for parameter-dependent N x N Hamiltonians

Consequences: 
1. Exact solution in terms of a single algebraic equation

1. # of level xings as function of size and # of integrals. # of xings varies within the 
commuting family. Typically N2/2 xings, but can also have no xings when the # of 
integrals is less then maximal

1. Integrable Matrix Theory – theory of quantum regularity. Typical statistics are 
Poissonian when the # of integrals > ln N. Guaranteed Wigner-Dyson at isolated 
value of the parameter and for special, “correlated members” of the commuting 
family (explains BCS). Further: ergodicity etc.

1. Generalized Gibbs Ensemble works when the # of integrals are maximal. Has to do 
with localization of the eigenstates of H(u). Does it work for fewer integrals? 

1. Solvable multi-state Landau-Zener problems are integrable matrices. Can we solve 
new such problems?

[H(u), H1(u)] = 0 for all u

H(t) = A+ tB, where A,B - N ⇥N Hermitian matrices.
t goes from �1 to +1. Determine p(i ! k)
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