How strong the electron-phonon interaction in metals can be?
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ABSTRACT

Using current superconductivity theory and some assumptions
about the normal state properties of sovlids, estimates of the maxi~
mum superconducting transition temperature are made. The optimum
resonant frequency for an attractive interaction, the role of

umklapp scattering, and the appearance of lattice instabilities are
discussed.
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¢ Effective low-energy theory valid in the weak coupling limit only
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%* Attraction between electrons of opposite momenta in an energy window (—¢2, €2) centered on

the Fermi level

% ()— ultraviolet cutoff of the order of the typical phonon energy, e.g., the Debye energy. “This
cutoff corresponds to forming our wave function from states in the region where the
interaction is expected to be attractive and not mixing in states outside this region.”

¢ Emerges from the high-energy (Eliashberg) theory in the weak coupling limit A — 0



BCS Theory
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Electron-phonon Hamiltonians

Holstein Hamiltonian

H = thcwcaa +Z [ Koili ] +O‘anx"
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T. Holstein, Studies of polaron motion..., Ann. Phys. 8, 325 (1959)

A. Einstein, Planck’s theory of radiation and the theory of
the specific heat, Ann. d. Physik 22, 180 (1907)

Emstem 1n 1905 Theowdore Holstein

Frohlich Hamiltonian
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H. Frolich, Electrons in lattice fields, Adv. Phys. 3, 325 (1954) Hotbotiptothieh



Main conclusions are independent of the choice of the effective
Hamiltonian, so let us work with the Holstein Hamiltonian
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Electron hopping Lattice oscillators Electron-phonon interaction

N — number of electrons on site 2



INTERACTION BETWEEN ELECTRONS AND LATTICE VIBRATIONS IN A NORMAL METAL

J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 1438-1446 (June, 1958)

A method is developed which enables one to obtain the electron-energy spectrum and disper-
sion of the lattice vibrations without assuming that the interaction between electrons and pho-

nons is small.

INTERACTIONS BETWEEN ELECTRONS AND LATTICE VIBRATIONS IN A

SUPERCONDUCTOR
J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 966-976 (March, 1960)

A perturbation theory is developed for the Green’s function in which the Green’s function cal-
culated for the superconducting ground state is used as the zero approximation. Dyson equa-
tions are written down from which the electron Green’s function can be determined. Interac-
tion between electrons and phonons is not assumed to be small. The spectrum and the damping

of the excitations are calculated.

G. M. Eliashberg



Phonon-mediated electron-electron interaction
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Electrons renormalize (modify) lattice vibrations

K —renormalized spring const of lattice oscillators

Main parameter: dimensionless electron-phonon coupling const: A = =— =




Weak coupling limit (BCS theory)
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Phonon-mediated electron-electron interaction: [/ (w) =

At A < 1 frequencies relevant for superconductivity w ~ A(T = O) = Qe /2 < ()

— Uw) =X = UlFr-1)=XMr-1) Instantaneous 1nteraction
(non-retarded)
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Path integral formulation of the Migdal-Eliashberg theory
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1. Integrate out phonons

2. Decouple e-¢ interactions with Hubbard-Stratonovich fields X+(7',7), X,(7',7), ®(r',7)

3. Integrate out electrons to obtain an effective action in terms of the Hubbard-Stratonovich
fields only

4. Stationary point of the effective action = Migdal-Eliashberg theory

Fluctuations around the stationary point negligible in the limit: Fr — 00



Stationary point equations = Eliashberg equations:

wy, = L (2n + 1) — fermionic Matsubara frequency

Yn = 2(wy), P, = P(w,)—normal & anomalous self-energies

Yir, s real

®,, is complex




Stationary point equations = Eliashberg equations:

D, m + 2m
= 1T Up ey O i’ i
i \/(Wm+2m)2‘|‘ D | i \/(Wm+2m)2+ | P |?
U ) Yon = X(wy), D, = ®(w,)—normal & anomalous self-energies

wy, = T1'(2n + 1) — fermionic Matsubara frequency

Introduce Green’s functions: (1) = #U(7)F(7), X(7) =xU(7)G(7)
(energy-integrated)

Stationary pOiIlt eds = —> L o = Wit M

Vwn T2 + 2027 7 (e + Tn)? £ B2

Stationary point constraint: Gi + | Fn‘z —1



%l

Stationary point constraint: Gi + |F, — SerL — 1

Components of a classical spin S, of unit length: S? = G,,, S* = Re(F,,), SY = Im(F,)

Can rewrite the effective action (free energy functional) in terms of spins, 1.e., map the Migdal-
Eliashberg theory to a classical spin chain!

Free energy density:
T Z [<I>*+ZU '®, + Dl 12 ZWVOTZ vV (wn + X,)2 + |9,]2

nl
In terms of the classical spins Sy, it ekl — 1
becomes a spin chain Hamiltonian: = Z wnSp, — 1Ty Z —wom)2 1+ 02

Solutions of Eliashberg equations = Spin equilibria
Free energy minimum = Spin chain ground state J =wTH,



Migdal-Eliashberg theory in terms of classical spins
Sites of the chain — fermionic Matsubara
= —2 Z 5 ZZ Bl frequencies w, = 71'(2n + 1)
/I8 Wn, m g 7 wm _|_ Q2 d n

Ferromagnetic Heisenberg model in
iInhomogeneous Zeeman field

S = G,, S%=Re(F,), S¥=Im(F,)

a) Normal state: all spins parallel to the z axis

o i) S, = sgn(w, )z

a) Superconducting state: spins acquire X
components. Superconducting transition:

softening of the domain wall at the origin

B0




Migdal-Eliashberg theory in terms of classical spins

Sites of the chain — fermionic Matsubara

i), :
s e 2 2 = ]_
27 E w5 v L'g E B frequencies w, = 7T (2n + 1)

Ferromagnetic Heisenberg model in
iInhomogeneous Zeeman field

Spin-chain representation makes previously unknown properties easy to see.

Example: new (“spin-flip”’) solutions of the Eliashberg equations (probably play a role in kinetics)

Recall: Solutions of Eliashberg
equations = Spin equilibria

EY and Altshuler (2022)



Migdal-Eliashberg theory in terms of classical spins
Sites of the chain — fermionic Matsubara
2 B 7l frequencies w, = 71'(2n + 1)
k! szn (s g Z _wm —|—QZ d n

Ferromagnetic Heisenberg model in
iInhomogeneous Zeeman field

Spin-chain representation makes previously unknown properties easy to see.

Example: new (“spin-flip”’) solutions of the Eliashberg equations (probably play a role in kinetics)

So S2 .
Recall: Solutions of Eliashberg 4 T T T Tl— ¥
equations = Spin equilibria l l l l l,l Wo

S 385 9854

EY and Altshuler (2022)



Universality of the strong coupling limit A — oo
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A== = » 00 equivalentto {2 — 0 or K — 0O (free ion limit)
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Universality of the strong coupling limit A — oo

2 2
9 & : L
h— - K » 00 equivalentto {2 — 0 or K — 0O (free ion limit)
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Dispersing phonons: U,,,, = % / g q2 5
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incallcases U, — in the strong coupling limit

2



Universality of the strong coupling limit A — oo

2 2
) & : S
h— i » 00 equivalentto {2 — 0 or K — 0O (free ion limit)
g2
iall cases U, — in the strong coupling limit, 1.e., this limit 1s universal

2 2
(Wn — wWin) (independent of microscopic details)

Single energy scaleg. 1.~ 0.18g = 0.180V )\ — o0 I is unbounded

Any results we obtain at strong coupling are similarly universal. Note that the weak
coupling limit of the ME theory (BCS theory) is also universal — governed by a single
energy scale Qg

Bergmann & Rainer (1973), Allen & Dynes (1975), Carbotte (1990), Combescot (1995).



1. in the strong coupling limit

T. ~ 0.18¢ = 0.18QV )\ — T..is unbounded

Really?

Can 1. be arbitrarily large ‘)

Can A be arbitrarily large



Normal state specific heat
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Normal state: S,, = sgn(w, )2
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Normal state specific heat

Sn it Om —'1

W ik 2 2 259
Free energy: f = yyT Hy, = —27TV0T;wnSn — T pbig ; (W — Wy )2 + Q2

Normal state: S,, = sgn(w, )2

Q
Electronic specific heat: C,, = T |14+ Ah | ——
21T

h(z) = —6z2 — 122°Im[¢) (iz)] — 62*Re[y)” (iz)]

27T2V0
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Yo = Y (x) — digamma function

Prange & Kadanoff (1964), Grimvall (1969), Lee & Rainer (1988), EY & Altshuler (2022)



Electronic specific heat: C,, = voT [1 + A\h <)] Yo =

C, <0 for A > 3.69
andT_<T<T+

T, > T, for all A

T. ~ 0.18V )\
T, ~ 0.38V )0

EY and Altshuler (2022)

Normal state specific heat

27T2V0
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Ch
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Normal state specific heat

Co(T)<OforA>3.7andT_ < T < T, T, > T, for all A

The system is thermodynamically unstable!

Migdal-Eliashberg theory breaks down for A > A\, ~ 3.69

By construction, it is still a stationary point but no longer the global minimum.

Cannot have a metal with A = 3.69 !

Since the strong coupling limit 1s universal, these conclusions are independent of the
microscopic Hamiltonian, though A¢ can vary somewhat between models

EY and Altshuler (2022)



Material A TC/Q
Al 0.43 0.004
A" 0.80 0.031
Ta 0.69 0.035
Sn 0.72 0.038
Tl 0.80 0.046
Tl, ¢Big ; 0.78 0.048
In 0.81 0.050
Nb (Butler) 1.22 0.057
Nb (Arnold) 1.01 0.062
V,Si_1 1.00 0.070
V,Si (Kihl.) 1.00 0.071
Nb (Rowell) 0.98 0.074
Mo 0.90 0.076
Pby 4Ty 6 1.15 0.095
La 0.98 0.099
V,;Ga 1.14 0.103
Nb;Al (2) 1.20 0.113
Nb;Ge (2) 1.60 0.114
Pb0‘6T10.4 1.38 0.119
Pb 1.55 0.128
Nb;Al (3) 1.70 0.129
Pby Tl » 1.53 0.136
Hg 1.62 0.146
Nb;Sn 1.70 0.146
Pb, 9Biy ; 1.66 0.152
Nb;Al (1) 1.70 0.156
Nb;Ge (1) 1.60 0.160
Pb, sBi; » 1.88 0.172
Pb, +Bi, ; 2.01 0.182
Pby 5Bi 15 2.13 0.200
Pb, sBij 5 3.00 0.320
Ga 2.25 0.243
Pby, 75Big 15 2.76 0.288
Bi 2.45 0.320

Must have: A < 3.69

1
()

T. ~ 0.180V )\

< 0.35

Experimental values for various

metals

Carbotte, Rev. Mod. Phys (1990)



Table 1. Highest critical temperatures obtained experimentally and theoretically in the harmonic
approximation (at * = 0.1) of some hydride superconductors. The theoretical 7c values presented
have been obtained before the publication of experimental works. Because it is difficult to find data
for the same pressure, the comparison is shown for illustration only.

Compound Experimental Estimated 7T¢c, K Experimental 7c, K
pressure, GPa
Im3m-HsS 150 200 [15] 203 [5]
Fm3m-LaHio 160 286 [18. 19] 250-260 [7. 8]
P63/mme-YHo 200 303 [19. 103] 243 [31]
Im3m-YHs 170 270 [104] 224 [30]
Fm3m-ThHio 170 160-193 [27] 161 [27]
P63/mmec-UH7 70 46 [26] 8 [47]
F43m-PrHs 150 56 [36] 6 [25]
P63/mmec-CeHo 110 117 [28. 29] ~90 [105]
Fm3m-CeHio 100 168 [106] ~115[105]
c-SnHy 190 81-97 [107] 76 [108]
PH: 200 ~100 [109] 100 [110]
Pm3n-AlH3 110 =24 [111.112] <4[112.113]
Im3m-CaHs 170 220-235[114] 215 [115]




Must have: A < 3.69

T. ~ 0.18QV )\

Ab mitio values for lanthanum hydride, Errea et.al., Nature (2020)

s

System | Pressure (GPa)| A |wiye (mMeV) Tean: (K)
LaH,o 129 13.62] 76.4 | 255.3
LaH, 163 2.67| 96.4 242.8
LaH1o 214 2.06| 115.5 237.9
LaH; 264 1.73|  126.6 216.9
LaDo | 159 13.14] 63.5 180.4
LaDm 210 2.21 81.7 1729

Notice that A\ increases with decreasing pressure




Dmitrii Semenok
Private Communication
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The source of instability at large A

A gap at the Fermi level lowers the energy (and makes specific heat positive)

¢ Insulating or superconducting gap 2

¢ Metastable Superconductivity s



1) A < Ae &~ 3.7 Normal state stable above 17" Metal-Superconductor transition

Free energy
profile:




2) A > A. =~ 3.7 Normal state unstable above 1", Metal-NS-Superconductor(?) transition.
C

sc < T SJ T-I— T, ~ 0.38\/XQ

B T5° ~ 0.18VAQ

Free energy
profile: N N

N NS

metastable

NS = (a) metal with smaller A (due to a structural transition) or (b) insulator

At first, NS wins over S, 1.e., S 1s metastable. At
even lower 1, S can win or NS can become
superconducting, i.e., stable S but with lower 1



2) A > A, = 3.7 Normal state unstable above 1. Metal-NS-Superconductor(?) transition.

T, ~ 0.38V\Q

B T5° ~ 0.18VAQ

Free energy
profile:

N

metastable

NS = (a) metal with smaller A (due to a structural transition) or (b) insulator

metastable

/

[S—
~-

At first, NS wins over S, 1.e., S 1s metastable. At
even lower 1, S can win or NS can become
superconducting, i.e., stable S but with lower 1

/

stable




Pressure-induced high-temperature superconductivity
retained without pressure in FeSe single crystals

Liangzi Deng®P'@®, Trevor Bontke®P?, Rabin Dahal®*P®, Yu Xie“Y, Bin Gao®, Xue Li“Y, Ketao Yinf, Melissa Gooch®P,
g g

Donald Rolston®®, Tong Chen®, Zheng Wu®P?, Yanming Ma“9, Pengcheng Dai®, and Ching-Wu Chu

PNAS 2021 Vol. 118 No. 28 e2108938118

a,b,g,1

~!-' . = T atP,
: - T, at ambient -
a" ® TQ =42 K
» To=77K

P, or P, (GPa)




Quasiparticle lifetime 7 at large \

1
Normal state thermal Green’s function: Yp(wn) = *Rerans v
n n P
Recall: X(7) =#U(7)G(7) G, =57 =sgn(w,)
= 2 be 2 sgn(wp,) :
— il Z AR VY =7nlg Z SRR o] T AmT'sgn(wy,)



Quasiparticle lifetime 7 at large \

1
cy — Gaie Xl

Retarded Green’s function: Gﬁ(w) s

Quasiparticle decay rate: T' = 7~ 1 = \qT

Quasiparticle lifetime: 7 — 0 as A — oo

Fermionic quasiparticles are ill-defined



Qualitative picture of the breakdown

Qo Z N;Ts At strong coupling I' >> ) = phonons are classical



Qualitative picture of the breakdown

Heol—pn = o Z NiT; = Z Ving At strong coupling 1T’ > () = phonons are classical

Can interpret V; = ax; as a random (impurity) potential



Qualitative picture of the breakdown

Heol—pn = o Z NiT; = Z Ving At strong coupling 1T’ > () = phonons are classical

Can interpret V; = ax; as a random (impurity) potential

Decay rate due to nonmagnetic impurities: 'y, = 71y (VZ) Tnourcase: (Vi) = o (z3)

2
By equipartition theorem for harmonic oscillator: K<2:C"> — g
2
Votx
e o K We have: I'jp = Awd

EY and Altshuler (2022)



Qualitative picture of the breakdown

e 2o Z N;T; = Z Vin; Atstrong coupling T' > () = phonons are classical
() ()

Can interpret V; = ax; as a random (impurity) potential

Decay rate due to nonmagnetic impurities: 'y, = 71y (VZ) Tnourcase: (Vi) = o (z3)

R
By equipartition theorem for harmonic oscillator: K<2:C"> — =
A= e’
b K We have: Fimp — \' = FME

Vanishing of the quasiparticle lifetime is due to classical phonons: thermal
fluctuations of static ion displacements



The role of classical phonons

K72 Classical momenta integrate out (they
% - ] + o Z n;T; are independent variables).
: i




The role of classical phonons

K:I; Classical momenta integrate out (they
¥ are independent variables).

H = thacwcao + Z

1jo

elastlc energy potentlal

We have electrons moving in a potential V; = ax;, which comes at an elastic energy cost. At

strong coupling &X' — 0 and the elastic energy cost disappears.

VQOéZ

Indeed, recall that the strong coupling limit A = o T is the free ion limit K — 0




The role of classical phonons

K:I; Classical momenta integrate out (they
¥ are independent variables).

H o= thgcwcﬂ -+ Z

1jo

elastlc energy potentlal

We have electrons moving in a potential V; = ax;, which comes at an elastic energy cost. At

strong coupling &X' — 0 and the elastic energy cost disappears.

VQOéZ

Indeed, recall that the strong coupling limit A = o T is the free ion limit K — 0

Inevitably, at some point it becomes energetically favorable to generate a nonuniform potential
for electrons, 1.e., I; acquire nonzero averages. Lattice translational symmetry breaks and
charge-density-wave (CDW) order develops.

EY and Altshuler (2022)



Peierls (CDW) instability: toy example

: T—@—¢- " : L
Kz quare lattice,
ol T - s 132
s Ztiﬁcz‘a% i Z 9 ; +0‘Z”z’fﬁi 99— ncar halffilling
ijo i i il i
99 6

(, ) lattice distortion pattern: T; = Xem. + (—1)=T"dz

Quasiparticle spectrum: By, = £4/e2 + A%, Ap = adx — Peierls gap
k P g

The solution with o # 0 has lower energy breaking the translational symmetry of the original
lattice.

Gaps opens at the Fermi1 energy: Metal-insulator transition. At lower fillings can also be FL
to FL transition accompanied by lattice translational symmetry breaking. Or structural
transition at A < A resulting in a lower value of A



