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ABSTRACT

We use the Toda chain model to demonstrate that numerical simulation of integrable Hamiltonian dynamics using time discretization
destroys integrability and induces dynamical chaos. Specifically, we integrate this model with various symplectic integrators parametrized
by the time step τ and measure the Lyapunov time T3 (inverse of the largest Lyapunov exponent 3). A key observation is that T3 is finite
whenever τ is finite but diverges when τ → 0. We compare the Toda chain results with the nonintegrable Fermi–Pasta–Ulam–Tsingou
chain dynamics. In addition, we observe a breakdown of the simulations at times TB � T3 due to certain positions and momenta becoming
extremely large (“Not a Number”). This phenomenon originates from the periodic driving introduced by symplectic integrators and we also
identify the concrete mechanism of the breakdown in the case of the Toda chain.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0171261

Classical integrable systems have vanishing Lyapunov exponents.
State-of-the-art computational tests of the equations of motion
employ symplectic integrators (SIs). Such split-step integrators
replace the original Hamiltonian by some time-dependent one
which is parametrized by the finite integrator time step τ . It
follows that SIs in general replace integrable dynamics by a non-
integrable chaotic one. We analyze the manifestation of chaos
using two different split-step symplectic integrators (ABA864
and SABA2) for the integrable Toda chain with fixed ends. We
demonstrate that the system is indeed chaotic on large times and
has a positive maximum Lyapunov exponent 3. The extracted
Lyapunov time T3 = 1/3 signals the onset of dynamical chaos,
is τ -dependent, and diverges for τ → 0. For small time steps
τ , up to a much larger time TE, the energy fluctuations stay
bounded (while other Toda integrals do not), which means that
the SIs emulate a new nonintegrable Hamiltonian. For even larger
times, we observe a Floquet regime, when the system exhibits
unrestrained heating. This, in turn, unleashes rogue fluctuations

leading to very large values of coordinates and momenta and the
eventual breakdown of the numerical integration procedure at
some time TB.

I. INTRODUCTION

The computational study of many-body dynamics has been at
a cornerstone of exploring the physics of interacting many-particle
systems including gases, liquids, and solids and attempting to under-
stand properties of the liquid–glass transition and of laminar and
turbulent flows, dynamics of defects, etc.1,2 For classical problems,
this often means introducing a Hamiltonian H(q, p) with N degrees
of freedom, where q = (q1, . . . , qN) are the canonical coordinates
and p = (p1, . . . , pN) are the corresponding momenta, and solving
a set of coupled Hamilton’s equations of motion,

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
, (1)
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where the dot stands for the derivative with respect to the continu-
ous time variable t.

Since the dawn of computers with von-Neumann architec-
ture, numerical integration of nonlinear differential equations is
typically performed by discretizing the time t into short intervals
τ and attempting to integrate the equations sequentially over one
time interval after another until a sufficiently large final integration
time is reached.2,3 Thus, continuous temporal phase-space flows are
replaced by a repeated action of discrete maps acting on the phase-
space variables of the system. Examples are the Euler, Runge–Kutta,
and Verlet (also known as Leap-Frog2) algorithms. In general,
the energy conservation law dH/dt = 0, which follows straightfor-
wardly from (1), is violated by such maps. Symplectic maps (with the
Verlet algorithm being an early example) preserve the phase-space
volume and the Hamiltonian nature of the dynamics, albeit with a
time-dependent effective Hamiltonian.

Usually, a Hamiltonian H(q, p) can be split into two parts,
H = A + B, such that the exact dynamics of A and B alone is known
analytically and explicitly. For example, this is the case when A
depends only on the momenta (kinetic energy), while B is a func-
tion of the coordinates only (potential energy). Even though the
dynamics of A and B are separately exactly solvable, solving for the
dynamics of the full Hamiltonian A + B is still a nontrivial problem
as long as the Poisson bracket

{A, B} = ∂A

∂q

∂B

∂p
− ∂B

∂q

∂A

∂p
(2)

does not vanish. Indeed, it is well known that a typical Hamiltonian
with N > 1 degrees of freedom is nonintegrable. At the same time,
there are notable examples of nontrivial integrable systems, whose
dynamics is characterized by N conserved quantities (integrals of
motion).

Numerical integration of the Hamiltonian dynamics is usually
performed using split-step methods, which break the time t into
short time intervals of lengths proportional to τ , e.g., intervals of
lengths τ

2
, τ , τ

2
, τ

2
, τ , τ

2
, . . . or simply τ , τ , τ , . . . and time evolve the

system with A and B intermittently, i.e., evolve with A over some of
the time intervals and with B over the rest. Note that as τ → 0, the
so discretized dynamics converges to the continuous time dynamics
with the original Hamiltonian H. Below we focus on such symplec-
tic split-step integration schemes. Details about implementing such
symplectic integrators can be found, e.g., in Refs. 4 and 5.

The errors and deviations due to discretizing Hamiltonian
dynamics appear to be well analyzed and estimated.4 However, note
that since time discretization replaces the time-independent Hamil-
tonian H with a time-dependent (periodic) one, it changes the
degree of chaoticity of the system as measured, e.g., by the largest
Lyapunov exponent 3. The impact of this is likely to be most dra-
matic when the original Hamiltonian is integrable. In this case, we
expect to observe emergent chaoticity, because time discretization
breaks the integrability by violating not only the energy conserva-
tion, but also the remaining N − 1 conservation laws. Moreover,
since the original Hamiltonian is integrable and its dynamics is
therefore nonchaotic (regular), the chaoticity must emerge in an
integrable system as a result of the discretization. We therefore
anticipate a nonzero τ -dependent Lyapunov exponent 3(τ), such

that 3(τ) → 0 when τ → 0. In addition, the energy is no longer
conserved since the actual Hamiltonian is time dependent. As a
result, there is no Gibbs distribution to protect the dynamics from
rogue fluctuations.

A number of publications focused on the impact of numeri-
cal integration schemes on the dynamics of integrable sine-Gordon
models, nonlinear Schrödinger equations, and also the spatially
discrete Ablowitz–Ladick chain (an integrable discrete version of
the space-continuous nonlinear Schrödinger equation6–13). Most
efforts were directed toward verifying that time discretization does
destroy integrability and induce the so-called numerical chaos with-
out, however, a systematic quantification of this process through
the computation of Lyapunov exponents. Further attempts were
directed at finding better integrators which diminished the impact
of numerical chaos (we thank R. McLachlan for pointing out that
the ideal situation would be to discretize time working in the action-
angle coordinate frame of the integrable system, which is however
quite often a formidable task).

In this work, we analyze the dynamics of the integrable Toda
chain. It is one of the very few examples of one-dimensional, inte-
grable nonlinear lattices. This model is used, for instance, to under-
stand heat conduction of solids,14,15 thermally generated soliton
dynamics in DNA,16 and the soliton dynamics on a hydrogen-bond
network in helical proteins.17 We perform a quantitative analysis of
the impact of time discretization on the largest Lyapunov exponent.
We find that its inverse—the Lyapunov time—is diverging power-
law-like upon decreasing the step size. We also identify a second,
much larger time scale TB—the breakdown time—at which a large
fluctuation leads to the breakdown of the numerical simulation. We
employ different symplectic integrators and show that the results are
qualitatively independent of the integrator choice.

We first introduce symplectic integrators in Sec. II. We define
the integrable Toda chain as well as one of its famous nonintegrable
approximations—the α-Fermi–Pasta–Ulam–Tsingou (FPUT) chain
in Sec. III. In this section, we apply the ABA864 integrators to both
models with a suitably small step size and a finite observational time
window. This confirms the usual result that the FPUT chain gen-
erates a measurable nonzero Lyapunov exponent. The Toda chain,
on the other hand, appears to get along with a vanishing Lyapunov
exponent as its finite time average decreases as 1/T with the inte-
gration time T. However, in Sec. IV, we show that one obtains a
finite Lyapunov exponent for the Toda chain as well if one consid-
ers large enough integration time T. In this section, we measure its
dependence on the step size and then repeat the computation with a
simpler SABA2 integrator and observe a similar outcome. We also
measure the breakdown time at which fluctuations make further
computation impossible as a function of the time step size. Finally,
we conclude with a discussion of our results.

II. TIME DISCRETIZATION AND SYMPLECTIC

INTEGRATION OF LATTICE HAMILTONIANS

We consider a set of 2N coupled first order differential equa-
tions generated by the Hamiltonian H(q, p) with N degrees of
freedom written for the canonical coordinates q = (q1, . . . , qN)

and momenta p = (p1, . . . , pN). The dynamics is given by the 2N
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Hamilton’s equations of motion

ż = LHz = {H, z} ⇔ q̇ = ∂H

∂p
, ṗ = −∂H

∂q
, (3)

for z = (q, p), and the Liouvillian operator LH defined via the
Poisson brackets (2). It follows that

z(t) = etLHz(0) =
+∞
∑

s=0

ts

s!
(LH)s z(0). (4)

We use symplectic integration schemes for Eq. (3) to approximate
etLH in Eq. (4) such that the phase-space volume is preserved. We
follow Ref. 18 and consider a Hamiltonian H which can be written as
the sum of two parts H = A + B such that etLA and etLB are explicitly
known in a closed form. The Baker–Campbell–Hausdorff formula
approximates the operator eτLH ,

eτLH =
k

∏

j=1

eajτLAebjτLB + O(τ p), (5)

where the coefficients a1, b1, a2, b2, . . . , ak, bk must satisfy
∑k

j=1

aj =
∑k

j=1 bj = 1. The accuracy of the approximation is controlled

by the exponent p which depends on k and the values of the coef-
ficients. The simplest possible choices in Eq. (5) are k = 1 and
a1 = b1 = 1, which gives p = 2.4 This integrator violates time rever-
sal symmetry. The celebrated Verlet (a.k.a Leap-Frog) scheme pre-
serves the time reversal symmetry and is given by k = 2 with a1 = a2

= 1
2
, b1 = 1, b2 = 0, and p = 3 in Eq. (5): eτLH = e

1
2 τLAeτLBe

1
2 τLA

+ O
(

τ 3
)

.4 Note that the dynamics described by Eq. (5) corresponds
to a periodic in time Hamiltonian. For example, in the simplest case
k = 1 and a1 = b1 = 1, we have

Heff(t) = A + (B − A)f(t), (6)

where f(t) is a periodic function of time equal to 0 for odd numbered
time intervals and 1 otherwise, i.e.,

f(t) =
{

0 for 2kτ < t < (2k + 1)τ ,

1 for (2k + 1)τ < t < (2k + 2)τ , k = 0, 1, 2, . . . .

(7)

Suppose the original Hamiltonian H is integrable and therefore
possesses N nontrivial integrals of motion. The Hamiltonian Heff(t)
in Eq. (6) with which we actually evolve the system is most likely
nonintegrable and violates all of the above N conservation laws for
any τ 6= 0, including the energy conservation as it is time dependent.
We thus expect the dynamics to become chaotic and characterized
by nonzero Lyapunov exponents. The time step τ acts as an effective
strength of the integrability breaking perturbation. In what follows,
we will test these ideas on the classical integrable Toda chain and
evaluate the largest Lyapunov exponent as a function of the time
step τ for two different symplectic schemes.

III. THE TODA CHAIN

The Toda chain is an integrable one-dimensional lattice model
defined by the Hamiltonian19

HT =
N

∑

n=1

[

p2
n

2
+ VT(qn+1 − qn)

]

,

VT(r) = 1

4α2

(

e2αr − 2αr − 1
)

.

(8)

Its integrability for fixed and for periodic boundary conditions was
proved in Refs. 20–22. The parameter α can be absorbed by a rescal-
ing of coordinates and momenta. We prefer to keep it in order to
make it easier for the reader to connect to data of previous studies.

In this section, we will follow the standard approach of com-
paring the dynamics of the integrable Toda chain with fixed ends
(fixed boundary conditions) and the Fermi–Pasta–Ulam–Tsingou
(FPUT) model. We do so by computing the corresponding largest
Lyapunov exponents. The Hamiltonian HFPUT of the FPUT model is
a low energy approximation of the Toda chain obtained by replacing
VT(r) in Eq. (8) with its truncated Taylor expansion

VFPUT(r) = 1

2
r2 + α

3
r3, (9)

see, e.g., Refs. 23 and 24. This innocent approximation destroys
integrability. The FPUT chain was used for the first computational
studies of thermalization,25 leads to the discovery and naming of
solitons,26,27 was continuously used in subsequent studies of thermal-
ization and equipartition,28–31 and served as a platform for a plethora
of other studies, for reviews see Refs. 32 and 33.

We apply symplectic integration schemes since both the kinetic
part A and the potential part B of HT and HFPUT are integrable.34 We
report the explicit form of the resolvent operators eτLA and eτLB in
Eq. (5) for both Toda and FPUT chains in Appendix A. For a sym-
plectic integrator, we choose a fourth-order, p = 4, scheme called
ABA864 and introduced in Ref. 35 (its explicit form and the coef-
ficients aj, bj are reported in Appendix B 1). This integrator has
been highlighted in Ref. 5 as one of the best performing in terms
of accuracy, stability, and efficiency among several other symplectic
and non-symplectic methods. As commonly done when computing
the propagation of Hamiltonian systems, we check the stability and
accuracy of the symplectic integrator by evaluating the relative error
in the Hamiltonian energy H,

1E(t) =
∣

∣

∣

∣

H(t) − H(0)

H(0)

∣

∣

∣

∣

. (10)

A simulation is considered accurate and stable if this quantity 1E,
while fluctuating, remains below a set precision threshold Er of the
order of the first nonzero value of Eq. (10) over the whole integration
time-window [t0, t0 + T]. In the field of classical lattice dynam-
ics, Er = 10−5 is typically considered an upper bound for a good
accuracy threshold. In contrast, the consistent growth of 1E and
subsequent breach of the threshold Er indicate the loss of accuracy
of a method.36

We compute the largest Lyapunov exponent 3 and its inverse,
a.k.a. Lyapunov time T3 = 1

3
by numerically integrating the vari-

ational equations associated with the Hamilton’s equations (3).
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As explained in detail in Ref. 37, this means computing the
time evolution of a small deviation vector w(t) = (δq(t), δp(t))
=

(

δq1(t), . . . , δqN(t), δp1(t), . . . , δpN(t)
)

= (xi)
2N
i=1 for a trajectory

z(t). The variational equations describing the evolution of w(t) read

ẇ(t) =
[

J2N · D2
H(z(t))

]

· w(t). (11)

Here D2
H(z(t)) is the Hessian matrix of the Hamiltonian H computed

on the phase-space trajectory z(t),

[

D2
H(z(t))

]

i,j
= ∂2H

∂xi∂xj

∣

∣

∣

∣

z(t)

i, j = 1, . . . , 2N. (12)

J2N is the symplectic identity

J2N =
[

ON 1N

−1N ON

]

, (13)

and 1N and ON are the identity and null matrices of rank N,
respectively. Equation (11) can be explicitly solved for a split-step
time evolution like ours, and we report the variational problems
and the corresponding resolvents for Toda and FPUT models in
Appendix A.

The largest Lyapunov exponent 3 is obtained by first comput-
ing the so-called finite-time largest Lyapunov exponent defined as

X1(t) = 1

t
ln

‖w(t)‖
‖w(0)‖ , (14)

and then taking the limit t → +∞,

3 = lim
t→+∞

X1(t). (15)

The largest Lyapunov exponent 3 and the corresponding Lya-
punov time T3 = 1

3
set the timescale on which a dynamical system

becomes chaotic.
In Fig. 1, we plot the time evolution of the finite-time largest

Lyapunov exponent X1(t) for both Toda and FPUT models for the
same initial state with energy density ε = H

N
= 0.1,38 fixed inte-

gration step τ = 0.1, N = 100, and α = 0.25. The X1(t) curves
show a clear distinction between the Toda (integrable, black color)
and FPUT (nonintegrable, red color) cases. Indeed, for Toda,
we observe X1(t) ∼ 1

t
within the observation time window. This

seems to suggest that the largest Lyapunov exponent vanishes,
3 = limt→∞ X1(t) = 0, as expected for an integrable system. In con-
trast, for the FPUT chain X1(t) saturates at a finite value resulting in
a finite largest Lyapunov exponent 3 ≈ 4.75 × 10−4, which corre-
sponds to a Lyapunov time T3 ≈ 2 × 103. In the inset in Fig. 1, we
show that the relative energy error 1E(t) obtained with the inte-
grator ABA864 for a time step τ = 0.1 oscillates well below the
precision threshold Er = 5 × 10−9 for both systems.

In what follows, we demonstrate that the Lyapunov time for
the time-discretized Toda dynamics is in fact finite, and the largest
Lyapunov exponent is nonzero for a finite step size τ and enlarged
computational time windows.

IV. TIME DISCRETIZATION INDUCED CHAOS

The results shown in Fig. 1 align with the theory expectations as
the two models produce clearly distinguishable dynamics. The non-
integrable FPUT case displays a nonzero largest Lyapunov exponent

FIG. 1. Time evolution of the finite-time largest Lyapunov exponent X1(t) for
the Toda (black) and FPUT (red) chains obtained with the symplectic integrator
ABA864(τ ) with time step τ = 0.1, N = 100 particles, and the anharmonicity
strength α = 0.25. Inset: relative energy error 1E(t).

3 ≈ 4.75 × 10−4, while for the integrable Toda model X1(t) ∼ 1
t

apparently suggesting that 3 = 0. Furthermore, in both compu-
tations the integration is accurate, since the relative energy error
1E stays well below Er = 5 × 10−9. However, as conjectured in the
Introduction, nonzero Lyapunov exponents are expected for large
enough integration time T when computing the dynamics of inte-
grable systems, and the magnitudes of these exponents may vary
with the time step τ . To demystify this conjecture, we extend the
simulations for the Toda chain reported in Fig. 1 to a larger time
window and different time steps τ .

We computed the time evolution of the finite-time largest Lya-
punov exponent X1 within a time window [0, 109] for ten different
time steps τ ranging between τ = 1 and τ = 0.1 for N = 100 and
α = 0.25 as in Fig. 1. We display the results in Fig. 2(a). Observe
that within this time window X1(t) clearly deviates from the naively
expected X1(t) ∼ 1

t
behavior for all τ considered. This deviation

occurs earlier [and consequently X1(t) converges to a larger nonzero
value] for larger time steps τ .

For 0.42 ≤ τ ≤ 1, the relative energy error 1E(t) starts to grow
visibly from some time TE [Fig. 2(b)]. This time TE is different for
each curve, which is characterized by having different values of τ .
For 0.1 ≤ τ ≤ 0.32 on the other hand, 1E(t) in the entire time win-
dow fluctuates below the threshold Er that ranges from Er = 10−6 for
τ = 0.32 to Er = 5 × 10−9 for τ = 0.1, i.e., TE > 109 [see Fig. 2(c)].
The latter case (0.1 ≤ τ ≤ 0.32) shows that the transition to chaotic
dynamics (as detected by the maximum Lyapunov exponent 3)
occurs on a time scale much shorter than the time scale at which
any noticeable increase of the relative energy error 1E(t) is detected.
The former case (0.56 ≤ τ ≤ 1) demonstrates not only the loss of
accuracy of the symplectic scheme, but also a complete failure of
the numerical integration for τ = 1 (black) and τ = 0.9 (red). This
failure takes place at a distinct breakdown time TB � T3.
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FIG. 2. Chaoticity of the time-discretized dynamics of the Toda chain with
fixed ends generated by the symplectic integrator ABA864. We show the time
evolution of the finite-time largest Lyapunov exponent X1(t) (a) and relative
energy error 1E(t) (b) and (c) for N = 100 sites and anharmonicity strength
α = 0.25. We employed the ABA864 integrator with time step τ = 1.0 (black),
τ = 0.9 (red), τ = 0.75 (blue), τ = 0.56 (orange), τ = 0.42 (magenta),
τ = 0.32 (green), τ = 0.24 (maroon), τ = 0.18 (turquoise), τ = 0.13 (vio-
let), and τ = 0.1 (brown). The vertical dashed lines in (a) and (b) indicate the
breakdown time TB.

Failures of this type occur as certain coordinates or momenta
within the chain increase beyond ∼10308 and become NaN (Not-a-
Number) at TB. To understand the nature of this effect, recall that
the discretized time evolution with split-step symplectic integrators
is governed by a time-periodic Hamiltonian, see Eq. (6). The break-
down phenomenon originates from the fact that periodically driven
many-body Floquet systems heat up indefinitely in the absence of
disorder eventually reaching a featureless maximum entropy (infi-
nite temperature) state.39–42 If that ergodic system lacks any other
conservation laws (note that energy conservation is already vio-
lated), it will explore the entire phase space, which is dominated by
extremely large values of the coordinates and momenta.43 Conse-
quently, we expect that eventually at least one of these quantities
will diverge to infinity, leading to a failure of the integration on
the computer (which can hold only floating point numbers up to
some largest software dependent value, e.g., ∼10308 in double preci-
sion with standard Fortran compilers). Later in this section, we will
identify the precise mechanism of the breakdown specifically for the
time-discretized Toda dynamics.

To better understand all the time scales involved, we start from
the shortest, which is T3. For t < T3 the dynamics remains inte-
grable. The largest time scale is TB, beyond which the computation
ceases to be meaningful (see more below). Floquet dynamics results
in an intermediate time scale TE at which Floquet heating and energy
growth start. Necessarily T3 < TE < TB. By definition, symplectic
integrators are not constructed to approximately preserve any other
integrals of motion other than the energy. Therefore, another Toda
integral J (see Appendix C) will be bounded in their fluctuations only
up to a time TJ ≈ T3. We discuss this issue in detail below Eq. (21).

To estimate the Lyapunov time T3 from the time-evolution of
X1(t) shown in Fig. 2(a), we adopt the following protocol:

(i) find the time t̂ when X1(t) reaches its minimum value [if X1(t)
does not saturate, we take the last point, i.e., t̂ = T, where T is
the total simulation time],

(ii) fix the time window It̂ = [0.1t̂, t̂], such that the end points differ
by one order of magnitude,

(iii) define the largest Lyapunov exponent 3 as the average of X1

over the interval It̂, i.e., 3 = 〈X1(t)〉t∈It̂
.

Figure 3 displays the Lyapunov time T3 as a function of the time
step τ for three different system sizes: N = 100, 250, and 500 shown
with solid black circles, red squares, and green diamonds, respec-
tively. We find that T3 grows monotonously with decreasing τ

covering more than three decades, while τ varies only over one
decade. The three curves show excellent overlap revealing that T3 is
essentially independent of the system size N. Our data indicate that
T3(τ → 0) → ∞ is in agreement with the fact that the Hamiltonian
becomes integrable in the limit τ → 0. We also plot the breakdown
time TB in Fig. 3 using empty symbols (as opposed to solid symbols
for T3). We report TB only for τ = 1 and τ = 0.9. These two val-
ues of TB correspond to the vertical dashed lines in Fig. 2. Similar to
T3, the breakdown time TB does not show a strong dependence on

FIG. 3. Lyapunov time T3 (solid symbols) and breakdown time TB (open symbols)
vs the time step τ for the Toda chain dynamics as generated by the symplec-
tic integrator ABA864(τ ) for N = 100 (black dots), N = 250 (red squares), and
N = 500 (green diamonds) sites and anharmonicity parameter α = 0.25.
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FIG. 4. Discretized time evolution of the Toda chain with N = 100 sites and anharmonicity parameter α = 0.25. Panel (a): the finite-time largest Lyapunov exponent X1(t)

obtained with the help of the symplectic integrator SABA2 with time step τ = 1.0 (black), τ = 0.9 (red), τ = 0.75 (blue), τ = 0.56 (orange), τ = 0.42 (magenta), τ = 0.32
(green), τ = 0.24 (maroon), τ = 0.18 (turquoise), τ = 0.13 (violet), and τ = 0.1 (brown). Panel (b): Lyapunov times T3 for integrators ABA864 (black circles) and SABA2

(red squares) and breakdown times TB for ABA864 (green up triangles) and SABA2 (blue diamonds) vs the time step τ . Magenta down triangles indicate the Lyapunov times
T3 extracted from the simulations of Ref. 24. The dashed black line is a fit of T3 for SABA2 using linear regression between τ = 0.013 and τ = 0.42.

the system size. Note that TB is at least three orders of magnitudes
larger than the corresponding Lyapunov time indicating a clear scale
separation.

The integrator ABA864 we used above is of fourth-order, p = 4.
To compare different symplectic integrators and to collect more data
for TB, we repeat the computations with a second-order, p = 2, inte-
grator SABA2

44 for N = 100 (see Appendix B 2 for the description
of this integrator). We observe from Fig. 4(b) that the values of
T3 provided by the SABA2 scheme (red squares) are smaller than
those provided by ABA864 (black dots) by one to two orders of
magnitude. This is to be expected, since the SABA2 scheme is less
accurate and therefore the dynamics it generates is further from its
integrable Toda limit enabling a stronger chaos as compared to the
ABA864 dynamics with the same τ . In addition to T3 for SABA2

and ABA864, we also show in Fig. 4(b) the values of T3 which we
extracted from the simulation of Toda dynamics by Benettin et al.
who used a different integrator.24 In all three cases T3 apparently
diverges as τ → 0. The divergence appears to be a power-law-like,
T3 ∝ τ−η for small τ with an integrator-dependent exponent η > 0.
It is slowest for SABA2 in which case we have data in a sufficiently
large range of τ for a reliable fit. In this case, we find η ≈ 1.36.

Figure 4(a) shows the time evolution of the finite-time largest
Lyapunov exponent X1(t) for SABA2. Notice that in this case the
integration visibly breaks down at four different values of τ within
the same time interval as that shown in Fig. 2. The measured break-
down times TB are highlighted by the vertical dashed lines. The ratio
TB/T3 increases from a value of order 1 at τ = 1 to a value of order
104 for τ = 0.6 clearly indicating that the two time scales T3 and
TB � T3 scale differently with τ and quickly separate as τ grows.
They must be therefore due to two distinct features of the discretized
Toda chain dynamics. Notice also that unlike T3, the breakdown
times TB for SABA2 are substantially lower than those those for
ABA864 [see the vertical dashed lines in Figs. 2(a) and 2(b)].

As mentioned above, in the case of the Toda chain, we were able
to identify the precise sequence of events (mechanism) that leads to
the breakdown. The two key ingredients of this mechanism are the
split-step nature of symplectic integrators, where the system evolves
ballistically (linearly in time) during each time step and the expo-
nential dependence of the Toda potential on the coordinates. Recall
that these integrators split the Toda Hamiltonian H into its kinetic
(A) and potential (B) parts and evolve the system with A over some
of the time steps and and with B over the rest. For simplicity, let us
consider the simplest integrator where all time intervals are of the
same length τ and suppose we evolve with A over odd intervals and
with B over the even. For the Toda chain, this evolution with A and
B is given by Eq. (A5) in Appendix A 1. The evolution with A does
not change the momenta pn and changes the coordinates as

q′
n = qn + τpn. (16)

Similarly, the evolution with B conserves the coordinates but
changes the momenta as

p′
n = pn + τ

2α

[

e2α(qn+1−qn) − e2α(qn−qn−1)
]

. (17)

Since this discretization of the time evolution breaks the inte-
grability and since the Hamiltonian is now time dependent, there
are presumably no conserved quantities and we expect the system
to explore the entire phase space as discussed earlier in this section.
Then, eventually, there will be a fluctuation such that the magni-
tude of at least one of the coordinates or momenta is large. For
definiteness, take qk to be large in magnitude, |qk| � 1, and nega-
tive and assume that the magnitudes of the rest of coordinates and
momenta, the anharmonicity parameter α, and the time step τ are
all of order 1. We also take k to be away from the end points (specif-
ically, 2 < k < N). Starting in this state and evolving with B over
one time step according to Eq. (17), we obtain, up to a prefactor of
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order 1,

p′
k ≈ −p′

k+1 ≈ τ

2α
e2α|qk|, (18)

where we only kept the exponentially large terms. The rest of coordi-
nates and momenta remain of order 1. Next, we have to evolve with
A according to Eq. (16). This results in

q′
k ≈ −q′

k+1 ≈ τ 2

2α
e2α|qk|. (19)

Subsequent evolution with B produces four extremely large
momenta, p′′

k−1, p
′′
k , p′′

k+1, and p′′
k+2, approximately equal in magni-

tude to an exponent of an exponent of a large number

p′′
k±1 ≈ p′′

(k+1)±1 ≈ τ

2α
exp

[

τ 2e2α|qk|] (20)

leading to the breakdown of the simulation at this or at most the next
B-step depending on the value of |qk|.

We check this picture against numerics in Fig. 5. The SABA2
symplectic integrator with which this figure is generated is different
from the simplest integrator in the above argument. Nevertheless,
the main idea is the same. We see from Fig. 5 that just before the
breakdown the displacements (coordinates) and momenta at two
neighboring sites k = 18 and k + 1 = 19 are much larger than the
rest, roughly equal in magnitude, and opposite in sign. This agrees
with Eqs. (18) and (19). Further, these equations give four values of
|qk| that range from about 5 to 9 with an average of about 7.0. Using
this average value in Eq. (20) together with τ = 1 and α = 0.25, we
obtain a number larger than 1014. The next B-step must produce
an exponent of this number, which is much larger than 10308—the
largest number available in double precision in standard Fortran
compilers. At this point, numerical simulation breaks down. We also

FIG. 5. A snapshot of the time-discretized dynamics of the Toda chain generated with SABA2 symplectic integrator just before the breakdown. Panels (a)–(c) show the
energy densities (per lattice site), lattice displacements, and lattice momenta, respectively, at t = 2427 for time step τ = 1.0 and anharmonicity parameter α = 0.25. Notice
that displacements and momenta at two neighboring sites (n = 19 and 20) are large in magnitude and opposite in sign. The inset of panel (a) shows the distribution of the
breakdown times TB for 1000 random initial conditions A Gaussian fit of this distribution yields a mean µ = 3655, standard deviation σ = 859, skewness 0.17, and kurtosis
0.35. We generate the initial conditions for this figure as before (see Ref. 36) only using the SABA2 integrator instead of ABA864.

Chaos 34, 033107 (2024); doi: 10.1063/5.0171261 34, 033107-7

Published under an exclusive license by AIP Publishing

 02 O
ctober 2024 17:31:06

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 6. Relative errors in (a) energy,1E(t), and (b) the nontrivial integral of motion [see Eq. (C7)],1J ′
4(t), for the the Toda chain dynamics generated with SABA2 split-step

symplectic integrator. Different colors correspond to different values of the time step τ : τ = 1.0 (black), τ = 0.9 (red), τ = 0.75 (blue), and τ = 0.56 (orange). The initial
condition is the same as in Fig. 5.

show in Fig. 5 the distribution of the breakdown times TB for ran-
domly generated initial conditions, which appears to be roughly
Gaussian, and the energy density per site just before the breakdown.
The latter is defined as















































ε1 = p2
1

2
+ 1

2
VT(q2 − q1) + VT(q1),

εn = p2
n

2
+ 1

2
VT(qn+1 − qn) + 1

2
VT(qn − qn−1),

for n = 2, . . . , (N − 1),

εN = p2
N

2
+ VT(−qN) + 1

2
VT(qN − qN−1).

(21)

Since the underlying Toda chain is integrable, it is of interest to
compare the fluctuations (relative error) in energy and in nontrivial
integrals of motion. We do so in Fig. 6. The next integral of motion
after the energy in the hierarchy of the integrals of motion for the

Toda chain is J′4 given by Eq. (C7) in Appendix C. We define the rel-
ative error in J′4 as in Eq. (10) but with the replacement H → J′4. We
see from Fig. 6 that the relative errors in the energy and the integral
of motion behave similarly and run away roughly at the same break-
down times for 1 ≥ τ ≥ 0.56. As a matter of fact, up to a factor of 10,
all time scales T3 ≈ TJ ≈ TE � TB coincide. In order to observe the
differences between these time scales, we choose smaller values of τ

in Fig. 7. We clearly observe that TE grows much faster with dimin-
ishing τ than T3 ≈ TJ. If enough time span is given between TJ and
TE, J may start to behave ergodically as in any other nonintegrable
Hamiltonian system like the FPUT one.

V. CONCLUSION

Here, we studied the long-time dynamics of a classical inte-
grable lattice model—Toda chain with fixed ends—with the help
of split-step symplectic integrators. We made two key observations.
First, time discretization (more generally, the approximate nature

FIG. 7. Comparison of relative errors in energy1E(t) (blue) and the nontrivial integral of motion1J ′
4(t) (red) with small step sizes for the the Toda chain dynamics generated

with the SABA2 split-step symplectic integrator. In panels (a) and (b), we show the relative errors for τ = 0.1 and τ = 0.017 with corresponding Lyapunov times (T3) being
1.4 × 105 and 1.4 × 106, respectively. We estimate TJ by the time corresponding to the crossings of the two relative error plots. In these plots, we indeed have TJ ≈ T3.
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of the integration method) breaks the integrability and induces
chaos. We then analyze the properties of such dynamical chaos.
We find that the original regular (non-chaotic) dynamics of the
Toda chain becomes chaotic with the maximum Lyapunov expo-
nent 3(τ) controlled by the time-discretization parameter τ . In the
limit τ → 0, 3(τ) vanishes as a power law. The fact that 3(τ) → 0
as τ → 0 is not surprising as in this limit we should fully recover
the integrable Toda dynamics. In contrast, we saw that for the
nonintegrable Fermi–Pasta–Ulam–Tsingou chain 3(τ), while also
initially decreasing with decreasing τ , tends to a finite value when
τ → 0. Importantly, chaos manifests itself well before the relative
energy error 1E(t) (typically used to track the stability and accu-
racy of an integrator) becomes significant. Therefore, symplectic
schemes applied to integrable systems may result in chaotic dynam-
ics unknown to the reader of the numerical study, hence, rendering
the simulations wrong.

Second, we saw that the energy starts growing and the system
starts heating up in a Floquet manner at a time TE(τ ). A subsequent
breakdown (dramatic loss of accuracy) of the simulation occurs at
a timescale TB(τ ) � TE(τ ) much larger than the Lyapunov time
T3(τ ) = 3−1(τ ) at which chaos becomes apparent. The separation
of time scales is especially obvious for small τ as TB � TE � T3

as τ → 0. For times t < T3 the system evolves as the integrable
Toda chain. For T3 < t < TE, the system evolves as a nonintegrable
Hamiltonian perturbation of the Toda chain (e.g., the FPUT one)
conserving the energy, being chaotic, and resulting in the loss of
conservation of other Toda integrals of motion at times TJ ≈ T3.
For TE < t < TB, the system enters a Floquet regime, and heats up
toward a featureless infinite temperature state.39–42 As a result, the
system explores the entire phase space. Since the latter is noncom-
pact for the Toda lattice, it eventually reaches extremely large values
of the coordinates and momenta beyond the ability of the computer
to handle.

Moreover, we were able to pinpoint the specific mechanism
of the breakdown for the Toda chain. In this case, it is due to the
split-step nature of the integrator, which implies ballistic (linear in
time) evolution during each time step, coupled with the exponential
dependence of the Toda potential on the coordinates. We demon-
strated using the discretized equations of motion that as soon as at
least one coordinate or momentum becomes large, an irreversible
divergence to infinity takes place.

Our results are very general and applicable to a broad range
of integrable classical and quantum interacting many-body models.
Suppose, for example, we quantize the Toda chain by promoting
coordinates qn and momenta pn to quantum operators, such that
[qn, pn] = i. The quantum Toda chain is also integrable,45–48 and we
anticipate that chaos will again ensue as a result of time discretiza-
tion (trotterization). Similarly, at a much larger timescale TB, we
expect a breakdown of the numerical simulation. The expectation
values of qn and pn will grow extremely large, and the location where
most of the weight of the many-body wavefunction 9(q1, q2, . . . ) is
concentrated will move to infinity.

Interestingly, no breakdown can occur when the phase space of
the classical model is compact, or, for a quantum model, the dimen-
sionality of the Hilbert space is finite. For example, consider classical
spin and quantum spin- 1

2
models. The infinite temperature state is

the state where each spin points in a random direction independent

of the other spins. The numerical simulation should have no funda-
mental difficulty approaching this state as there are no divergencies
along the way.

Our study has implications for evaluating errors in quantum
simulations in quantum information science. Here, the goal is to
determine the time evolution of a prescribed Hamiltonian, and one
of the main approaches is precisely the splitting method49–60 (a.k.a.
Trotterization in this context) we used in this paper for the classi-
cal Toda chain. Our results indicate that Trotterization errors can
be complex, i.e., vary significantly between observables and qualita-
tively affect the character of the dynamics (chaotic vs regular) when
the quantum Hamiltonian which we are attempting to simulate is
integrable. In a recent study,61 an isolated quantum system, whose
time evolution is described by a sequence of unitary maps, was
shown to display artificial dissipation induced by time discretization.
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APPENDIX A: RESOLVENT OPERATORS AND

VARIATIONAL PROBLEMS FOR TODA AND FPUT

In this appendix, we detail the equations of motion (3), varia-
tional equations (11), and their respective resolvents for both Toda
and FPUT models.

1. Toda chain

The Hamiltonian (8) of the Toda chain with fixed boundary

conditions in terms of coordinates qn and canonically conjugate

momenta pn reads

HT =
[

N
∑

n=1

p2
n

2

]

+
[

e2αq1 − 2αq1 − 1

4α2

+
N−1
∑

n=1

e2α(qn+1−qn) − 2α(qn+1 − qn) − 1

4α2
+ e−2αqN + 2αqN − 1

4α2

]

= A + B. (A1)

For the fixed boundary condition (q0 = p0 = qN+1 = pN+1 = 0),
Hamilton’s equations of motion (3) become















































q̇n = pn, for n = 1, . . . , N,

ṗ1 = 1

2α

[

e2α(q2−q1) − e2αq1
]

,

(A2)

ṗn = 1

2α

[

e2α(qn+1−qn) − e2α(qn−qn−1)
]

, for n = 2, . . . , (N − 1),

ṗN = 1

2α

[

e−2αqN − e2α(qN−qN−1)
]

.

The variational equations (11) for the deviations {δqn, δpn} take the
form



















































δ̇qn = δpn, for n = 1, . . . , N,

δ̇p1 = −
[

e2α(q2−q1) + e2αqn
]

δq1 +
[

e2α(q2−q1)
]

δq2,

δ̇pn = −
[

e2α(qn+1−qn) + e2α(qn−qn−1)
]

δqn

+
[

e2α(qn+1−qn)
]

δqn+1 +
[

e2α(qn−qn−1)
]

δqn−1,

for n = 2, . . . , (N − 1), (A3)

δ̇pN = −
[

e−2αqN + e2α(qN−qN−1)
]

δqN +
[

e2α(qN−qN−1)
]

δqN−1.

Splitting the Toda Hamiltonian (A1) into the kinetic and potential
parts, H = A + B, yields the following two systems of differential
equations that describe the evolution with A alone (LA) and with
B alone (LB):

LA :



















q̇n = pn, for n = 1, . . . , N,

ṗn = 0, for n = 1, . . . , N,

δ̇qn = δpn, for n = 1, . . . , N,

δ̇pn = 0, for n = 1, . . . , N,

(A4a)

LB :















































































































































q̇n = 0, for n = 1, . . . , N,

ṗ1 = 1

2α

[

e2α(q2−q1) − e2αq1
]

,

ṗn = 1

2α

[

e2α(qn+1−qn) − e2α(qn−qn−1)
]

, for n = 2, . . . , (N − 1),

ṗN = 1

2α

[

e−2αqN − e2α(qN−qN−1)
]

,

δ̇qn = 0, for n = 1, . . . , N,

δ̇p1 = −
[

e2α(q2−q1) + e2αqn
]

δq1 +
[

e2α(q2−q1)
]

δq2,

δ̇pn = −
[

e2α(qn+1−qn) + e2α(qn−qn−1)
]

δqn

+
[

e2α(qn+1−qn)
]

δqn+1 +
[

e2α(qn−qn−1)
]

δqn−1,

for n = 2, . . . , (N − 1),

δ̇pN = −
[

e−2αqN + e2α(qN−qN−1)
]

δqN +
[

e2α(qN−qN−1)
]

δqN−1.

(A4b)

For an advancement by one time step τ , we integrate the
coordinates {qn, pn, δqn, δpn} at time t to {q′

n, p′
n, δq′

n, δp′
n} at time

t + τ ,

eτLA :


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q′
n = qn + τpn, for n = 1, . . . , N,

p′
n = pn, for n = 1, . . . , N,

δq′
n = δqn + τδpn, for n = 1, . . . , N,

δp′
n = δpn, for n = 1, . . . , N,

(A5)

eτLB :
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





















































q′
n = qn, for n = 1, . . . , N,

p′
1 = p1 + τ

2α

[

e2α(q2−q1) − e2αq1
]

p′
n = pn + τ

2α

[

e2α(qn+1−qn) − e2α(qn−qn−1)
]

,

for n = 2, . . . , (N − 1),

p′
N = pN + τ

2α

[

e−2αqN − e2α(qN−qN−1)
]

δq′
n = δqn, for n = 1, . . . , N,

δp′
1 = δp1 + τ

{

−
[

e2α(q2−q1) + e2αqn
]

δq1 +
[

e2α(q2−q1)
]

δq2

}

,

δp′
n = δpn + τ

{

−
[

e2α(qn+1−qn) + e2α(qn−qn−1)
]

δqn

+
[

e2α(qn+1−qn)
]

δqn+1 +
[

e2α(qn−qn−1)
]

δqn−1

}

,

for n = 2, . . . , (N − 1),

δp′
N = δpN + τ

{

−
[

e−2αqN + e2α(qN−qN−1)
]

δqN

+
[

e2α(qN−qN−1)
]

δqN−1

}

.
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2. Fermi–Pasta–Ulam–Tsingou chain

The Hamiltonian of the Fermi–Pasta–Ulam–Tsingou (FPUT)
chain reads

HF =
[

N−1
∑

n=0

p2
n

2

]

+
[

1

2
q2

1 + α

3
q3

1 +
N−1
∑

n=1

{

1

2
(qn+1 − qn)

2

+ α

3
(qn+1 − qn)

3

}

+ 1

2
q2

N − α

3
q3

N

]

= A + B. (A6)

The corresponding Hamilton equations of motion (3) are







































q̇n = pn, for n = 1, . . . , N,

ṗ1 = (q2 − 2q1) + α
[

(q2 − q1)
2 − q2

1

]

,
(A7)

ṗn = (qn+1 + qn−1 − 2qn) + α
[

(qn+1 − qn)
2 − (qn − qn−1)

2
]

,

for n = 2, . . . , (N − 1),

ṗN = (qN−1 − 2qN) + α
[

q2
N − (qN − qN−1)

2
]

.

The variational equations (11) for the deviations {δqn, δpn} become











































δ̇qn = δpn, for n = 1, . . . , N,

δ̇p1 = −[2αq2 + 2]δq1 + [1 + 2α(q2 − q1)]δq2,
(A8)

δ̇pn = [2α(qn−1 − qn+1) − 2]δqn + [1 + 2α(qn+1 − qn)]δqn+1

+ [1 + 2α(qn − qn−1)]δqn−1, for n = 2, . . . , (N − 1),

δ̇pN = [2αqN−1 − 2]δqN + [1 + 2α(qN − qN−1)]δqN−1.

For the same splitting as in Eq. (A4b), the advancement by a time
step τ reads

eτLA :



















q′
n = qn + τpn, for n = 1, . . . , N,

p′
n = pn, for n = 1, . . . , N,

δq′
n = δqn + τδpn, for n = 1, . . . , N,

δp′
n = δpn, for n = 1, . . . , N,

(A9)

eτLB :























































































































































q′
n = qn, for n = 1, . . . , N,

p′
1 = p1 + τ

{

(q2 − 2q1) + α
[

(q2 − q1)
2 − q2

1

] }

,

p′
n = pn + τ

{

(qn+1 + qn−1 − 2qn)

+ α
[

(qn+1 − qn)
2 − (qn − qn−1)

2
]}

,

for n = 2, . . . , (N − 1),

p′
N = pN + τ

{

(qN−1 − 2qN) + α
[

q2
N − (qN − qN−1)

2
] }

,

δq′
n = δqn, for n = 1, . . . , N,

δp′
1 = δp1 + τ

{

−[2αq2 + 2]δq1 + [1 + 2α(q2 − q1)]δq2

}

,

δp′
n = δpn + τ

{

[2α(qn−1 − qn+1) − 2]δqn

+ [1 + 2α(qn+1 − qn)]δqn+1

+ [1 + 2α(qn − qn−1)]δqn−1

}

,

for n = 2, . . . , (N − 1),

δp′
N = δpN + τ

{

[2αqN−1 − 2]δqN

+ [1 + 2α(qN − qN−1)]δqN−1

}

.

APPENDIX B: SYMPLECTIC INTEGRATION SCHEMES

In this appendix, we present the symplectic integration
schemes ABA864 and SABA2 used in this work.

1. ABA864

The symplectic integration scheme ABA864 consists of the fol-
lowing product of resolvent operators eτLA and eτLB of addends A
and B, respectively:

ABA864(τ ) = ea1τLAeb1τLBea2τLAeb2τLBea3τLAeb3τLBea4τLA

× eb4τLBea4τLAeb3τLBea3τLAeb2τLBea2τLAeb1τLBea1τLA ,
(B1)

for a given time step τ . The coefficients {a1, a2, a3, a4, b1, b2, b3, b4}
are

a1 = 0.071 133 43, b1 = 0.183 083 68,

a2 = 0.241 153 43, b2 = 0.310 782 86,

a3 = 0.521 411 76, b3 = −0.026 564 62,

a4 = −0.333 698 62, b4 = 0.065 396 14.

(B2)

Note that the coefficients in Eq. (B2) are truncated to the eighth
decimal place with respect to those reported in Table 3 of Ref. 35.

2. SABA2

The symplectic integration scheme ABA864 is described by the
following product of resolvent operators eτLA and eτLB of addends A
and B, respectively:

SABA2(τ ) = ea1τLAeb1τLBea2τLAeb1τLBea1τLA , (B3)
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for a given time step τ . The coefficients {a1, a2, b1} are

a1 = 1

2

(

1 − 1√
3

)

, a2 = 1√
3

, b1 = 1

2
. (B4)

APPENDIX C: THE NONTRIVIAL INTEGRAL FOR THE

TODA CHAIN WITH FIXED BOUNDARY CONDITIONS

In this appendix, we provide an explicit expression for the first
after the total energy nontrivial integral for the Toda chain with
fixed boundary conditions (fixed ends) following the approach of
Refs. 19–22.

We start by introducing the rescaled positions and momenta as

Pn = −2αpn, Qn = −2αqn, (C1)

for n = 1, . . . , N. In terms of these new variables, the equations of
motion take the following dimensionless form:

Q̇n = Pn, Ṗn = Xn − Xn+1, (C2)

where Xn = e−(Qn−Qn−1) obeys

Ẋn = (Pn−1 − Pn) Xn. (C3)

To obtain the integrals of motion for the fixed boundary
Toda chain with N lattice sites, one starts with a periodic lat-
tice with (2N + 2) sites, where the lattice indices are given by
n = −N, . . . , N + 1. We then impose the antisymmetric initial
conditions

Q−n = −Qn, P−n = −Pn,

Q0 = QN+1 = 0, P0 = PN+1 = 0,
(C4)

on the periodic lattice, where n = 1, . . . , N. Here, Qn and Pn can take
arbitrary values for n = 1, . . . , N. Using the above, one derives

X−n = Xn+1, (C5)

for n = 0, 1, . . . , N.
The antisymmetric condition is respected by the equations of

motion at latter times. Therefore, the stretch of the periodic lattice
between n = 1 and n = N corresponds to the fixed boundary Toda
chain with N lattice sites. The periodic lattice has 2N + 2 integrals
of motion that are denoted as J ′

m for m = 1, . . . , (2N + 2), where
the prime denotes that the integrals of motion for the periodic lat-
tice are calculated after imposing the antisymmetric initial condition
(C4). Because of the special initial conditions, all J ′

m with m odd are
identically equal to zero. Moreover, there is one integral of motion,
which reduces to a constant that is independent of positions and
momenta. As a result, we denote the N integrals of motion for the
fixed boundary Toda chain as J ′

m with m = 2, 4, . . . , 2N.
Since J ′

2 ∝ HT, the first nontrivial integral for the fixed bound-
ary Toda chain is given by J ′

4. Consider the expression for J4

J4 =
N+1
∑

n=−N

[

1

4
P4

n + P2
n (Xn + Xn+1) + PnPn+1Xn+1 + 1

2
X2

n + XnXn+1

]

,

(C6)

which is valid for the periodic lattice for any initial condition, see,
e.g., Eq. (12) of Sec. 4.5 of Ref. 19. Using Eqs. (C2) and (C3), one can
check that indeed J̇4 = 0.

After imposing the antisymmetric condition (C4) and using
Eq. (C5), one obtains the following integral of motion for the fixed
boundary Toda chain from Eq. (C6):

J ′
4 =

N
∑

n=1

[

1

2
P4

n + 2P2
n (Xn + Xn+1) + 2XnXn+1

]

+ 2
(

X2
1 + X2

N+1

)

+
N

∑

n=2

X2
n + 2

N−1
∑

n=1

PnPn+1Xn+1, (C7)

where

X1 = e−Q1 , XN+1 = eQN . (C8)

Using Eqs. (C2) and (C3), we have checked that J̇ ′
4 = 0. The relative

error of this first nontrivial integral of motion is defined as

1J ′
4(t) =

∣

∣

∣

∣

J ′
4(t) − J ′

4(0)

J ′
4(0)

∣

∣

∣

∣

, (C9)

which is then plotted in Fig. 6.
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41P. Ponte, A. Chandran, Z. Papić, and D. A. Abanin, “Periodically driven
ergodic and many-body localized quantum systems,” Ann. Phys. 353, 196–204
(2015).

42D. J. Luitz, Y. B. Lev, and A. Lazarides, “Absence of dynamical localization in
interacting driven systems,” SciPost Phys. 3, 029 (2017).
43Note that true Toda dynamics will not break down in this way, because energy
conservation prevents extremely large values of coordinates and momenta in this
case. On the other hand, for models such as the FPUT chain, where the poten-
tial is not bounded from below the energy conservation does not offer such a
protection.62

44C. Skokos, D. O. Krimer, S. Komineas, and S. Flach, “Delocalization of wave
packets in disordered nonlinear chains,” Phys. Rev. E 79, 056211 (2009).
45M. A. Olshanetsky and A. M. Perelomov, “Quantum completely integrable
systems connected with semi-simple LIE algebras,” Lett. Math. Phys. 2, 7–13
(1977).
46M. C. Gutzwiller, “The quantum mechanical Toda lattice, II,” Ann. Phys. 133,
304–331 (1981).
47E. K. Sklyanin, “The quantum Toda chain,” in Non-Linear Equations in Classical
and Quantum Field Theory, edited by N. Sanchez (Springer Berlin Heidelberg,
Berlin, 1985), pp. 196–233.
48V. Pasquier and M. Gaudin, “The periodic Toda chain and a matrix generaliza-
tion of the Bessel function recursion relations,” J. Phys. A: Math. Gen. 25, 5243
(1992).
49M. Suzuki, “General theory of fractal path integrals with applications to many-
body theories and statistical physics,” J. Math. Phys. 32, 400–407 (1991).
50D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, “Efficient quantum algo-
rithms for simulating sparse Hamiltonians,” Commun. Math. Phys. 270, 359–371
(2007).
51D. Poulin, M. B. Hastings, D. Wecker, N. Wiebe, A. C. Doherty, and M. Troyer,
“The trotter step size required for accurate quantum simulation of quantum
chemistry,” arXiv:1406.4920 (2014).
52R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love, and A. Aspuru-
Guzik, “Exponentially more precise quantum simulation of fermions in second
quantization,” New J. Phys. 18, 033032 (2016).
53I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spag-
nolo, S. Bose, P. Mataloni, and R. Osellame, “Photonic simulation of entanglement
growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
54A. Tranter, P. J. Love, F. Mintert, N. Wiebe, and P. V. Coveney, “Ordering of
trotterization: Impact on errors in quantum simulation of electronic structure,”
Entropy 21, 1218 (2019).
55C. Cirstoiu, Z. Holmes, J. Iosue, L. Cincio, P. J. Coles, and A. Sornborger, “Vari-
ational fast forwarding for quantum simulation beyond the coherence time,” npj
Quantum Inform. 6, 82 (2020).
56A. Bolens and M. Heyl, “Reinforcement learning for digital quantum simula-
tion,” Phys. Rev. Lett. 127, 110502 (2021).
57S.-H. Lin, R. Dilip, A. G. Green, A. Smith, and F. Pollmann, “Real-and
imaginary-time evolution with compressed quantum circuits,” PRX Quantum 2,
010342 (2021).
58J. Richter and A. Pal, “Simulating hydrodynamics on noisy intermediate-scale
quantum devices with random circuits,” Phys. Rev. Lett. 126, 230501 (2021).
59M. S. Tepaske, D. Hahn, and D. J. Luitz, “Optimal compression of quantum
many-body time evolution operators into brickwall circuits,” arXiv:2205.03445
(2022).
60H. Zhao, M. Bukov, M. Heyl, and R. Moessner, “Making trotterization adaptive
for NISQ devices and beyond,” arXiv:2209.12653 (2022).
61S. Wu and Z. Cai, “Spontaneous symmetry breaking and localization in
nonequilibrium steady states of interactive quantum systems,” Sci. Bull. 68,
2010–2016 (2023).
62A. Carati and A. Ponno, “Chopping time of the FPU α-model,” J. Stat. Phys.
170, 883 (2018).

Chaos 34, 033107 (2024); doi: 10.1063/5.0171261 34, 033107-13

Published under an exclusive license by AIP Publishing

 02 O
ctober 2024 17:31:06

https://pubs.aip.org/aip/cha
https://doi.org/10.1016/0370-1573(75)90018-6
https://doi.org/10.1143/PTP.50.1547
https://doi.org/10.1103/PhysRevB.9.1921
https://doi.org/10.1103/PhysRevB.9.1924
https://doi.org/10.1063/1.3658620
https://doi.org/10.1007/s10955-018-2017-x
https://doi.org/10.1103/PhysRevLett.15.240
https://doi.org/10.1016/0021-9991(67)90031-9
https://doi.org/10.1103/PhysRevE.55.6566
https://doi.org/10.1007/s10955-011-0277-9
https://doi.org/10.1103/PhysRevE.95.060202
https://doi.org/10.1103/PhysRevLett.120.144301
https://doi.org/10.1016/0370-1573(92)90116-H
https://doi.org/10.1511/2009.78.214
https://doi.org/10.1016/j.apnum.2013.01.003
https://doi.org/10.1103/PhysRevE.82.036704
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1016/j.aop.2014.11.008
https://doi.org/10.21468/SciPostPhys.3.4.029
https://doi.org/10.1103/PhysRevE.79.056211
https://doi.org/10.1007/BF00420664
https://doi.org/10.1016/0003-4916(81)90253-0
https://doi.org/10.1088/0305-4470/25/20/007
https://doi.org/10.1063/1.529425
https://doi.org/10.1007/s00220-006-0150-x
https://arxiv.org/abs/1406.4920
https://doi.org/10.1088/1367-2630/18/3/033032
https://doi.org/10.1038/s41467-017-01589-y
https://doi.org/10.3390/e21121218
https://doi.org/10.1038/s41534-020-00302-0
https://doi.org/10.1103/PhysRevLett.127.110502
https://doi.org/10.1103/PRXQuantum.2.010342
https://doi.org/10.1103/PhysRevLett.126.230501
https://arxiv.org/abs/2205.03445
https://arxiv.org/abs/2209.12653
https://doi.org/10.1016/j.scib.2023.07.047
https://doi.org/10.1007/s10955-018-1962-8

