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Crossover from Poisson to Wigner-Dyson level statistics in spin chains with integrability breaking
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We study numerically the evolution of energy-level statistics as an integrability-breaking term is added to the
XXZ Hamiltonian. For finite-length chains, physical properties exhibit a crossover from behavior correspond-
ing to the Poisson level statistics characteristic of integrable models to behavior corresponding to the Wigner-
Dyson statistics characteristic of the random-matrix theory used to describe chaotic systems. Different mea-
sures of the level statistics are observed to follow different crossover patterns. The range of numerically
accessible system sizes is too small to establish with certainty the scaling with system size, but the evidence
suggests that in a thermodynamically large system an infinitesimal integrability breaking would lead to Wigner-
Dyson behavior.
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[. INTRODUCTION large response to a voltage, whereas nonintegrable models
have a finite conductivity because a typical level has a small

The conjecture that the statistical properties of energy levresponsé:®
els of chaotic quantum systems may be described in terms of While these basic properties have been established for the
the theory of random matrices is widely accepted in variouswo generic cases of integrable and nonintegrable models,
fields of physics. This however is not a universal property of the crossover between these two limits as an integrability-
all complex interacting systems. One example to the contrargreaking interaction is turned on has not been carefully stud-
is provided by the class of the so-called integrable motlels,ied to our knowledge, nor have the implications of the cross-
where the behavior of the system is completely described byyer for the finite-size conductivity of nearly integrable
a large(infinite in the thermodynamic limjtset of conserved systems been determined. Two of us, with N. Andrei, pre-
quantities. One consequence is that the level-spacing distréented a few numerical results in a paper mainly concerned
bution PA(E) in the case of integrable models is the POiSSOWVith the Charge transport of integrab|e Systéranwever’
distribution (A denotes mean level spacjng the significance and interpretation of these results were not

clear. Song and Shepelyanéistudied the effects of a ran-
1 dom potential on level statistics of two-dimension@bD)
PA(E)= Ze‘E’A, (1) interacting Fermions and found evidence for a localization-
delocalization transition. However, in their case, the physics
f the transition is due to the disorder and thus is different
rom the situation in integrable models. Berkovits and
Avishai also study the crossover in the presence of disSrder.
8 Earlier work by DiStasio and Zotd$noted a crossover be-
P.(E)=b (E) o agE/a? 2) tween Poisson and Wigner-Dyson in the low-energy part of
A Al A ' the spectrum and did not address scaling with system size.
p 9 Yy
Most recently, Kudo and Deguchihave characterized the
where =1, 2, 4 correspond to orthogonal, unitary, andprobability distribution in the crossover regime as an average
symplectic ensembles respectively, aibd= /2, a,= w/4; between Poisson and Wigner-Dyson, but their numbers were
b,=32/m?~3.24, a,=4lm;, b,=262144/729%°~11.6, a, limited to 16 sites, and they do not report the scaling we
=64/97~2.26. describe here.

Other statistical propertiegor example, the evolution of In this paper we will fill these gaps by providing numeri-
levels under an external perturbatfpalso differ for the two  cal results for finite-size chains with Hamiltonian given by
cases. One important class of external perturbations is thihe (integrable XXZ model plus an integrability-breaking
application of a voltage. The difference in response in thigerturbationsH. Our principal results are computations, for
case leads to spectacular differences in transport propertiégite-length chains, of the crossover from behavior charac-
of integrable and nonintegrable models. Integrable modelteristic of Poisson to behavior characteristic of Wigner-
have been argued to have an infinite conductivity even abyson statistics in various statistical measures. These cross-
high temperatures, essentially because a typical level hasavers fail to display an obvious universality in the sense that

whereas in random-matrix theory the distribution takes th
Wigner-Dyson form,
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different measures show different behavior depending on the N 1 622
XXZ asymmetry parameter and system size. D,=— 2822
Our computations are performed for finite-size systems. BZag¢ $—0

An important issue is the behavior in the limit of a thermo-

dynamically large system. Extrapolation to the thermody-vanishes in the thermodynamic linit,and the remaining
namic limit proves to be ambiguous for most of the measureserm, D,, is positive

we employ(namely, we cannot rule out a saturation of the

crossover scales as functions of the system size for chains BN 1 IE,) 2

much longer than those considered in this sjubut the data D=7 > ( PP ) e AEn, (4)
suggest that all the crossover scales vanish at infinite system n $—0

size.

The rest of the paper is organized as follows. First well the gapless phase of the XXZ model it has been Sﬁf_’("’”
discuss the model used in numerical calculations and, in pathat ballistic transport persists to finite temperatures in the
ticular, define numerically the value of the integrability- S€nse that D(N)=lim__ D,(N)T>0. The infinite-
breaking parameter at which a gap appears in the spectrunemperature limit of this result implies that for a typical level
All further considerations will be devoted to the gapless redE, /d¢~ 1/\/N. At the antiferromagnetic Heisenberg point
gime. Then we discuss the level-spacing distribution and thg, =1 the model still has gapless excitations, but results of
correlator of level velocities. The latter is related to the para+apricius and McCo¥ suggest thab, vanishegslowly) as
metric statistics of the system and also to its transport propthe system size increases. Numerical results of Narozhny
erties. For disordered systems, the correlator of level velociet al” were consistent with this suggestion, but the limited
ties was shown to correspond to the dimensionlesgange of system sizes attainable precluded a definite state-
conductance of the system, while if one restricts the analysigent.
to periodic boundary conditions onfgee belowit coincides Integrability breaking is introduced by adding the term
with the Drude weight. Discussion of the Drude weight con-ywith next-neighbor coupling
cludes the paper.

N

IIl. THE MODEL SH :2‘1 1, . (5

We study the effect of integrability breaking on the physi-
cal properties of a spin chain. The integrable model we conThjs term should be contrasted to that considered by Etfgert
sider is the XXZ chain defined onMksite ring with periodic  insofar as it is explicitly not S(2) invariant. However, away
boundary conditions in the presence of external fiix from the Heisenberg point the effect of the interaction &i.
threading the ring: is similar to that of its S(R)-invariant counterpart(i) it
LN breaks the integrability of the system aril) for large
_- io/Not o —ig/Ne— ot enough values dd, it causes the system to dimerize, so that
Hxxz=3 ;1 (€¥7S S te NS Sy the spectrum acquires a gap. The critical valud.oét which
the gap opens is of course different from the 0.24 found in
LY s @) Ref. 17. Our numerical estimaf8ssuggest a valugl{®
o 1SS =1.1 that is a weakly increasing function of both system size
andJ;: for N=18 andJ,=0.2, for example, the gap appears
(AIter_natiyer, _the flux can be gau_g_ed out to the boundaryyo open atl,=1.13+0.01. The gap opening limits the range
resulting in twisted boundary conditiofgs is well-known,  of values ofJ, under consideration, as we are interested only
statistical properties of integrable models are governed by, properties of the gapless phase; indeed, the measures we
the Poisson distribution, Eq1). Transport properties of the gnsider presently begin showing different behavior Jer
model can also be inferred.from studying the energy levels ogJ(zc)_ Similarly, the parameter region considered by Faas
the model, namely, by their response to the fitixAt zero o 514 pelongs to the gapped regime, which accounts for cer-

temperature the behavior of the ground-state energy of thgyn gifferences in the behavior of the level statistics reported
system under slow variation of the flux determines the Drude, ref 4 and in the present paper.

N

weight or the stiffness$ D as In this paper we study the eigenvalues lf=Hyyy
5 + 6H and their evolution under change ¢f for the above

:E = model with varyingJ; , and system size. For the noninte-

52 g2 (/Ho. grable HamiltonianHyy,+ 6H we use exact numerical di-

agonalization to construct the level-spacing distribution and
NonvanishingDg signals ballistic transport in the system. level auto-correlation functions and to evaluate the stiffness
For the XXZ model afT=0 this is the casé for —1<J;  D,, Eq. (4). The use of exact numerical methods is moti-
<1, where excitations of the system are gaplesslJif  vated by the need to obtain the whole spectrum of the model
>1, then the excitation spectrum of the model is gapfed, in order (i) to study the statistical properties of the spectrum
and Ds=0. At finite temperatures the above expression forand (ii) to study the stiffness Ed4) at infinite temperature.
the stiffness can be generalizedto Dy=D;+D,, where The drawback of the method is the limitation to
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FIG. 1. Typical crossover of the level-spacing distribution from  FIG. 2. (Color onling The stiffnessD(N)=lim___ D,(N)T as
Poisson(left solid curve for J,=0 to Wigner-Dyson(right solid 3 function of inverse system size for different values of interaction
curve for a representative system. The plot is made Nor 18,  parameters. Dashed lines show a naive extrapolation to the thermo-
$=3, J;=0.2, momentunk=0, andJ,=0.1,0.2,0.5. Fod,=0  dynamic limit for the integrable system. Here we show the results
the numerical distribution agrees very closely with the exponentiakgy J;=0 (squares J;=0.2 (triangles andJ,=1 (circles. Empty
plotted. The Wigner-Dyson distribution shown is the theoreticalsymbhols correspond to the smallést= 0.01, which seems to affect
curve for the orthogonal ensemble. strongly only theJ,;=0 case. The behavior fal,=0.9 appears to

be independent ai;.

small system size@ve present results for chains of up to 20

siteg. For finite system sizes we obtain a detailed characterchanges from the exponential in E@) to the (asymptoti-
ization of the crossover. cally) Gaussian tail of the Wigner-Dyson distribution.

To quantify this crossover we show the evolution of the
peak position and the characteristics of the tail with the
lll. LEVEL-SPACING DISTRIBUTION change inJ, in Figs. 3 and 4. Both exhibit similar features,
We begin with a brief discussion of the integrable case@lthough the estimates for the crossover scales extracted
The level-spacing distribution faf,=0 is the Poisson dis- from the two are numerically differerisee Table | and insets

tribution (shown in Fig. 1 by the left solid curyeThis illus- N Figs. 3and 5 -
trates the fact that the integrable system has so many conser-AS shown in Fig. 3, the peak of the distribution grows
vation laws that levels essentially do not repel each other. THom zero to the value characteristic of the Wigner-Dyson
characterize transport properties of the system we show iflistribution and then saturates. To estimate the crossover
Fig. 2 the quantityD(N)=D,(N)T at T—c for different scaleJ? , we fit the data by the hyperbolic tang&hof the
system sizes and different values of the integrable interactioform atanhf/x,) with x, approximatingJ; . The inset
J, (dashed lines in Fig.)2D is seen to be almost size inde- shows the resulting values fd¢ as a function of the system
pendent for the case$; <1, in agreement with previous size. As we noted befor@,we are restricting our attention to
work,” while a weak size dependence is evident in thefixed values of the total spiB”. However, for the purposes
Heisenberg cas& = 1. Although this dependence appears toof the finite-size scaling, it makes more sense to compare
have a positivey intercept, we believe that the system size indata with the fixed rati&*/N. One way to see this is to recall
this study is still too small to make a definite statement rethat by means of the Jordan-Wigner transformation the spin
garding the behavior of the Heisenberg model in the thermoehain can be mapped onto a system of spinless Fermibns.
dynamic limit!° the Fermion language, 1#23%/N corresponds to the filling
We turn now to the case of broken integrability. As thefraction. Since it is not possible to keep the ra84N ex-
integrability-breaking term Eq(5) is added to the Hamil- actly the same for all values dfl used in this paper, we
tonian, energy levels immediately start to reffeind as a  choose to present the data for two sectors of figethat are
consequence immediateR, (0)=0 so that the distribution closest to the chosen value 8f/N. Therefore the inset in
acquires a peak. As illustrated in Fig. 1, increasiggshifts  Fig. 3 shows two data points for tiother thanN= 18 (we
the peak to the right until the distribution starts to look like choseSY/N=1/6). The straight lines are just guides to the
the Wigner-Dyson distributiofishown in Fig. 1 by the right eye.
solid curve. At the same time the tail of the distribution  To analyze the evolution of the tail, we approximate the
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TABLE I. The system crosses over from integrable to fully cha-
otic behavior withdifferentcrossover scales, depending on what is
being measured. Furthermore, the crossover scales themselves scale
differently with system size. We calculate crossover scales associ-
ated with peak position, tail crossovérom exponential to Gauss-

0.6+ ian), mean squared level velocity,, the fourth cumulank, of the
g level-spacing distribution, and conductariagT. In this example,
k=) J;=0.2. The crossovejz P2T is calculated for the entire spectrum,
4 while all the others are calculated for tB&= 3 sector and momen-
o 047 tum k=0. Entries of— could not be extracted from the data be-
—:5 cause of numerical uncertainty. Rough error estimates for the least
& significant digit are provided where available.
0.2 1 N \]32& peak Jztail J;CO J; kg .]; D,T
20 0.19 0.27 0.094) 0.091 0.07®8)
18 0.25 0.43 0.18) 0.17 0.1073)
00 16 0.34 0.49 0.2@) 0.24 0.14%2)
0.0 0. 0.4 0.6 (i}
’ * 14 038 - 0.282) ~ o178y
/,
FIG. 3. Typical crossover of the peak position. The data correintermediate distributiontsee Fig. 1 by
spond toN=20, S*=4, J;=0.2, momentunk=0, with the solid
line a fit to the formatanh(,/J;), J5 ~0.25. The dashed line in- E E\2
dicates the peak position of the Wigner-Dyson distribution. The Pa(E)ocex _ag_b Al L

inset shows finite-size scaling of the crossover s(thle data points
correspond toN=20, S*=4; N=20, $’=3; N=18, $°=3; N
=16, $°=3; N=16, S’=2; N=14, $*=3; N=14, $*=2); the
straight lines are guides to the eye, suggesting Ihatanishes for
the infinite chain.

Clearly, for Eq.(1) a=1 andb=0, while for the orthogonal
ensemble, Eq2) corresponds ta=0 andb= /4. In Fig. 4
we show the evolution db (the fact that plotted values never
reach/4 is an artifact of the calculationFitting the curve

to a hyperbolic tangent, we can extract an estimate for the
crossover valugds (N=20)=0.27. This value differs some-
what from the one extracted from the peak positifor the

66—+ -

b (tail parameter)

T T T T T
0.6 0.8 1.0

J,

FIG. 4. Evolution of the parametdr from the tail of the level-
spacing distribution. For the integrable cabes0. For largel, it
does not quite reach the Wigner-Dyson vaitid, but it still shows
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FIG. 5. Variance estimateX), k,, as a function ofl, for sys-
tem sizeN=20. (J;=0.2, $*=3, momentunk=0.) The crossover
scale is estimated as the turning poiit)(in a tanh fit(curve. The
inset illustrates the finite-size scaling for cumulakjs(solid lines

a clear crossover. The crossover scale estimated by fitting the dagad <) andk, (dotted lines and> ) for the same set of sizes agd

to a hyperbolic tangent i85 =0.27. The plot is made foN=20,
$=3, J;=0.2, and momenturk=0.
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same values oN, S, andJ,); see the inset in Fig. 3. The o
behavior of the tail characteristics with respect to changing
system size exhibits the same trend as shown in the inset in
Fig. 3 for the peak position: the characteristic scales tend to r \ Tt oRE X 7]
decay with increasing system size. The naive extrapolation L \ ]

X
%
X
X
x4

|
1
<
Y
[
c
@
inflection
X

of such a trend is consistent with a statement of vanisbing o1 ]

asN—x; however, the data are insufficient to prove it.

Another way to quantify the evolution of the level-
spacing distribution shown in Fig. 1 is to consider
cumulants?® Their unbiased estimatotthe Fisher statistiés
k,) are easily computed. For our normalized level spacings,
the first cumulantwhich is equal to the mearns unity.

The cumulants of a distribution characterize its width
(second cumulant, or variancand shapé? beyond perhaps r
the fifth, numerical cumulants become too sensitive to outli- 0.0 —
ers to be of much use. A study of the cumulants of a distri- |
bution is qualitatively similar to our foregoing study of the
tails, but it turns out to be simpler numerically. In Fig. 5 we
show the unbiased variance estimatg, as a function ofl,
for system sizeN=20, J;=0.2, S*=3, momentumk=0. FIG. 6. Autocorrelation of level velocities for various values of
The theoretical limits should be 1 for the Poisson distribu-integrability breaking. Only a short range of flux is shown; in all
tion and 7/4—1=0.2732 (the bottom of the scalefor cases, the sum rulghe integral ofC(¢) over all fluxes vanishinp
Wigner-Dyson. The fact that the data points deviate fromis satisfied numerically. Fa¥,>0, there is a point of inflection at
these ideal values is an artifact of finite sampling. Fitting the"onzero flux. However, the integrable model has no initial inflec-
curve to a hyperbolic tangent, we estimate the crossovdjon- The inset plots the pOS.ItIOH of the inflection point as a function
scale, shown in the inset as a function of it the same ©f J2- These data were derived fb=20, =3, J,=0.2, k=0.

sequence of quantum numbers as in Fig.The inset also . dC(0). Wi f f th lati
shows the crossover scale for the fourth cumulant. As before?omt andC(0). We note a feature of the autocorrelation

the scaling suggestéut does not establisthat the cross- curve shown in Fig. 6 that appears only as the integrability

over scalelJ} associated with either cumulant should vanishbreakmg. IS mtroduced: all curves fd&.>0 have a nonzero
in the limit of infinite size. It is not possible to determine point of inflection as the autocorrelation decreases with the
whether the different meaéurdg andk, (we also looked at increase ofl,, but the autocorrelation function of the inte-
ks), scale in the same way or éiffere;tly with system size. grable system does not have such an inflection point. Conse-

The second cumulaiit, plays a role similar to that of the quently, the behavior near zero flux changes fromllinear
parameter; used in Ref. 8 to estimate the overall “proxim- [C(#)=C(0) — ¢] for the integrable case to quadratic for

ity” of the observed distribution to either the Poisson or the‘]2>o'

Wigner-Dyson limit. In that sense, Fig. 5 shows behaviorﬂu;zsf:r:fgggg?t:gns;ﬁqneit\;ﬁgt Z}cniﬁ;fltovﬁllzcgﬁfigszé ro
similar to that found in Ref. 8, although the physics of the 9-

evolution of levels is quite different in our case. (4), the differences being thQ(O) Is also averaged over a

set of fluxes, does not contain the extra factors of tempera-
ture and system size, and corresponds to a single sector of
IV. ELEMENTS OF THE PARAMETRIC STATISTICS fixed S*. However, in chaotic systems it §(0) that can be

More information about the crossover to the chaotic ber€lated to transpoftThere it was argued to correspond to the

havior described by the Wigner-Dyson statistics can be exdimensionless conductance. _
tracted from the study of the autocorrelation functions. Here [N Fig. 7 we show the behavior @(0) as a function of

oot ., , , 1., ., H

<E{(¢p+¢") E/(9)>4
o
o
|

scaled flux

we will discuss the autocorrelation of level velocities J2. Clearly, for finite systemsC(0) exhibits a well-defined
crossover. For the dataset presented in FigN#RO, J;
1 /9E,(0) JE;(6+ &) =0.2, §=3), the correlatolC(0) decays as a 5/2-power
Clo)= P< 70 70 : (6)  law afterJ, exceeds the valud; 0= 0.097+0.004 (defined
0,i

in Fig. 7 as a crossing point of the above power law—the
where the angular brackets indicate averaging over a set straight line in the log-log scale—with the valueB3t=0).
levels and fluxe$. The inset shows the crossover scale as a function of the
A typical form of the autocorrelation function E¢) is  sSize (in the same manner as the crossover scale extracted
shown in Fig. 6. For large values 8, this form resembles from the peak of the level-spacing distributjoifhe behav-
the universal correlator characteristic of chaotic systéms.ior is very similar to that in the inset in Fig. @lthough
However, in the crossover regiof(¢) deviates from the numerical values of the crossover scales differ in the two
universal form in a rather complex fashion, which makes acases Both would be consistent with the statement tBiat
quantitative analysis of the crossover difficult. Therefore we—0 asN—oo; however such a conclusion cannot be ascer-
focus on two particular features of the curve, the turningtained on the basis of the data available.
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AL U (if) For the Heisenberg model, small integrability break-
.y ] ing again does not have a pronounced effect; however, in this
\ case(even though the extrapolation indicates a finite value
1000 5 i"\_ 3 for the thermodynamic limjt one cannot be certain of the
\ ] behavior of the infinite chain.
‘\ 1 (iii) For J;=0 the situation is different: even a very small
1 % 93 +,/§ . “-\ 1 amount of integrability breaking leads to a sharp reduction in
100 - ~ / \_ . the stiffness for finite chains. The extrapolation to infinite
] .\ size is also uncertain. It should be noted, however, that if one
] compares the behavior of two integrable cashss0 and
1 0.l :]' | ‘q\ ; J;>0, then a similar picture arisgsompare, for example,
10 \' the two top dashed lines in Fig).2This has to do with the
3 ] fact that the spin chain a =0 can be mappetby means of
000 002 004 006 008 ] the Jordan-Wigner transformatipronto a system of free
1/N ] spinless Fermions and as such possesses more symmetries
than even the integrablgut interactingg XXZ model.
A o T (iv) When the integrability-breaking parameter is not
0.01 0.1 1 ) .
small, the stiffness decays shargiy fact, if we were to
]2 show a log-log plot, faster than any power Jawith system
FIG. 7. C(0) as a function ofl, for N=20, J;=0.2, =3, size and clearly extrapolates to zero in the thermodynamic

k=0. The dotted line corresponds to the valugat 0. The inset  lIMit. This behavior is qualitatively independent &f. _
shows the finite-size scaling of the crossover sca§e°° at ap- Thus the data suggest that for finite chains there exists a

proximately fixed ratiocS/N=1/6 (for N=14, 16, or 20, we pick chtical” value of J, (smaller than the point of the gap
the two closest values & for these sizes opening beyond which the stiffness tends to vanish. This
value is not universal, in the sense that it depend$;of his
situation is illustrated in Fig. 8, where we show the depen-
dence of the stiffness od, for three values ofl; and the
Now we discuss the effect of the integrability breaking fixed system sizeN=18. For large values od,, all three
Eg. (5) on the stiffnesD,. In Fig. 2 we show three sets of curves saturate to zefalthough the one witd;=1 does so
data corresponding to three different values of the XXZ anfastey. ForJ,=0.2 the effect of small, is rather weak, and
isotropy parameted;. The data illustrate the following ten- the curve exhibits a clear crossover. Bgr=0 the crossover
dencies. also appears; however, the value 0.08 to which the curve
(i) For 0<J,<1 (represented by,;=0.2; similar behav- tends asJ,—0 is much smaller than the value ;=0
ior is observed for other valugshe data clearly show that exactly (which is 0.25 and is thus outside the frame of the
very small integrability breaking(characterized byJ, plot). The crossover is illustrated in the left inset. The right
=0.01) has little effect on the stiffness of the finite chainsinset shows the change of the crossover scale with system
(which is to be expected Moreover, the extrapolation to size forJ;=0, 0.2, and 0.4. The behavior =1 is quite
infinite size seems to result in a finite value for the stiffnesddifferent and, in particular, does not show an obvious cross-
in a manner similar to that of the integrable model. over (and is thus not represented in the right insédthis

c®
;
R
i
.

V. SPIN STIFFNESS

FIG. 8. D(N) as a function ofJ, (for N
=18). The main plot and the left inset show the
same data in linear and log-log scdleeant to
illustrate the crossover to a power-law decay of
the stiffness at largd, for smaller values o0f,)
for J;=0 (squares J;=0.2 (circles, andJ;=1
(diamond$. The horizontal lines in the inset in-
dicate the values ob(N) at J,=0 for J;=0.2
(the upper ling and J;=1. The second inset
shows the size dependence of the crossover scale
for J;=0, 0.2, and 0.4triangles. The Heisen-
berg casel;=1 does not show a clear crossover.
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behavior might be related to the conjectir¢hat at the (the corresponding scales are also included in Table |
Heisenberg point the stiffness vanishes in the thermodynamic The one exception to this picture is the number of degen-
limit even without the integrability breaking. Alternatively, erate levels in the systéftrepresented bf,(0). This mea-
this can reflect the fact that the Heisenberg model is charasure exhibits a jump as infinitesimally smdthumerically
terized by logarithmic correlatiorS,and thus the small sys- meaning of the order of the computer precigida is intro-

tems considered in this paper are not representative. duced[namely,P,(0) vanishes, as illustrated in Fig].1
One might be tempted to speculate on the universality or
VI. DISCUSSION otherwise of the crossover from Poisson to Wigner-Dyson

. _ ) statistics. Table | compiles different crossover scales depend-
Prior to performing the calculations one could have hading on the quantity measured. All the scales appear to de-
two conflicting expectations for the behavior of the noninte-raase with system size, but it is not clear that they do so in
grable system(i) as soon as the integrability is broken the e same way: as we have argued, meaningful finite-size
system becomes chaotic and as a result shows diffusiVg5jing of the variousJ3 numbers requires a fixefilling
transport,(ii) there exists a “critical” magnitude of the inte- rather than fixedsZ. We will note. from the table. that stiff-
grability breaking that separates the chaptic regime from th. essD,T appears the most fraéile of the mea,sures, in the
one that retains some features of the integrable model, iGgnge that it crosses over to the chaotic regime for the small-
particular, ballistic transport. . N est integrability-breaking,, while the shape of the tail ap-
The latter picture has an analogy in the localization prOb'pears the most robust. The tail concerns relatively rare large

lem in disordered conductofS.The states of an integrable |, o spacings, whil®,T weighs the whole spectrum. Per-

model can be visualized as well-defined localized points Irhaps a small number of ballistic channels could remain open

the multidimensional space of the integrals of motion char-after the latter measure has ceased to count them.

acteristic of the model. These points are well separated due Conclusions for the thermodynamic limit are harder to

t((:) t:el dcg:anntlzattr;onec#‘ tcr]{e }lﬂﬁeiifgitg]seir;mﬁgrarlrf’aﬁfimouroar]'draw from our data. The variation of crossover scale with
ons 0 € efiect 0 aly s €d ystem size indicated in the insets to the different figures

uggests that the crossover scale vanishes in the limit of an

! S R Shfinite-size system rather than saturating at nonzero values
that unless the integrability breaking is strong enough, thes or J5 , but the limited range of sizes available to us, along

Sr’rf):rf Odo gfotthzvggpthg tl? I\i,;g%'nrgz égeinstftg& ere[t)aelfr:)sr es?;n With the absence of a theoretically justified extrapolation to
Y g Ghe thermodynamic limit, precludes a definite statement.

extra interaction was turned on. When the IntegrabmtyConstructing a theory of the approach to the infinite-size

breaking is so strong that the spots overlap into a continuu . . . . - . .
the system becomes fully chaotic. rT'!imlt of chains with weak integrability breaking remains an
|£nportant open problem.

The numerical analysis presented in this paper seem
roughly consistent with the second possibility for finite
chains: a small integrability-breaking term leads to behavior
that is close to that of the integrable system. Quantities re-
lated to transport, the stiffned3, and the “conductance” Instructive discussions with B.L. Altshuler, A.A. Ners-
C(0), exhibit a reasonably rapid crossover as functions ofesyan, and J.K. Looper are gratefully acknowledged. Nu-
the strength of the integrability-breaking interaction. Themerical work was performed at the San Diego Supercomput-
crossover behaviors seem to be different for different quaning Center and the University of Michigan supercomputing
tities. Table I, for example, illustrates some of this variability facility through NPACI Grant No. CSD268 and at the
for the example ofl; =0.2, intermediate between the nonin- Research-Oriented-Computing Center of the University of
teracting model and the Heisenberg point. Similarly, theSouth Florida. D.A.R. was supported in part by a grant from
guantitative characteristics of the level-spacing distributiorResearch Corporation and wishes to thank the Abdus Salam
(namely, the peak position and the tail parameter, see Figs. [Bternational Center for Theoretical Physics for its hospital-
and 4, or cumulants, see Fig) Bxhibit similar crossovers ity. A.J.M. was supported by NSF grant DMR 0338376.
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