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Crossover from Poisson to Wigner-Dyson level statistics in spin chains with integrability breaking
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We study numerically the evolution of energy-level statistics as an integrability-breaking term is added to the
XXZ Hamiltonian. For finite-length chains, physical properties exhibit a crossover from behavior correspond-
ing to the Poisson level statistics characteristic of integrable models to behavior corresponding to the Wigner-
Dyson statistics characteristic of the random-matrix theory used to describe chaotic systems. Different mea-
sures of the level statistics are observed to follow different crossover patterns. The range of numerically
accessible system sizes is too small to establish with certainty the scaling with system size, but the evidence
suggests that in a thermodynamically large system an infinitesimal integrability breaking would lead to Wigner-
Dyson behavior.
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I. INTRODUCTION

The conjecture that the statistical properties of energy
els of chaotic quantum systems may be described in term
the theory of random matrices is widely accepted in vario
fields of physics.1 This however is not a universal property
all complex interacting systems. One example to the cont
is provided by the class of the so-called integrable mode2

where the behavior of the system is completely described
a large~infinite in the thermodynamic limit! set of conserved
quantities. One consequence is that the level-spacing d
bution PD(E) in the case of integrable models is the Poiss
distribution (D denotes mean level spacing!,

PD~E!5
1

D
e2E/D, ~1!

whereas in random-matrix theory the distribution takes
Wigner-Dyson form,

PD~E!5bbS E

D D b

e2abE2/D2
, ~2!

where b51, 2, 4 correspond to orthogonal, unitary, a
symplectic ensembles respectively, and3 b15p/2, a15p/4;
b2532/p2'3.24, a254/p; b45262144/729p3'11.6, a4
564/9p'2.26.

Other statistical properties~for example, the evolution o
levels under an external perturbation4! also differ for the two
cases. One important class of external perturbations is
application of a voltage. The difference in response in t
case leads to spectacular differences in transport prope
of integrable and nonintegrable models. Integrable mod
have been argued to have an infinite conductivity even
high temperatures, essentially because a typical level h
0163-1829/2004/69~5!/054403~8!/$22.50 69 0544
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large response to a voltage, whereas nonintegrable mo
have a finite conductivity because a typical level has a sm
response.5,6

While these basic properties have been established fo
two generic cases of integrable and nonintegrable mod
the crossover between these two limits as an integrabi
breaking interaction is turned on has not been carefully st
ied to our knowledge, nor have the implications of the cro
over for the finite-size conductivity of nearly integrab
systems been determined. Two of us, with N. Andrei, p
sented a few numerical results in a paper mainly concer
with the charge transport of integrable systems.7 However,
the significance and interpretation of these results were
clear. Song and Shepelyansky8 studied the effects of a ran
dom potential on level statistics of two-dimensional~2D!
interacting Fermions and found evidence for a localizatio
delocalization transition. However, in their case, the phys
of the transition is due to the disorder and thus is differ
from the situation in integrable models. Berkovits a
Avishai also study the crossover in the presence of disord9

Earlier work by DiStasio and Zotos10 noted a crossover be
tween Poisson and Wigner-Dyson in the low-energy part
the spectrum and did not address scaling with system s
Most recently, Kudo and Deguchi11 have characterized th
probability distribution in the crossover regime as an aver
between Poisson and Wigner-Dyson, but their numbers w
limited to 16 sites, and they do not report the scaling
describe here.

In this paper we will fill these gaps by providing numer
cal results for finite-size chains with Hamiltonian given b
the ~integrable! XXZ model plus an integrability-breaking
perturbationdH. Our principal results are computations, f
finite-length chains, of the crossover from behavior char
teristic of Poisson to behavior characteristic of Wigne
Dyson statistics in various statistical measures. These cr
overs fail to display an obvious universality in the sense t
©2004 The American Physical Society03-1
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different measures show different behavior depending on
XXZ asymmetry parameter and system size.

Our computations are performed for finite-size system
An important issue is the behavior in the limit of a therm
dynamically large system. Extrapolation to the thermod
namic limit proves to be ambiguous for most of the measu
we employ~namely, we cannot rule out a saturation of t
crossover scales as functions of the system size for ch
much longer than those considered in this study!, but the data
suggest that all the crossover scales vanish at infinite sys
size.

The rest of the paper is organized as follows. First
discuss the model used in numerical calculations and, in
ticular, define numerically the value of the integrabilit
breaking parameter at which a gap appears in the spect
All further considerations will be devoted to the gapless
gime. Then we discuss the level-spacing distribution and
correlator of level velocities. The latter is related to the pa
metric statistics of the system and also to its transport pr
erties. For disordered systems, the correlator of level vel
ties was shown to correspond to the dimensionl
conductance of the system, while if one restricts the anal
to periodic boundary conditions only~see below! it coincides
with the Drude weight. Discussion of the Drude weight co
cludes the paper.

II. THE MODEL

We study the effect of integrability breaking on the phy
cal properties of a spin chain. The integrable model we c
sider is the XXZ chain defined on aN-site ring with periodic
boundary conditions in the presence of external fluxf
threading the ring:

HXXZ5
1

2 (
i 51

N

~eiw/NSi
1Si 11

2 1e2 iw/NSi
2Si 11

1 !

1(
i 51

N

J1Si
zSi 11

z . ~3!

~Alternatively, the flux can be gauged out to the bounda
resulting in twisted boundary conditions.! As is well-known,
statistical properties of integrable models are governed
the Poisson distribution, Eq.~1!. Transport properties of the
model can also be inferred from studying the energy level
the model, namely, by their response to the fluxf. At zero
temperature the behavior of the ground-state energy of
system under slow variation of the flux determines the Dru
weight or the stiffness12 Ds as

Ds5
N

2

]2E0

]f2 U
f→0

.

NonvanishingDs signals ballistic transport in the system
For the XXZ model atT50 this is the case13 for 21,J1
,1, where excitations of the system are gapless. IfuJ1u
.1, then the excitation spectrum of the model is gappe14

andDs50. At finite temperatures the above expression
the stiffness can be generalized5–7 to Ds5D11D2, where
05440
e

s.

-
s

ns

m

e
r-

m.
-
e
-

p-
i-
s
is

-

-

,

y

f

e
e

r

D152
N

2b

1

Z
]2Z
]f2U

f→0

vanishes in the thermodynamic limit,15 and the remaining
term,D2, is positive:

D25
bN

2

1

Z (
n

S ]En

]f D 2U
f→0

e2bEn. ~4!

In the gapless phase of the XXZ model it has been shown5–7

that ballistic transport persists to finite temperatures in
sense that D(N)5 lim

T→`
D2(N)T.0. The infinite-

temperature limit of this result implies that for a typical lev
dEn /df;1/AN. At the antiferromagnetic Heisenberg poi
J151 the model still has gapless excitations, but results
Fabricius and McCoy16 suggest thatD2 vanishes~slowly! as
the system size increases. Numerical results of Naroz
et al.7 were consistent with this suggestion, but the limit
range of system sizes attainable precluded a definite s
ment.

Integrability breaking is introduced by adding the ter
with next-neighbor coupling

dH5(
i 51

N

J2Si
zSi 12

z . ~5!

This term should be contrasted to that considered by Egge17

insofar as it is explicitly not SU~2! invariant. However, away
from the Heisenberg point the effect of the interaction Eq.~5!
is similar to that of its SU~2!-invariant counterpart:~i! it
breaks the integrability of the system and~ii ! for large
enough values ofJ2 it causes the system to dimerize, so th
the spectrum acquires a gap. The critical value ofJ2 at which
the gap opens is of course different from the 0.24 found
Ref. 17. Our numerical estimates18 suggest a valueJ2

(c)

*1.1 that is a weakly increasing function of both system s
andJ1: for N518 andJ150.2, for example, the gap appea
to open atJ251.1360.01. The gap opening limits the rang
of values ofJ2 under consideration, as we are interested o
in properties of the gapless phase; indeed, the measure
consider presently begin showing different behavior forJ2

.J2
(c) . Similarly, the parameter region considered by Fa

et al.4 belongs to the gapped regime, which accounts for c
tain differences in the behavior of the level statistics repor
in Ref. 4 and in the present paper.

In this paper we study the eigenvalues ofH5HXXZ
1dH and their evolution under change off for the above
model with varyingJ1,2 and system size. For the noninte
grable HamiltonianHXXZ1dH we use exact numerical di
agonalization to construct the level-spacing distribution a
level auto-correlation functions and to evaluate the stiffn
D2, Eq. ~4!. The use of exact numerical methods is mo
vated by the need to obtain the whole spectrum of the mo
in order~i! to study the statistical properties of the spectru
and ~ii ! to study the stiffness Eq.~4! at infinite temperature.
The drawback of the method is the limitation
3-2
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CROSSOVER FROM POISSON TO WIGNER-DYSON . . . PHYSICAL REVIEW B69, 054403 ~2004!
small system sizes~we present results for chains of up to 2
sites!. For finite system sizes we obtain a detailed charac
ization of the crossover.

III. LEVEL-SPACING DISTRIBUTION

We begin with a brief discussion of the integrable ca
The level-spacing distribution forJ250 is the Poisson dis-
tribution ~shown in Fig. 1 by the left solid curve!. This illus-
trates the fact that the integrable system has so many con
vation laws that levels essentially do not repel each other
characterize transport properties of the system we show
Fig. 2 the quantityD(N)5D2(N)T at T→` for different
system sizes and different values of the integrable interac
J1 ~dashed lines in Fig. 2!. D is seen to be almost size inde
pendent for the casesJ1,1, in agreement with previous
work,7 while a weak size dependence is evident in t
Heisenberg caseJ151. Although this dependence appears
have a positivey intercept, we believe that the system size
this study is still too small to make a definite statement
garding the behavior of the Heisenberg model in the therm
dynamic limit.19

We turn now to the case of broken integrability. As th
integrability-breaking term Eq.~5! is added to the Hamil-
tonian, energy levels immediately start to repel,20 and as a
consequence immediatelyPD(0)50 so that the distribution
acquires a peak. As illustrated in Fig. 1, increasingJ2 shifts
the peak to the right until the distribution starts to look lik
the Wigner-Dyson distribution~shown in Fig. 1 by the right
solid curve!. At the same time the tail of the distributio

FIG. 1. Typical crossover of the level-spacing distribution fro
Poisson~left solid curve! for J250 to Wigner-Dyson~right solid
curve! for a representative system. The plot is made forN518,
Sz53, J150.2, momentumk50, andJ250.1,0.2,0.5. ForJ250
the numerical distribution agrees very closely with the exponen
plotted. The Wigner-Dyson distribution shown is the theoretic
curve for the orthogonal ensemble.
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changes from the exponential in Eq.~1! to the ~asymptoti-
cally! Gaussian tail of the Wigner-Dyson distribution.

To quantify this crossover we show the evolution of t
peak position and the characteristics of the tail with t
change inJ2 in Figs. 3 and 4. Both exhibit similar feature
although the estimates for the crossover scales extra
from the two are numerically different~see Table I and inset
in Figs. 3 and 5!.

As shown in Fig. 3, the peak of the distribution grow
from zero to the value characteristic of the Wigner-Dys
distribution and then saturates. To estimate the crosso
scaleJ2* , we fit the data by the hyperbolic tangent21 of the
form a tanh(x/x0) with x0 approximating J2* . The inset
shows the resulting values forJ2* as a function of the system
size. As we noted before,20 we are restricting our attention t
fixed values of the total spinSz. However, for the purpose
of the finite-size scaling, it makes more sense to comp
data with the fixed ratioSz/N. One way to see this is to reca
that by means of the Jordan-Wigner transformation the s
chain can be mapped onto a system of spinless Fermions7 In
the Fermion language, 1/22Sz/N corresponds to the filling
fraction. Since it is not possible to keep the ratioSz/N ex-
actly the same for all values ofN used in this paper, we
choose to present the data for two sectors of fixedSz that are
closest to the chosen value ofSz/N. Therefore the inset in
Fig. 3 shows two data points for theN other thanN518 ~we
choseSz/N51/6). The straight lines are just guides to th
eye.

To analyze the evolution of the tail, we approximate t

l
l

FIG. 2. ~Color online! The stiffnessD(N)5 lim
T→`

D2(N)T as

a function of inverse system size for different values of interact
parameters. Dashed lines show a naive extrapolation to the the
dynamic limit for the integrable system. Here we show the res
for J150 ~squares!, J150.2 ~triangles! andJ151 ~circles!. Empty
symbols correspond to the smallestJ250.01, which seems to affec
strongly only theJ150 case. The behavior forJ250.9 appears to
be independent ofJ1.
3-3
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FIG. 3. Typical crossover of the peak position. The data co
spond toN520, Sz54, J150.2, momentumk50, with the solid
line a fit to the forma tanh(J2 /J2* ), J2* '0.25. The dashed line in
dicates the peak position of the Wigner-Dyson distribution. T
inset shows finite-size scaling of the crossover scale~the data points
correspond toN520, Sz54; N520, Sz53; N518, Sz53; N
516, Sz53; N516, Sz52; N514, Sz53; N514, Sz52); the
straight lines are guides to the eye, suggesting thatJ2* vanishes for
the infinite chain.

FIG. 4. Evolution of the parameterb from the tail of the level-
spacing distribution. For the integrable case,b50. For largeJ2 it
does not quite reach the Wigner-Dyson valuep/4, but it still shows
a clear crossover. The crossover scale estimated by fitting the
to a hyperbolic tangent isJ2* 50.27. The plot is made forN520,
Sz53, J150.2, and momentumk50.
05440
intermediate distributions~see Fig. 1! by

PD~E!}expF2a
E

D
2bS E

D D 2G .
Clearly, for Eq.~1! a51 andb50, while for the orthogonal
ensemble, Eq.~2! corresponds toa50 andb5p/4. In Fig. 4
we show the evolution ofb ~the fact that plotted values neve
reachp/4 is an artifact of the calculation!. Fitting the curve
to a hyperbolic tangent, we can extract an estimate for
crossover valueJ2* (N520)50.27. This value differs some
what from the one extracted from the peak position~for the

-

e

ata

FIG. 5. Variance estimate (3), k2, as a function ofJ2 for sys-
tem sizeN520. (J150.2, Sz53, momentumk50.! The crossover
scale is estimated as the turning point (s) in a tanh fit~curve!. The
inset illustrates the finite-size scaling for cumulantsk2 ~solid lines
and3) andk4 ~dotted lines andL) for the same set of sizes andSz

sectors as in Figs. 3 and 7 appropriate for 1/3 filling. TheJ2* asso-
ciated with either cumulant may vanish in the limit of infinite siz

TABLE I. The system crosses over from integrable to fully ch
otic behavior withdifferentcrossover scales, depending on what
being measured. Furthermore, the crossover scales themselves
differently with system size. We calculate crossover scales ass
ated with peak position, tail crossover~from exponential to Gauss
ian!, mean squared level velocityC0, the fourth cumulantk4 of the
level-spacing distribution, and conductanceD2T. In this example,
J150.2. The crossoverJ2

* D2T is calculated for the entire spectrum
while all the others are calculated for theSz53 sector and momen
tum k50. Entries of2 could not be extracted from the data b
cause of numerical uncertainty. Rough error estimates for the l
significant digit are provided where available.

N J2*
peak J2*

tail J2
* C0 J2

* k4 J2
* D2T

20 0.19 0.27 0.097~4! 0.091 0.079~3!

18 0.25 0.43 0.15~1! 0.17 0.107~3!

16 0.34 0.49 0.20~2! 0.24 0.145~2!

14 0.38 2 0.28~2! 2 0.178~5!
3-4
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CROSSOVER FROM POISSON TO WIGNER-DYSON . . . PHYSICAL REVIEW B69, 054403 ~2004!
same values ofN, Sz, andJ1); see the inset in Fig. 3. Th
behavior of the tail characteristics with respect to chang
system size exhibits the same trend as shown in the ins
Fig. 3 for the peak position: the characteristic scales ten
decay with increasing system size. The naive extrapola
of such a trend is consistent with a statement of vanishingJ2*
asN→`; however, the data are insufficient to prove it.

Another way to quantify the evolution of the leve
spacing distribution shown in Fig. 1 is to consid
cumulants.22 Their unbiased estimators~the Fisher statistics23

kn) are easily computed. For our normalized level spacin
the first cumulant~which is equal to the mean! is unity.

The cumulants of a distribution characterize its wid
~second cumulant, or variance! and shape;24 beyond perhaps
the fifth, numerical cumulants become too sensitive to ou
ers to be of much use. A study of the cumulants of a dis
bution is qualitatively similar to our foregoing study of th
tails, but it turns out to be simpler numerically. In Fig. 5 w
show the unbiased variance estimate,k2, as a function ofJ2
for system sizeN520, J150.2, Sz53, momentumk50.
The theoretical limits should be 1 for the Poisson distrib
tion and p/42150.2732 ~the bottom of the scale! for
Wigner-Dyson. The fact that the data points deviate fr
these ideal values is an artifact of finite sampling. Fitting
curve to a hyperbolic tangent, we estimate the crosso
scale, shown in the inset as a function of size~for the same
sequence of quantum numbers as in Fig. 3!. The inset also
shows the crossover scale for the fourth cumulant. As bef
the scaling suggests~but does not establish! that the cross-
over scaleJ2* associated with either cumulant should van
in the limit of infinite size. It is not possible to determin
whether the different measures,k2 andk4 ~we also looked at
k3), scale in the same way or differently with system siz

The second cumulantk2 plays a role similar to that of the
parameterh used in Ref. 8 to estimate the overall ‘‘proxim
ity’’ of the observed distribution to either the Poisson or t
Wigner-Dyson limit. In that sense, Fig. 5 shows behav
similar to that found in Ref. 8, although the physics of t
evolution of levels is quite different in our case.

IV. ELEMENTS OF THE PARAMETRIC STATISTICS

More information about the crossover to the chaotic
havior described by the Wigner-Dyson statistics can be
tracted from the study of the autocorrelation functions. H
we will discuss the autocorrelation of level velocities

C~f!5
1

D2 K ]Ei~u!

]u

]Ei~u1f!

]u L
u,i

, ~6!

where the angular brackets indicate averaging over a se
levels and fluxes.4

A typical form of the autocorrelation function Eq.~6! is
shown in Fig. 6. For large values ofJ2, this form resembles
the universal correlator characteristic of chaotic system4

However, in the crossover region,C(f) deviates from the
universal form in a rather complex fashion, which make
quantitative analysis of the crossover difficult. Therefore
focus on two particular features of the curve, the turn
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point andC(0). We note a feature of the autocorrelatio
curve shown in Fig. 6 that appears only as the integrabi
breaking is introduced: all curves forJ2.0 have a nonzero
point of inflection as the autocorrelation decreases with
increase ofJ2, but the autocorrelation function of the inte
grable system does not have such an inflection point. Co
quently, the behavior near zero flux changes from lin
@C(f)2C(0)}2f# for the integrable case to quadratic fo
J2.0.

The autocorrelation function of level velocities at ze
flux differenceC(0) is somewhat similar to the stiffness E
~4!, the differences being thatC(0) is also averaged over
set of fluxes, does not contain the extra factors of tempe
ture and system size, and corresponds to a single secto
fixed Sz. However, in chaotic systems it isC(0) that can be
related to transport.4 There it was argued to correspond to t
dimensionless conductance.

In Fig. 7 we show the behavior ofC(0) as a function of
J2. Clearly, for finite systems,C(0) exhibits a well-defined
crossover. For the dataset presented in Fig. 7 (N520, J1
50.2, Sz53), the correlatorC(0) decays as a'5/2-power
law afterJ2 exceeds the valueJ2

* C050.09760.004~defined
in Fig. 7 as a crossing point of the above power law—t
straight line in the log-log scale—with the value atJ250).

The inset shows the crossover scale as a function of
size ~in the same manner as the crossover scale extra
from the peak of the level-spacing distribution!. The behav-
ior is very similar to that in the inset in Fig. 3~although
numerical values of the crossover scales differ in the t
cases!. Both would be consistent with the statement thatJ2*
→0 asN→`; however such a conclusion cannot be asc
tained on the basis of the data available.

FIG. 6. Autocorrelation of level velocities for various values
integrability breaking. Only a short range of flux is shown; in a
cases, the sum rule@the integral ofC(f) over all fluxes vanishing#
is satisfied numerically. ForJ2.0, there is a point of inflection a
nonzero flux. However, the integrable model has no initial infle
tion. The inset plots the position of the inflection point as a funct
of J2. These data were derived forN520, Sz53, J150.2, k50.
3-5
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V. SPIN STIFFNESS

Now we discuss the effect of the integrability breaki
Eq. ~5! on the stiffnessD2. In Fig. 2 we show three sets o
data corresponding to three different values of the XXZ
isotropy parameterJ1. The data illustrate the following ten
dencies.

~i! For 0,J1,1 ~represented byJ150.2; similar behav-
ior is observed for other values! the data clearly show tha
very small integrability breaking~characterized byJ2
50.01) has little effect on the stiffness of the finite chai
~which is to be expected!. Moreover, the extrapolation to
infinite size seems to result in a finite value for the stiffne
in a manner similar to that of the integrable model.

FIG. 7. C(0) as a function ofJ2 for N520, J150.2, Sz53,
k50. The dotted line corresponds to the value atJ250. The inset
shows the finite-size scaling of the crossover scale,J2

* C0, at ap-
proximately fixed ratioSz/N51/6 ~for N514, 16, or 20, we pick
the two closest values ofSz for these sizes!.
05440
-

s

~ii ! For the Heisenberg model, small integrability brea
ing again does not have a pronounced effect; however, in
case~even though the extrapolation indicates a finite va
for the thermodynamic limit!, one cannot be certain of th
behavior of the infinite chain.

~iii ! For J150 the situation is different: even a very sma
amount of integrability breaking leads to a sharp reduction
the stiffness for finite chains. The extrapolation to infin
size is also uncertain. It should be noted, however, that if
compares the behavior of two integrable cases,J150 and
J1.0, then a similar picture arises~compare, for example
the two top dashed lines in Fig. 2!. This has to do with the
fact that the spin chain atJ150 can be mapped~by means of
the Jordan-Wigner transformation! onto a system of free
spinless Fermions and as such possesses more symm
than even the integrable~but interacting! XXZ model.

~iv! When the integrability-breaking parameter is n
small, the stiffness decays sharply~in fact, if we were to
show a log-log plot, faster than any power law! with system
size and clearly extrapolates to zero in the thermodyna
limit. This behavior is qualitatively independent ofJ1.

Thus the data suggest that for finite chains there exis
‘‘critical’’ value of J2 ~smaller than the point of the ga
opening! beyond which the stiffness tends to vanish. Th
value is not universal, in the sense that it depends onJ1. This
situation is illustrated in Fig. 8, where we show the depe
dence of the stiffness onJ2 for three values ofJ1 and the
fixed system sizeN518. For large values ofJ2, all three
curves saturate to zero~although the one withJ151 does so
faster!. For J150.2 the effect of smallJ2 is rather weak, and
the curve exhibits a clear crossover. ForJ150 the crossover
also appears; however, the value 0.08 to which the cu
tends asJ2→0 is much smaller than the value atJ250
exactly ~which is 0.25 and is thus outside the frame of t
plot!. The crossover is illustrated in the left inset. The rig
inset shows the change of the crossover scale with sys
size forJ150, 0.2, and 0.4. The behavior atJ151 is quite
different and, in particular, does not show an obvious cro
over ~and is thus not represented in the right inset!. This
e

of

-

t
cale

r.
FIG. 8. D(N) as a function ofJ2 ~for N
518). The main plot and the left inset show th
same data in linear and log-log scale~meant to
illustrate the crossover to a power-law decay
the stiffness at largeJ2 for smaller values ofJ1)
for J150 ~squares!, J150.2 ~circles!, andJ151
~diamonds!. The horizontal lines in the inset in
dicate the values ofD(N) at J250 for J150.2
~the upper line! and J151. The second inse
shows the size dependence of the crossover s
for J150, 0.2, and 0.4~triangles!. The Heisen-
berg caseJ151 does not show a clear crossove
3-6
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behavior might be related to the conjecture16 that at the
Heisenberg point the stiffness vanishes in the thermodyna
limit even without the integrability breaking. Alternatively
this can reflect the fact that the Heisenberg model is cha
terized by logarithmic correlations,15 and thus the small sys
tems considered in this paper are not representative.

VI. DISCUSSION

Prior to performing the calculations one could have h
two conflicting expectations for the behavior of the nonin
grable system:~i! as soon as the integrability is broken th
system becomes chaotic and as a result shows diffu
transport,~ii ! there exists a ‘‘critical’’ magnitude of the inte
grability breaking that separates the chaotic regime from
one that retains some features of the integrable mode
particular, ballistic transport.

The latter picture has an analogy in the localization pr
lem in disordered conductors.25 The states of an integrabl
model can be visualized as well-defined localized points
the multidimensional space of the integrals of motion ch
acteristic of the model. These points are well separated
to the quantization of the values of the integrals of motio
Consider now the effect of an infinitesimally small integr
bility breaking. One can certainly expect the points to spre
out into fuzzy spots, but at the same time one might ar
that unless the integrability breaking is strong enough, th
spots do not overlap. In this regime the system retains s
memory of the fact that it was indeed integrable before
extra interaction was turned on. When the integrabi
breaking is so strong that the spots overlap into a continu
the system becomes fully chaotic.

The numerical analysis presented in this paper se
roughly consistent with the second possibility for fini
chains: a small integrability-breaking term leads to behav
that is close to that of the integrable system. Quantities
lated to transport, the stiffnessD2 and the ‘‘conductance’’
C(0), exhibit a reasonably rapid crossover as functions
the strength of the integrability-breaking interaction. T
crossover behaviors seem to be different for different qu
tities. Table I, for example, illustrates some of this variabil
for the example ofJ150.2, intermediate between the noni
teracting model and the Heisenberg point. Similarly,
quantitative characteristics of the level-spacing distribut
~namely, the peak position and the tail parameter, see Fig
and 4, or cumulants, see Fig. 5! exhibit similar crossovers
cs
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~the corresponding scales are also included in Table I!.
The one exception to this picture is the number of deg

erate levels in the system20 represented byPD(0). This mea-
sure exhibits a jump as infinitesimally small~numerically
meaning of the order of the computer precision! J2 is intro-
duced@namely,PD(0) vanishes, as illustrated in Fig. 1#.

One might be tempted to speculate on the universality
otherwise of the crossover from Poisson to Wigner-Dys
statistics. Table I compiles different crossover scales depe
ing on the quantity measured. All the scales appear to
crease with system size, but it is not clear that they do s
the same way: as we have argued, meaningful finite-s
scaling of the variousJ2* numbers requires a fixedfilling
rather than fixedSz. We will note, from the table, that stiff-
nessD2T appears the most fragile of the measures, in
sense that it crosses over to the chaotic regime for the sm
est integrability-breakingJ2, while the shape of the tail ap
pears the most robust. The tail concerns relatively rare la
level spacings, whileD2T weighs the whole spectrum. Pe
haps a small number of ballistic channels could remain o
after the latter measure has ceased to count them.

Conclusions for the thermodynamic limit are harder
draw from our data. The variation of crossover scale w
system size indicated in the insets to the different figu
suggests that the crossover scale vanishes in the limit o
infinite-size system rather than saturating at nonzero va
for J2* , but the limited range of sizes available to us, alo
with the absence of a theoretically justified extrapolation
the thermodynamic limit, precludes a definite stateme
Constructing a theory of the approach to the infinite-s
limit of chains with weak integrability breaking remains a
important open problem.
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