Lecture 3: Particle Interactions with Matter (Part II) & Particle ID

Eva Halkiadakis Rutgers University

TASI Summer School 2009 Boulder, CO

Detectors and Particle Interactions

- Understanding the LHC detectors (and their differences) requires a basic understanding of the interaction of high energy particles and matter
- Also required for understanding how experimentalists identify particles and make physics measurements/discoveries
- Particles can interact with:
 - atoms/molecules
 - atomic electrons
 - nucleus
- Results in many effects:
 - Ionization (inelastic)
 - Elastic scattering (Coulomb)
 - Energy loss (Bremsstrahlung)
 - Pair-creation
 - etc.

Important to understand interactions of:

- Charged Particles
 - Light: Electrons
 - Heavy: All Others (π, μ, K, etc.)
- Neutral Particles
 - Photons
 - Neutrons

Lot's of sources. Main one used here is the PDG: pdg.lbl.gov

Radiation Length

• The radiation length (X₀) is th characteristic length that describes the energy decay of a beam of electrons:

$$X_0 = \frac{716.4 \text{ g cm}^{-2} A}{Z(Z+1)\ln(287/\sqrt{Z})}$$

- Distance over which the electron energy is reduced by a factor of 1/e due to radiation losses only
- Radiation loss is approx. independent of material when thickness expressed in terms of $X_{\rm 0}$
- Higher Z materials have shorter radiation length
 - want high-Z material for an EM calorimeter
 - want as little material as possible in front of calorimeter
- Example:

lead: $\rho = 11.4 \text{ g/cm}^3 \text{ so } X_0 = 5.5 \text{ mm}$

• The energy loss by brem is:

$$-\frac{dE}{dx} = \frac{E}{X_0}$$

material	X ₀ g/cm ²
H ₂	63
AI	24
Fe	13.8
РЬ	6.3

Energy Loss of Photons and EM Showers

- High-energy photons predominately lose energy in matter by e+e- pair production
- The mean free path for pair production by a high-energy photon

$$\lambda = \frac{9}{7}X_0$$

- Note for electrons λ=X₀
- But then we have high energy electrons...so the process repeats!
 - This is an electromagnetic shower!
 - An electromagnetic cascade as pair production and bremsstrahlung generate more electrons and photons with lower energy

Hadronic Showers

- Interactions of heavy particles with nuclei can also produce hadronic showers
- Described by the nuclear interaction length

$$\lambda_n \approx 35 g cm^{-2} A^{1/3}$$

- For heavy (high Z) materials we see that the nuclear interaction length is a lot longer than the electromagnetic one, $\lambda_n > X_0$
- So hadronic showers start later than electromagnetic showers and are more diffuse

material	X ₀ (g/cm ²)	λ_n (g/cm ²)
H ₂	63	52.4
AI	24	106
Fe	13.8	132
Pb	6.3	193

Pictures of EM and Had Showers!

Figure 2.5 A photograph of the development of an electromagnetic shower in Pb plates. The number of particles in the shower builds up geometrically. After reaching a maximum, the shower then slowly dies off due to ionization loss ([2] – with permission).

Figure 2.10 Photograph of a 200 GeV pion interaction ([5] - with permission).

From "High p_T physics at hadron colliders" By Dan Green

Muons

- Because of it's long lifetime, the muon for our purposes is like a stable particle (cτ ~ 700 m)
- As we saw it is a MIP
- Also, does not feel the strong interaction
 - No hadron shower, only MIP
- Therefore, they are very penetrating
- However, at high energies muons can sometimes behave more like electrons!
 - At high energies radiative losses begin to dominate and muons can brem
 - The effective radiation length decreases at high energy and so (late) EM showers can develop in the detector

PDG

Particle Detectors

- Goal is to completely surround collision by arranging different types of detectors in layers.
- We know how particles interact with matter and we identify them (to the best of our ability!) by exploiting differences in showering, interaction with matter
- What do we want to know about the particles?
 - Their momentum and charge (magnetic field)
 - Their energy (particles are absorbed)
 - Their species (we exploit differences)
- Starting from center moving outwards:
 - Tracking detectors within a B field
 - Electromagnetic calorimeter
 - Hadronic calorimeter
 - Muon chambers

Tracking Detectors

- Purpose: measure momentum and charge of charged particles
- To minimize multiple scattering, we want tracking detectors to contain as little material as possible
- Two main technologies:
 - gas/wire drift chambers (like CDF's COT)
 - solid-state detectors (silicon) ~
- Silicon is now the dominant sensor material in use for tracking detectors at the LHC (especially CMS)

CMS

Gas/Wire Drift Chambers

- Wires in a volume filled with a gas (such as Argon/Ethan)
- Measure where a charged particle has crossed
 - charged particle ionizes the gas.
 - electrical potentials applied to the wires so electrons drift to the sense wire
 - electronics measures the charge of the signal and when it appears.
- To reconstruct the particles track several chamber planes are needed
- Example:
 - CDF COT: 30 k wires, 180 μm *hit* resolution
- Advantage:
 - low thickness (fraction of X₀)
 - traditionally preferred technology for large volume detectors

Silicon Detectors

~300µm

- Semi-conductor physics:
 - doped silicon: p-n junction
 - apply very large reverse-bias voltage to p-n junction
 - "fully depleted" the silicon, leaving E field
- Resolution 1-2% @ 100 GeV
- Important for detection secondary vertices
 - b-tagging (more on this later)

Momentum and Charge Measurement

- Since a B field is applied, by measuring a few points of the particle's track we can reconstruct the curvature of the track
 - p_T ∝radius of curvature
- sagitta depends on tracking length L, p_T,and B
 p_T²

$$s \approx \frac{BL^2}{13.3p_T}$$

- Example:
 - If B = 4 T, L = 1 m, p_T = 100 GeV we get a sagitta = 3 mm
- Momentum resolution $\propto p_T^2$
 - It gets worse at high p_T!

Silicon Pixel Detectors

• These detectors provide very high granularity, high precision set of measurements as close to the interaction point as possible.

EM Calorimeters

- Purpose: measure energy of EM particles (charged or neutral)
- How?
 - Use heavy material to cause EM shower (brem/pair production)
 - Total absorption / stop particles
 - Important parameter is X₀ (usually 15-30 X₀ or a high Z material)
 - There is little material before the calorimeter (tracker)
- Two types of calorimeters:
 - Sampling
 - Homogeneous
- Relative energy uncertainty decreases with E !

Add terms in quadrature

CMS EM Cal (PbWO)

- a: stochastic term (photon counting) b: constant term
- c: noise (electronics)

Sampling vs. Homogeneous Calorimeters

- Sampling calorimeter
 - active medium which generates signal
 - scintillator, an ionizing noble liquid, a Cherenkov radiator...
 - a passive medium which functions as an absorber
 - material of high density, such as lead, iron, copper, or depleted uranium.
 - σE/E ~ 10%

- Homogeneous calorimeter
 - the entire volume generates signal.
 - usually electromagnetic
 - inorganic heavy (high-Z) scintillating crystals
 - Csl, Nal, and PWO, ionizing noble liquids...
 - σE/E ~ 1%

Hadronic Calorimeters

- Purpose: measure energy of hadronic/heavy particles
- How?
 - Similar to EM calorimeters but important parameter is λ_n (usually 5-8 λ_n)
 - Typically sampling calorimeters
 - Larger and coarser in sampling depth
- Resolutions typically a lot worse than EM cal.
 - Stochastic term 30-50% and higher (~80% at CDF)

Atlas Tile Cal.

Muon Chambers

- Purpose: measure momentum / charge of muons
- Recall that the muon signature is extraordinarily penetrating
- Muon chambers are the outermost layer
- Measurements are made combined with inner tracker
- Muon chambers in LHC experiments:
 - Series of tracking chambers for precise measurements
 - RPC's: Resistive Plate Chambers
 - DT's: Drift Tubes
 - CSC's: Cathode Strip Chambers
 - TGC's: Thin Gap Chambers

CMS Muon chambers ¹⁷

ATLAS and CMS Detectors Revisited

- Two different approaches for detectors
- Both need to be very radiation hard

	ATLAS	CMS
tracking	silicon/gas	silicon
em cal	liquid Ar	PbWO
had cal	steel/scint.	brass/scint.
muon	RPCs/drift RPCs/drift	
Magnet	Solenoid (inner) /Toroid (outer) Solenoid	
B Field	~2 Tesla /4Tesla	~4 Tesla

Animation

Symbol	Definition	Units or Value
α	Fine structure constant	1/137.035 999 11(46)
	$(e^2/4\pi\epsilon_0\hbar c)$	
M	Incident particle mass	MeV/c^2
E	Incident part. energy γMc^2	MeV
T	Kinetic energy	MeV
$m_e c^2$	Electron mass $\times c^2$	0.510 998 918(44) MeV
r_e	Classical electron radius	2.817 940 325(28) fm
	$e^2/4\pi\epsilon_0 m_e c^2$	
N_A	Avogadro's number	$6.0221415(10) \times 10^{23} \text{ mol}^{-1}$
ze	Charge of incident particle	
Z	Atomic number of absorber	
A	Atomic mass of absorber	g mol ⁻¹
K/A	$4\pi N_A r_e^2 m_e c^2 / A$	$0.307075 \text{ MeV g}^{-1} \text{ cm}^2$
		for $A = 1 \text{ g mol}^{-1}$
Ι	Mean excitation energy	eV (Nota bene!)
$\delta(\beta\gamma)$	Density effect correction to ioni	zation energy loss
$\hbar \omega_p$	Plasma energy	$28.816\sqrt{\rho \langle Z/A \rangle} eV^{(a)}$
	$(\sqrt{4\pi N_e r_e^3} m_e c^2/\alpha)$	
N_c	Electron density	(units of r_e) ⁻³
w_j	Weight fraction of the j th element in a compound or mixture	
n_j	\propto number of <i>j</i> th kind of atoms in a compound or mixture	
	$4\alpha r_e^2 N_A / A$ (716.408)	$g \text{ cm}^{-2})^{-1}$ for $A = 1 \text{ g mol}^{-1}$
X_0	Radiation length	$g \text{ cm}^{-2}$
E_c	Critical energy for electrons	MeV
$E_{\mu c}$	Critical energy for muons	GeV
E_s	Scale energy $\sqrt{4\pi/\alpha} m_e c^2$	21.2052 MeV
R_M	Molière radius	$\rm g~cm^{-2}$

Table 27.1: Summary of variables used in this section. The kinematic variables β and γ have their usual meanings.

 $^{(a)}$ For ρ in g cm $^{-3}.$

_