Crystal Structure Analysis

X-ray Diffraction

Electron Diffraction

Neutron Diffraction

Essence of diffraction: Bragg Diffraction

Reading: West 5
A/M 5-6
G/S 3
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SCATTERING

Scattering is the process in which waves or particles are forced to deviate from a
straight trajectory because of scattering centers in the propagation medium.

X-rays scatter by interaction with the electron density of a material.
Neutrons are scattered by nuclei and by any magnetic moments in a sample.
Electrons are scattered by electric/magnetic fields.

Momentum transfer: p' —P= hq Energy change: F'— E = hv

Elastic (E' = E) For X-rays: L1 = pc
* Rayleigh (A >> 1)
* Mie ()\ = dobject)
* Geometric (A << dypject)
* Thompson (X-rays)

Elastic scattering geometry

Inelastic (E' z E)

« Compton (photons + electrons) p . ¢
* Brillouin (photons + quasiparticles) e 7 q=2%sin>
* Raman (photons + molecular vib./rot.) o2




X-RAY SCATTERING

X-rays: A (in A) = 12400/E (in eV)

« 100 eV ("soft") - 100 keV (“hard") photons
« 12,400 eV X-rays have wavelengths of 1 A,
somewhat smaller than interatomic distances in solids

=) Diffraction from crystals!

Roentgen
1901 Nobel

elastic (Thompson, AE = 0)

« wide-angle diffraction (6 > 5°)
« small-angle diffraction (6 close to 0°)
« X-ray reflectivity (films)

inelastic (AE # 0)

« Compton X-ray scattering
* resonant inelastic X-ray scattering (RIXS)
« X-ray Raman scattering

First X-ray: 1895
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DIFFRACTION

Refraction is the change in the direction of a wave due to a change in its speed.

Crystal diffraction

I. Real space description (Bragg)
IT. Momentum (k) space description
(von Laue)

diffraction of plane waves

W. H.Bragg W.L.Bragg vonLaue,,




OPTICAL INTERFERENCE

Amplitude

Amplitude

light waves arT hit&!rglcc
perfectly in phase:

o=nA, n=0,1,2, ...

0: phase difference
n.: order

perfectly out of phase:

O=nh, n=1/2,3/2, ...




BRAGG'S LAW OF DIFFRACTION

When a collimated beam of X-rays strikes pair of parallel lattice planes in a crystal,
each atom acts as a scattering center and emits a secondary wave.
—> All of the secondary waves interfere with each other to produce the diffracted beam

Bragg provided a simple, intuitive approach to diffraction:

* Regard crystal as parallel planes of atoms separated by distance d

 Assume specular reflection of X-rays from any given plane

— Peaks in the intensity of scattered radiation will occur when rays
from successive planes interfere constructively

ACB = 2d sin®
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BRAGG'S LAW OF DIFFRACTION

No peak is observed unless the condition for constructive interference
(0 = nA, with n an integer) is precisely met:

. 1
ACB = 2d sin®

AC =dsiné
2 2
S | -
'I *— ACB=2dsin6
A e—  1nl=ACB

Bragg's Law: [pA = 2d S1n &

When Bragg's Law is satisfied, "reflected” beams are in phase
and interfere constructively. Specular "reflections” can
occur only at these angles. 229



DIFFRACTION ORDERS

1st order:

A=2dsin@

) Fr’jﬁ ,
2nd order: o Ak

24 =2dsin6,  a Q 5#*”

By convention, we set the diffraction order = 1 for XRD.

For instance, when n=2 (as above), we just halve the d-spacing to make n=1.

24 =2dsin0, mp A=2(d/2)sinb,

e.g. the 2" order reflection of d;yy occurs at same 6 as 15t order reflection of d,q,



XRD TECHNIQUES AND APPLICATIONS

diffracted . .
* powder diffraction

« single-crystal diffraction
incident 8 detector . . .
XTI e * thin film techniques
i » small-angle diffraction

source e

Fig. 3.6 The X-ray diffraction experiment

Uses:

* phase identification « crystal size

« crystal structure determination * residual stress/strain

« radial distribution functions « defect studies

* thin film quality « in situ analysis (phase transitions,

- crystallographic texture thermal expansion coefficients, etc)

* percent crystalline/amorphous * superlattice structure



POWDER X-RAY DIFFRACTION

* uses monochromatic radiation, scans angle

 sample is powder — all orientations simultaneously presented to beam
- some crystals will always be oriented at the various Bragg angles

* this results in cones of diffracted radiation

« cones will be spotty in coarse samples (those w/ few crystallites)

no restriction
on rotational orientation
relative to beam 4

crystallite

Fig. 5.29 The formation of a cone of diffracted .
radiation in the powder method 2/ — 2dhkl S11 ghkl
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Transmission
geometry
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DEBYE-SCHERRER METHOD

Can record sections on these
cones on filim or some other
X-ray detector

— Simplest way of doing this 1s
to surround a capillary sample
with a strip of film

mint where
incadent Beans
eflers (18 = 1’|

Can covert line positions on
film to angles and intensities

3
i a

by electronically scanning film

Or measuring positions using a

(-] 1T

ruler and guessing the relative
intensities using a “by eye”

S
/2 NRi &
comparison N

48
7360 =

A

=2d,,sing,,

..or we can use a diffractometer to intercept sections of the cones
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BASIC DIFFRACTOMETER SETUP

MODIFIED FROM
CULLITY (1956)

DIFFRACTOMETER
CIRCLE

POWDER
SPECIMEN

TARGET

"

AXIS

SCHEMATIC OF X-RAY
DIFFRACTOMETER
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THETA-2THETA GEOMETRY

Bragg Brentono —THETATHETA Setup r_“-h—&___h

 X-ray tube stationary
 sample moves by angle theta, detector by 2theta
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POWDER DIFFRACTOGRAMS

In powder XRD, a finely powdered sample is probed with monochromatic X-rays of a
known wavelength in order to evaluate the d-spacings according to Bragg’s Law.

BRAGG LAW

2d(s1inB) = A,

where:
d = lattice interplanar spacing of the crystal
0 = x-ray incidence angle (Bragg angle)
- dsino A = wavelength of the characteristic x-rays

I S —
Cu Ka radiation: 1 = 1.54 A
CuBIC BaT;’O3 101
0= 4031 A peak positions depend on:
> o i 002 12 .
: | | | o J= R e » d-spacings of {hkl}
2 Bl o s E WP W P OE : - “systematic absences"
: OIOI | | 002|| 1022?]1210 “2||
0 | ' : Y o« o
SR FE R R N St Minimum d?
increasing 6, decreasing d d. =1/2
——— min 240




ACTUAL EXAMPLE: PYRITE THIN FILM

FeS, - cubic (a = 5.43 A)
Random crystal orientations

CuKa=154 A

1007, Jm Ak S5 2E M ke & 0 U3 EE @

8.0

[=2)
)

o
)

Intensity

200
111 e 211

“powder pattern”

220

311

/ 2 Theta

20=28.3° — d=1.54/[2sin(14.15)]
=313A=d,,

Y T T T T EID

reference pattern from ICDD
(384,000+ datasets)

On casual inspection, peaks give us d-spacings, unit cell size, crystal
symmetry, preferred orientation, crystal size, and impurity phases (nonel)



Cubic

Tetragonal

Orthorhombic

Hexagonal

Monoclinic

Triclinic

d-SPACING FORMULAS

P ok 4 kine 12
d_2= a?

Ls: W +%%/ 1%
EE= a? +§

1 BN k2 22

d2 az bz Cz

1 4('}:2 + hk +k2) 12

&Ry Y

1 1 (hz k2sin2f  [2 2hlcosﬁ’)
i e e

d?> sin?p\a? b* &< ac

1 1

S is F[h”l:vzc2 sin®a + k?a’c?sin?

+ [?a®b*sin?y + 2hkabc?(cos o.cos f — cos y)
+ 2kla*bc(cos fcosy — cosa)
+ 2hlab*c(cosacosy —cos f) ]
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POWDER DIFFRACTION

Peak positions determined by size and shape of unit cell

Peak intensities determined by the atomic humber and
position of the various atoms within the unit cell

Peak widths determined by instrument parameters,
temperature, and crystal size, strain, and imperfections

we will return to this later...



GENERATION OF X-RAYS

X-rays beams are usually generated by colliding high-energy electrons with metals.

. ) B
- X-ray emission Kes,
spectrum — 5 1
- ~ —> 1S
target.. - E W filament ; Ka p3/2
e~ 5 white 2
Macum = radiation
c
X-rays Q
b
. N £ |cut
Fig. 3.2 Schematic design of a filament X-ray tube of f
e e ;
m
b wavelength (A)
From the N shell 1 j(r=1/2)
e o o o o © 2 52
secondary s res Mshell n=3 —0 g ®g 8 g0 g § o
Auger ’ electrons - - 1
ele ns s . r . 4 o 172
—— specimen N La2
L1
Lext
+ HEAT *
° ° oY o 1 32
L shell n=2 >y e &
Ka2
elastlcaélx direct inelastically Ka 1
tter beam ttered
electrons electrons K'g1 K'g2
Fig. 5.1 Generation of Cu K« X-rays. A 2p B B
electron falls into the empty ls level ((J) and the K shell n=1 oY o o 12

excess energy is released as X-rays S|eg bahn notatiOn



Generating Bremsstrahlung

Ejected
electron
(slowed down
and changed
direction)

Fast incident
electron
electrons

Atom of the anodematerial

X-ray

Generating Characteristic X-rays

g' Photoelectron Emission
Ka-Quant
Pe
o
Electron Lo-Quant
Kp-Quant

Bohr's model



GENERATION OF X-RAYS
Side-window Coolidge X-ray tube

BERYLLIUM TUNGSTEN GLASS
WINDOW i 4¢! FILAMENT

|
ELECTRONS
/= 7
¥~
v

E >
|| TO TRANSFORMER
| i

|
\’1 | \\ )
X-RAYS — 1 F\‘lDCUSING CUP N VACUUM
SCHEMATIC CROSS SECTION OF AN X-RAY TUBE

COOLING
WATER

TARGET

X-ray energy is determined by anode material, accelerating voltage,
and monochromators:

E=hv=hc/A

Co Ka,: 1.79 A

, 412 CuKa,:154 A (~8 keV)
Moseley's Law: A=° =C(Z-0) Mo Ka,: 071 &
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SYNCHROTRON LIGHT SOURCES

GeV electron accelerators P =

* brightest X-ray sources
* high collimation

* tunable energy

* pulsed operation

249



MONOCHROMATIC X-RAYS

Filters (old way)

Intensity

A foil of the next lightest element
(Ni in the case of Cu anode) can
often be used to absorb the
unwanted higher-energy radiation to
give a clean K, beam

Crystal Monochromators

Use diffraction from a curved
crystal (or multilayer) to select
X-rays of a specific wavelength

Gibel Mirror

-
LET
=
.
-
~ay
S .

-l

-7 |

=7 A=013% nm !

ks
| & =0.154 nm

Mi absorption edge

* Emission A

*. angle
. /
¢

. !
K {
- :I
. |
.

>

Rowland circle \ﬁrith
D = 500 mm diameter

y  X-ray source/_./”
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DETECTION OF X-RAYS

Table 4-2. Properties of common x-ray detectors,
AE is measured as FWHM.

DQT@CTlon pr'lnC|p|eS Energy  AE/E at Dead Maximum
. . . . range 5.9 keV time/event count rate
903 oni ZGT on Detector (keV) (%0) (Ls) (3_1)
» scintillation Gas ionization 0.2-50 n/a n/a 10l1a
* creation of e- h pC“ rs (current mode)
Gas proportional  0.2-50 15 0.2 109
Multiwire and 3-50 20 0.2 106/mm?
microstrip
proportional
. Scintillation 3—-10.000 40 0.25 2% 109
* Point detectors [Nal(TD]
Energy-resolving 1-10.000 3 0.5-30 2% 10°
S . d semiconductor
[ J
Tri p etectors Surface-barrier 0.1-20 n/a n/a 108
(current mode)
e Area detectors Avalanche 0.1-50 20 0.001 108
photodiode
CCD 0.1-70 n/a n/a n/a
Superconducting  0.1-4 <0.5 100 5% 103
Image plate 4-80 1n/a n/a 1/a
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DETECTION OF X-RAYS

Point detectors

Incident Particle

Luminous -l
Photon Secondary —_—
T Photoelectron
LN ]

X E ..... <
Scintillation counters ||+ ‘* Lo

- [

TLight Screen
Photoelectron High Voltage Divider
& Pulse Amplifier ;] 1 1
Photo Cathode
Photo multiplier
Light Guard
Optical Contact
[ Scintillator

Gas proportional counters

— Ar + CH4 --
counting wire {+U)

entrance 1
window

towards preamplifier
Il
LI

rr

_ pulze-
highit

high voltage supply
on counting wire
+1400<U<1900 Yolt

X-rays

Data storage
system

[—

High Voltage
Source

Pulse discriminator,
digital counter,
multichannel analyser

or

coincidence curcuit



X-RAY DETECTORS

Area detectors
« film
* imaging plate
« CCD
* multiwire

Charge-coupled devices

Phosphor CCD
\

T,
H'\-..

Fiber Optic Taper

i

n'/-

=

s

q. Vacuum
f \I
JT Cooler

Exposure Window

Anatomy of a Charge Coupled Device (CCD)

Drain g, o1 Incoming

Voltage Photons CCD -
Reset
E-:mltrc-l Gi{te

_ Transfer A
! Gate o =l

Channel v

!

— T
: 3 CHfinel

e
Transfer
Potential

Drain Photodiode Well

Integrated b tential

-Silicon
Figure 1 Potential Wel  Barrier P
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X-RAY DETECTORS
Imaging plates

photostimulated luminescence

. + Single lens
fr'om BC(FBr'O.85IO.15- EUZ

readhead

Unrecorded imaging plate
—— BaFBrgals e Eu™
Support

X-ray photons
o Stored image

Diode laser scanner

. - - :,Hndlng
T 1 | | | Excitation light
l l i ] I (658 nm)
Luminescence
(40D nim)

for use again
RN

— Erasing
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X-RAY DETECTORS
Imaging plates

photostimulated luminescence
fl"om BGFBr'O.85IO.15:EU2+

Unrecorded imaging plate
+ . BaF El||||J|: jis Eu™
-Suppart
X-ray photons

Stored Image

Exposure
Diode laser scanner
— r o ~ Reading
e = Ll
Excitation |'i|;|'I[
{ s | [658 nim)
% Luminescence
(400 nm)

Visible light
L Bt
b o for use again
| I L %

S | | Erasing

tetragonal Matlockite structure
9-coordinate Ba!
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The Reciprocal Lattice and the
Laue Description of Diffraction

Reading: A/M 5-6
G/S 3
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PLANE WAVES

A wave whose surfaces of constant phase are infinite parallel planes of
equal spacing normal to the direction of propagation.

[t//(r) = Ae"""’]

g: wave amplitude at point r

A: max amplitude of wave

k: wave vector

r: space vector from arbitrary origin

Amplitude is constant in any plane normal to k because k-r is a constant
for such planes: K

)
,; wavefront k’f'l = kr'1

SRz ker, = kry2(cos45) = kr,

origin k-r is indeed constant on wavefronts




THE RECIPROCAL LATTICE

Reciprocal lattice: The set of all wave vectors K that yield plane waves
with the periodicity of a given Bravais lattice.

Direct lattice position vectors: R =na, + n,a, + n.a;

Reciprocal lattice vectors: K = hb1 + ka + lb3

where the primitive vectors —  _, 4%
of the reciprocal lattice are: a,-(a,xa,)
a,xa,

a,-(a,xa;) and {n} and {h,k, I}
are integers

b,=2x

a xa,

a, -(a,xa,) 258




eiK'R — | is satisfied when KR = 2mn, with n an integer

To verify that the {b;} are primitive vectors of the reciprocal
lattice, let's first show that b;-q; = 21J;

a,XxXa a. -‘(a, Xxa
b -a =2r—2""3 _.a =27— (2, 3):27z
a, -(a,xa,) a,-(a,xa,)
a, Xa .
b,-a, =27 3° 1 -a, =0 (since cross product of two
a, -(32 X a3) vectors is perpendicular to both)
a, Xa
b,-a, =27 2 -a, =0 Indeed, bi-aj = 2mJ;
a,-(a,xa,)

so, KR = (hb, + kb, + Ib3):(n,a, + n,a, + n;a,)

= 2nt(hn,+ kn, + Ing) = 27 x integer

K is indeed a reciprocal lattice vector




WHAT IS A RECIPROCAL LATTICE VECTOR?

What is K?

a wave vector of a plane wave that has the periodicity of the direct lattice

The direct lattice is periodic (invariant under translation by R)
Ke(r+R Ko
p(r+R) =™ =™ = y(r)

KR
et =1

Reciprocal lattice vectors = wave vectors of plane waves that are unity
at all direct lattice sites 260




THE RECIPROCAL LATTICE

* the reciprocal lattice is defined in terms of a Bravais lattice
* the reciprocal lattice is itself one of the 14 Bravais lattices

* the reciprocal of the reciprocal lattice is the original direct lattice

e.g., simple cubic direct lattice

a =ax a,=ay a, =az
2
a,xa a . 2r.
b =2r————=2r—X%X=—2X
a -(a,xa,) a a
b, = 2_7T§z b. = 2_7T2 — simple cubic reciprocal lattice
24 3 4 with lattice constant 2n/a

— b, parallel to q;, etc. 261



Crystals with orthogonal axes (cubic, tetragonal, orthorhombic)

b,, b,, b; are parallel to a;, a,, a3, respectively.

Ll BT
P al P
by g2 T": 1 reciprocal lattice 27 .
| I : b — X
I : I I 1 a
| L ’
e 2
I L 7T A
s b, : . . 2~ y
i_),L*—— - direct lattice b
02 _e” | i

E}\
k
vl
\
L
‘\
n
. %
\
\O
N
>

A
Ly
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RECIPROCAL LATTICE OF FCC IS BCC

T _, FCCprimitive vectors:
R A, — E(? + 2),
2\." s3
= %(i + %), Note: not orthogonal
- N
/If‘t 4 - ” | a3 = —;-(ﬁ = V).
2
a .~ . x
—y+z-x) ,
b,=27— 278 _ogp 4 =7 (G +2-%)
a, -(a,xa,) LS a 2
8
4z 1 . . . 4l . . 4
b,=""—(2+%-§) by="C_(R+§-2)
a 2 a 2

— BCC reciprocal lattice with lattice constant 4m/a
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RECIPROCAL LATTICE OF BCC IS FCC

a =29 +2- %) n=2E+%-9),

a3=g(ﬁ+?—2).

2

a . n
T(2y+22) 4z

b,=27— 278 9,4 —(§+2)
a,-(a,xa,) L a 2
g
Azl . . Az 1 .. .
b,=""—(2+%) b, =—2—(%+¥)
a 2 a 2

— FCC reciprocal lattice with lattice constant 4n/a

BCC primitive vectors (not orthogonal):
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RECIPROCAL LATTICES

- simple orthorhombic — simple orthorhombic

¢ FCC — BCC

« BCC — FCC

» simple hexagonal — simple hexagonal (rotated)
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FIRST BRILLOUIN ZONES

Wigner-Seitz cell: primitive cell with lattice point at its center

d.l. FCC d.l. BCC
r.l. BCC r.l. FCC
1st Brillouin zone: 1st Brillouin zone:

enclosed region is W-S cell
for 2D hexagonal lattice

rhombic dodecahedron
truncated octahedron

269



K and LATTICE PLANES

Theorem:

For any family of lattice planes separated by distance d, there are
reciprocal lattice vectors perpendicular to the planes, the shortest of
which has a length of 2n/d.

Conversely, any reciprocal lattice vector K has a family of real-space
planes normal to it, separated by d.

Real Lattice |K = 2711 /d | Reciprocal Lattice

N A

a 22 02 —
+ 0940 . .2, .= here,g=K
1111 g | hk in 2D
tTTTY 200 @°® ¢ o5 Lin 3D
¢ @ $ & B R R SN W
¢ 9 & & 9 &

-2-2 0-2 2-2 275



MILLER INDICES OF LATTICE PLANES

Orientation of a plane is determined by its normal vector

It is natural to pick the shortest perpendicular reciprocal
lattice vector to represent the normal

Miller indices: coordinates of this reciprocal lattice vector

i.e., A plane with Miller indices ikl is normal to
the reciprocal lattice vector K = hb, + kb, + /b,

— Definition #2: directions in k-space

(Definition #1 was inverse intercepts in the real lattice)
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Proof that K = hb, + kb, + Ib; is normal to (ki)

a If K= hb, + kb, + Ib; is normal to the plane at left,
2 its dot product with any in-plane vector is zero.

A

Consider vector AB that lies in the plane.

a a
By vector addition, 71 —73 =AB

/ﬁ " The dot product,
AR h

a AB AB:K = [21 _ azs ]-(hb1 +kb, +/by)

ds
[

(hkl)

=27 —-27n=0 etc.
So the reciprocal vector formed by using the Miller indices of a plane as its
components forms a vector in space that is normal to the Miller plane.

Furthermore, the length of the shortest vector K is equal to 2m/d,,.

a K
In the figure above, the spacing between the planes is the projection of — on— :

hoo K
:ﬂ£:ﬁ2ﬂ:2ﬂ
“oh K R[K| K]

d

K| =27 K,

d - 277




POWDER (DEBYE-SCHERRER) METHOD

- single wavelength

« fixed powder sample

« equivalent to rotating the reciprocal lattice through all possible
angles about the origin

Ewald sphere

every point in Each shell with radius K< 2k
reciprocal space intersects the Ewald sphere to
traces out a shell form a circle.

of radius K

All the diffracted beams from a

powder lie on the surface of cones
291



PEAK INTENSITIES

Peak intensities depend on (in large part):
1) intensity scattered by individual atoms (form factors)
2) the resultant wave from atoms in unit cell (structure factor)

In many cases, the intensity from certain planes (hkl) is zero.

Possible reasons: + symmetry of crystal causes complete cancellation of beam
"systematic absences”
* happenstance

Other factors that affect intensity: « scattering angle
« multiplicities
* femperature factor
* absorption factor
* preferred orientation



MONOATOMIC BASES

up to now we have considered diffraction only from Bravais lattices
with single atom bases (i.e., atoms only at the lattice points R).

We found the diffraction condition: e’i(kr'k)'R — e

IK.R — 1

i127mn — 1

which is the same as: o

The scattering amplitude Fy is the sum over the lattice sites:
K-R
Fe =2 fr(K)e
R

where fy(K) is the "atomic form factor” for a given atom (disc. later).

The scattered intensity is proportional to the absolute square of the
amplitude: 2
I oc I, |F]

..this is what is actually measured in an experiment.



n-ATOM BASES

Crystals with n atoms in each primitive cell must be further analyzed
into a set of scatterers at positions dy, d, ... d, within each primitive
cell.

The positions of the atomsare: A (R)=R+d,

making the scattering amplitude: f = Z ij(K)eiK.(ij)
R
iK- iK-d
=22 (Ke
L= ZeiK'R “- — R j
R /

“Lattice sum” d

Py =2/, ()™

J

"Structure factor" of the basis

*If the structure factor = O, there is no diffraction peak.



STRUCTURE FACTOR

The structure factor gives the amplitude of a scattered wave arising
from the atoms with a single primitive cell.

O, = ij(K)eiK-dj

For crystals composed of only one type of atom, it's common to split
the structure factor into two parts:

Dy = f] (K)Sk
"atomic form factor” Ked.
SK _ Z o K,
J

“geometric structure factor”

S = 0 gives a systematic absence (i.e., absence of expected diff. peak).
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STRUCTURE FACTORS

The amplitude of the rays scattered at positions d,, ..., d,
are in the ratios:

1K od K od
e 1. e

The net ray scattered by the entire cell is the sum of
the individual rays:

Geometric T iKd.

structure SK — E ¢ '  -Adds up scattered

factor — waves from unit cell
]:

/

2 .
-In particular, no
(hkl) oC ‘SK‘ peak when S, = 0
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SIMPLE CUBIC

For simple

cubic: one atom basis (0,0,0)

d, = 0a, + Oa, + Oa,

4';4

Sk = e™’ =1

/ Same result as simple monatomic basis

297



MONATOMIC BCC

For monoatomic BCC:
we can think of this as SC with two point basis (0,0,0), (*2,%2,%2)

2
iIK-d K-0
Sk IZQ T=e""+e

> o5 o

iK-%(x+y+z)

j=1
27T A a on
For SC, K=—(hXx+ky+1z)
a
_ 1 + eiz(h+k+l)

_ 1 n (_1)h+k+l

when h + k + | even

2l
0, when h + k + | odd (systematic absences)
298
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e.g. consider the powder pattern of BCC molybdenum

= PDE#00-04 2-1120{RDB): OM=Star(S); d=Diffractometer; I-Diffractometer

Rieference I__ines[?]l ﬂgﬂ Cu =||E 5| & ==

#| 2Theta| did) | 10| (hki)] Thetal 142d)]  2pitd | nz2]
14051622247 1000 20258 02247 28243 2

TaEE3 12847 30 [211) 3EE42 03832 453303 E
g87.e37 1129 90 [220) 43793 04433 5E45E a
101,412 0858953 140 (310) BOYOE 05023 EB312F 10
115968 0.9085 30 [(222) 57954 05504 B3162 12
132645 0841 240 [3217] B6323 05345 74702 14

ot R ) B PR )

Powder card shows only even hkl sums b/c Mo is BCC
Why?

- Diffraction from other (hkl) results in destructive interference:

Beam cancels b/c body center atoms Strong reflection b/c all atoms lie on
scatter exactly 180° out of phase 200 planes and scatter in phase



MONATOMIC FCC

For monoatomic FCC:

SC with four point basis (0,0,0), (72,72,0), (0,%2,%2), ('2,0,%%)

4 a> a> a>
Kd. . iIK—(x+y) iIK—(y+z) IK—(x+z)
SK:Zé =" te 2 T 4e 27 e 2
j=1
270 a o m n
For SC, K=—(hx+ky+/z)
a

SK :1+ei7r(h+k) +ei7r(k+l) +ei7z(h+l)

S=4 when h+k,k+1,h+1all even (h, k, | all even or all odd)

S = () otherwise. .



Once again, there are more systematic absences for
isoelectronic ions (e.g., K and Cl)

(hkI) NaCl KClI

(110) always absent in RS




DIAMOND STRUCTURE
Diamond: FCC lattice with two-atom basis (0,0,0,), (V4,%4,%%)

- > >

iK— (x+y+z)

S]deamond elKO Te S]@FCC

_ [1 n ei(ﬂ'/ 2)(h+k+) ][ S]C CC]
Fi

Only for all even or all odd hklis S # 0. For these unmixed values,

Additional condition: g = 8 h + k + | twice an even number
S=41 i) h+k + 1 odd
$S=0 h + k + | twice an odd number

I-cc : all nonvanishing spots have equal intensity.

Liiamond - SPots allowed by FCC have relative intensities
of 64, 32, or O.



diamond

FCC
Al

What about

zinc blende?

Si

\/
\/

\/

\/

(hkl)
(100)

(110)

(111)

(200)

(210)

(211)

(220)

(221)

(300)

(310)

(311)

309




SUMMARY OF SYSTEMATIC ABSENCES

crystal structure condition for peak to occur
SC any h,k,[
BCC h+k+[=even
FCC h,k,[ all even or all odd
NaC(Cl h,k,[ all even,
or all odd f£, £y
diamond h k[ all even and'twice an even #,
ond Stieon | or all odd
HCP any h,k,l except when 4 + 2k =3n
and / is odd

CDK _ Z]fj(K)eiK-dj

310



eandrei
Callout
sum =h+k+l=4n

eandrei
Callout
and Silicon


SIMPLE ANALYSIS OF SIMPLE PATTERNS
What will we see in XRD patterns of SC, BCC, FCC?

Miller indices of the Diffracting Planes for BCC and FCC

Lattices
2 2 2
— h™+k™+1
diffracting
Cuble planes (hkl) SC: 1,2,3,4,5,6,8,9,10,11,12....
planes Sum

{hiki} 2+ k2 + |2 (h? + k2 + 1) FCC BCC BCC: 2,4,6,8,10,12,“-

{100} 17+ 07 + O

1

{110} 12 + 12 4+ (2 2 110
M} 12412 4 42 3 111 FCC: 3.,4,8,11,12,16,24,...
{200} 22 1 0P+ ® 4 200 200
{210} 22 + 17 + (¥ 5
{211} 22 + 12 4+ 42 & 211 X
P 7
220 24 2% 4 Q2 8 2 : :
b miZC . ° 20 Observable diffraction
310 32 4 42 4 (2 10 1 .
10 T 510 peaks for monoatomic

SC FCC BCC

crystals

We can take ratios of (h? + k? + |2) to determine structure.



SIMPLE ANALYSIS OF SIMPLE PATTERNS

2dsind=ni m sin’@oc ——

2
dhkl

4}

For cubic crystals: d,,, =

2+ k2 + 12

sin? @ oc (B> + k2 +1%)
- 2 2 2 2
S Hl’lth peak (h T k T l )nth peak
.2 1.2 2 2
S11 91 st peak (h + k + l )lst peak

312



SIMPLE ANALYSIS OF SIMPLE PATTERNS

a-Fe is cubic. Is it FCC or BCC?
_ BCC!

10 s
- sin® @, _sin?33" _ )
2 sin’@, sin®22° 21
= 200
memmw\nﬁ*j

Diffraction angle 2&
Frouee 25200 [Xiffraction pattern for poalyerystalline ae-inon.

What about Al?

000000

= FCC!
oooooo 111 sin’ 0, sin”® 22.5°
4 | ———=————-—~1.33
e, | sin“ g, sin"19
1°°°°: a 200 - 311
OOOOO | 220 331420
| ] 0 e
O St i‘{o 2 Jl"go'){ﬁﬁ T 1}5"50 ﬁ[ﬁ’ng{lIH bo 313




Ex: An element, BCC or FCC, shows diffraction

peaks at 26: 40, 58, 73, 86.8,100.4 and 114.7.
Determine:(a) Crystal structure?(b) Lattice constant?

(c) What is the element?

2theta theta | 4in2g I;lgﬂf]jlziie?z (hkl)
40 20 0.117 1 (110)
58 29 0.235 2 (200)
73 36.5 | 0.3538 3 (211)
86.8 43.4 | 0.4721 4 (220)
100.4 50.2 | 0.5903 5 (310)
114.7 57.35 | 0.7090 6 (222)

BCC,a=3.18A> W

314




ELASTIC X-RAY SCATTERING BY ATOMS

Atoms scatter X-rays because the oscillating electric field of an X-ray sets
each electron in an atom into vibration. Each vibrating electron acts as a
secondary point source of coherent X-rays (in elastic scattering).

The X-ray scattered from an atom is the resultant wave from all its electrons

Particle picture: ) '
8

« zero phase difference for forward/backward scattering

— scattering factor (form factor, f) proportional to atomic number, Z
* increasingly destructive interference with larger scattering angle (to 90°)
- for a given angle, intensity decreases with decreasing X-ray wavelength

Thomson relation: ]OC%(I-I—COSz 20)

* max scattering intensity at 26 = 0 & 180°
* gradual decrease to 50% as 26 approaches 90°



SCATTERING OF X-RAYS BY ATOMS
scattering angle probabilities for a free electron:

Klein—Nishina formula

8e-030

120

180

Low energy: Thomson
High energy: Compton

20

Thomson relation: [OC%(I-FCOSZ 20)



ATOMIC FORM FACTORS

Form factor f = scattering amplitude of a wave by an isolated atom

For X-rays, f depends on: < Z (# electrons)
- scattering angle

+ X-ray wavelength scattering vector q

General elastic formula: .

f,@ = p,(r)e"ar

4sin @

A
For 6 = O (forward scattering),

with, ¢ =

3
(0) = r)dr = # electrons _ Z
‘f‘j( ) J‘p( ) l:,l.'l 0.I1 0.2 03 0.:| O.IS 0.69 = 370
lIn(BY’-(HA)

consequences: < powder patterns show weak lines at large 26.
* light atoms scatter weakly and are difficult fo see.



PEAK WIDTHS

Peak shape is a Voigt function (mixture of Gaussian and Lorentzian)
* Gaussian component arises from natural linewidth and strain
* Lorentzian component arises from coherent domain size

Viz;o,7) = fm G(x'0)L(x —2';7) da’ n;ﬂj 97130 1050

— Pure — o000 jois0 |

Gz 0) g~/ (207) Gaussian
To) = 0.15 -
| TN 2 . Pure
~ : Lorentzian
L I; I E . D,US—E
[: : ":r) .ﬂ-l::IE _I_ :-:rE} 00 e/ ST H‘E‘j

-10 -5 0 5 10

Peak width (broadening) is determined by several factors:

* natural linewidth of X-ray emission
« instrumental effects (polychromatic A, focusing, detector)
« specimen effects
1) crystadllite size
2) crystallite strain 319



FULL WIDTH AT HALF MAXIMUM (FWHM)

FWHM Important for:
Peak position 20 * Particle or
grain size
mode  , Residual
strain

Can also be fit with Gaussian,

Background

Bragg angle 20 ———p

Lerentzian, Gaussian-Lerentzian etc.

320



Instrument and Sample Contributions to the Peak Profile
must be Deconvoluted

* In order to analyze crystallite size, we must deconvolute:
— Instrumental Broadening FW(I)

» also referred to as the Instrumental Profile, Instrumental
FWHM Curve, Instrumental Peak Profile

— Specimen Broadening FW(S)
« also referred to as the Sample Profile, Specimen Profile

« We must then separate the different contributions to specimen
broadening

— Crystallite size and microstrain broadening of diffraction peaks



SIZE BROADENING

Small crystallites (< 200 nm) show broadened diffraction lines

Nanocrystal X-ray
Diffraction

9 nm 70 nm

Intensity (arbitrary unies)

100

%0

6l

40

b

e e SR LI

101

10 rim -

-

4 m 7

6 nim

Intensity (arbitrary units)

o Expenmental

— it

60

70
26 (degrees)

K0

80

T
S0

L]
100

110
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Effect of Coherent Domain Size

'As rolled

{2w
2
7}
5
=

Ko

135

13 [ [EE 152 . Ll 29 0
(331) Peak of cold-rolled and
Annealed 70Cu-30Zn (brass)

<+— Increasing Grain size (t)

—_ As rolled 300°C
0 120 I ¥
© /
2
Q
[}
x
w
W
w
&= o
S 450°C
% ) i | | 5 |
0 100 200 300 400 500
ANNEALING TEMPERATURE (°C) :
B = 0'9"1_ Peak Broadening

t-Cos® Scherrer Model

As grain size decreases hardness
increases and peaks become
broader
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Which of these diffraction patterns comes from a
nanocrystalline material?

Intensity (a.u.)
——

)\

66 67 68 69 70 71 72 73 74

X (deg.)

These diffraction patterns were produced from the same sample!

» Two different diffractometers, with different optical configurations, were used

* The apparent peak broadening is due solely to the instrumentation in
this case
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The finite size of real crystals results
in incomplete destructive interference

over some range of angles at Bragg angle, QB
0, o, phase lag between two planes = 4
0, perfectly in phase, constructive

At some angle (91 > HB

Phase lag between two planes: ﬂ —+ 52,

A 1
2
3
4 At (j+1)* plane:
. Phase lag: : A
i * Ysi=j.or==
jtl 2
T=(2j-1)d * Rays from planes 1 and j+1 cancel
21  Ditto for 2 & j+2, ... ] & 2j

* Net diffraction over 2j planes = 0

Crystal with 2j planes

Total thickness T The angular range 8; to 6, is the range where

diffracted intensity falls from a maximum to
zero (half of Bragg peak profile).



Same arguments apply to 6’2 < QB

So we see diffracted X-rays over all scattering angles between 26,
and 20,

- If we assume a triangular shape for the peak, the full width at
half maximum of the peak will be B = (26, - 26,)/2 = 6, - 6,

Loy
I}itﬁﬁact?om from z | : Diffraction from
finite thickness Bl oy 8 infinitely thick
crystal E - | | E crystal

| ' :
26, 26 26, - 28y
20 ———» . J——

(2) (b)



If we have more than 2j planes:

0,0

02

AW N -

jt+l1

2j+1
2j+2

Rays from new planes are canceled
still zero intensity at 6,
Peak sharpens!

Thinner crystals result in broader peaks!

If we have fewer than 2j planes:

0,0

02

A WN —

jt+l1

2j-3
2j-2

Rays from planes j-1 & j not canceled
honzero intensity at 6,

Peak broadens!
327



Let's derive the relation between crystal thickness T and peak width B:

2dsmb =1

Considering the path length differences between X-rays scattered from the front
and back planes of a crystal with 2j+1 planes and total thickness T-:

2Tsm0 =(2j+DA

. Here, T = 2jd
2Tsm0, =(2j-1)A
o 646 60,
If we subtract them: 7'(sin@, —sin,) = A R T
Using trig identity: ZT(COS(Q ZQZ)SIH((Q ) =A
. 6 -0 0 -6
Since 0, +0, =@, and sin(———=) ~ 1—=
2 2
6, — 0, 6, — 0, A

2T (cos 0, )( 5 )=A. But, B=2( ),s0 | [ =

2 Bcos0,




SCHERRER FORMULA

A more rigorous treatment includes a unitless shape factor:

KA T = crystallite thickness

Scherrer Formula (1918) [ = L (X-ray wavelength, A)
Bcos @ K (shape factor) ~ 0.9
B B, 6, in radians

Accurate size analysis requires correction for instrument broadening:
2 p2 2
By Measured FWHM (in radians)
Bi: Corresponding FWHM of bulk reference (large grain size, > 200 nm)

Readily applied for crystal size of 2-100 nm.
Up to 500 nm if synchrotron is used.
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SCHERRER CONSTANT

T KA = T- 0.944
Bcosd, Bcosd,

» The constant of proportionality, K (the Scherrer constant)
depends on the how the width is determined, the shape of the
crystal, and the size distribution

— the most common values for K are:
* 0.94 for FWHM of spherical crystals with cubic symmetry
« 0.89 for integral breadth of spherical crystals w/ cubic symmetry
* 1, because 0.94 and 0.89 both round up to 1
— K actually varies from 0.62 to 2.08
« For an excellent discussion of K, refer to JI Langford and AJC
Wilson, “Scherrer after sixty years: A survey and some new

results in the determination of crystallite size,” J. Appl. Cryst. 11
(1978) 102-113.
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Suppose 1=1.5 A, d=1.0 A, and 6=49°. Then for a crystal 1
mm in diameter, the width B, due to the small crystal
effect alone, would be about 2x10-" radian (10-° degree),
too small to be observable. Such a crystal would contain
some 107 parallel lattice planes of the spacing assumed
above.

However, if the crystal were only 50 A thick, it would
contain only 51 planes, and the diffraction curve would be
very broad, namely about 43x10-? radian (2.46°), which is
easily measurable.

"Incomplete destructive interference
at angles slightly off the Bragg angles”

331



DIFFRACTION FROM DISORDERED SOLIDS

All materials scatter x-rays, even 1f
they are not crystalline. Deviations
from perfect periodicity spread the
scattering out through reciprocal
space, but there 1s still information
about mteratomic distances

cryatal

[NTEMSITY

Houed or amorphous salid

INTEMSITY

amorphous solids

=
No long-range order E monatomic gas
— Only significant order is nearest neighbour spacing E
— Diffraction pattern forms diffuse halo
— Typical of colloidal suspensions and globular clusters 0 l;:n a0

Diffraction is large or small angle depending on the size of the “particle” DIFFRACTION (SCATTERING)

AMGLE 28 [degrees)

'g::'.:‘.i.:z..' i
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