
Crystal Structure Analysis

X-ray Diffraction

Electron Diffraction

Neutron Diffraction 

Essence of diffraction: Bragg Diffraction

Reading: West 5
A/M 5-6
G/S 3
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SCATTERING

Elastic (E’ = E)

X-rays scatter by interaction with the electron density of a material.
Neutrons are scattered by nuclei and by any magnetic moments in a sample.

Electrons are scattered by electric/magnetic fields.

Scattering is the process in which waves or particles are forced to deviate from a 
straight trajectory because of scattering centers in the propagation medium.  

 p' p q E' E h Momentum transfer: Energy change:

Inelastic (E’ ≠ E)

q 2 sin
2

p 




Elastic scattering geometry• Rayleigh (λ >> dobject)
• Mie (λ ≈ dobject)
• Geometric (λ << dobject)
• Thompson (X-rays)

E pcFor X-rays:

• Compton (photons + electrons)
• Brillouin (photons + quasiparticles)
• Raman (photons + molecular vib./rot.)



X-RAY SCATTERING

• wide-angle diffraction (θ > 5°)
• small-angle diffraction (θ close to 0°)
• X-ray reflectivity (films)

elastic (Thompson, ΔE = 0)

inelastic (ΔE ≠ 0)
• Compton X-ray scattering
• resonant inelastic X-ray scattering (RIXS)
• X-ray Raman scattering

X-rays:
• 100 eV (“soft”) – 100 keV (“hard”) photons
• 12,400 eV X-rays have wavelengths of 1 Å,

somewhat smaller than interatomic distances in solids
Diffraction from crystals!

First X-ray: 1895 

Roentgen
1901 Nobel

λ (in Å) = 12400/E (in eV)
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DIFFRACTION
Diffraction refers to the apparent bending of waves around small objects and the 

spreading out of waves past small apertures.

In our context, diffraction is the scattering of a coherent wave by the atoms in a 
crystal. A diffraction pattern results from interference of the scattered waves.

Refraction is the change in the direction of a wave due to a change in its speed.

W. L. BraggW. H. Bragg

diffraction of plane waves 

von Laue

Crystal diffraction
I. Real space description (Bragg)
II. Momentum (k) space description 

(von Laue)
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OPTICAL INTERFERENCE

δ = nλ,  n = 0, 1, 2, …

δ = nλ,  n = 1/2, 3/2, …

δ: phase difference
n: order

perfectly in phase:

perfectly out of phase:



BRAGG’S LAW OF DIFFRACTION
When a collimated beam of X-rays strikes pair of parallel lattice planes in a crystal, 

each atom acts as a scattering center and emits a secondary wave. 
 All of the secondary waves interfere with each other to produce the diffracted beam 

Bragg provided a simple, intuitive approach to diffraction:

• Regard crystal as parallel planes of atoms separated by distance d
• Assume specular reflection of X-rays from any given plane
→ Peaks in the intensity of scattered radiation will occur when rays  

from successive planes interfere constructively

2Θ
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BRAGG’S LAW OF DIFFRACTION

AC sind 

ACB 2 sind 

ACBn 

2 sinn d Bragg’s Law:

When Bragg’s Law is satisfied, “reflected” beams are in phase 
and interfere constructively. Specular “reflections” can 

occur only at these angles.

No peak is observed unless the condition for constructive interference
(δ = nλ, with n an integer) is precisely met:
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DIFFRACTION ORDERS

1st order:

12 sind 

2nd order:

22 2 sind 

By convention, we set the diffraction order = 1 for XRD. 
For instance, when n=2 (as above), we just halve the d-spacing to make n=1.

22 2 sind  22( / 2)sind 
e.g. the 2nd order reflection of d100 occurs at same θ as 1st order reflection of d200



XRD TECHNIQUES AND APPLICATIONS

• powder diffraction
• single-crystal diffraction
• thin film techniques
• small-angle diffraction

• phase identification
• crystal structure determination 
• radial distribution functions
• thin film quality
• crystallographic texture
• percent crystalline/amorphous

• crystal size
• residual stress/strain
• defect studies 
• in situ analysis (phase transitions,   
thermal expansion coefficients, etc)

• superlattice structure

Uses:



POWDER X-RAY DIFFRACTION
• uses monochromatic radiation, scans angle
• sample is powder → all orientations simultaneously presented to beam
• some crystals will always be oriented at the various Bragg angles
• this results in cones of diffracted radiation
• cones will be spotty in coarse samples (those w/ few crystallites)

crystallite

no restriction 
on rotational orientation

relative to beam
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2 sinhkl hkld 
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DEBYE-SCHERRER METHOD

…or we can use a diffractometer to intercept sections of the cones
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2 sinhkl hkld 



BASIC DIFFRACTOMETER SETUP
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THETA-2THETA GEOMETRY

• X-ray tube stationary
• sample moves by angle theta, detector by 2theta
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POWDER DIFFRACTOGRAMS

increasing θ, decreasing d
Minimum d?

min / 2d 

In powder XRD, a finely powdered sample is probed with monochromatic X-rays of a 
known wavelength in order to evaluate the d-spacings according to Bragg’s Law.

Cu Kα radiation: λ = 1.54 Å

peak positions depend on:
• d-spacings of {hkl}
• “systematic absences”
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ACTUAL EXAMPLE: PYRITE THIN FILM
FeS2 – cubic (a = 5.43 Å) 
Random crystal orientations  

On casual inspection, peaks give us d-spacings, unit cell size, crystal 
symmetry, preferred orientation, crystal size, and impurity phases (none!) 

111

200
210 211 220 311

Cu Kα = 1.54 Å

2 Theta

In
te

ns
ity

“powder pattern”

2θ = 28.3° →  d = 1.54/[2sin(14.15)] 
= 3.13 Å = d111

reference pattern from ICDD
(384,000+ datasets)



d-SPACING FORMULAS
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POWDER DIFFRACTION

Peak positions determined by size and shape of unit cell  

Peak intensities determined by the atomic number and 
position of the various atoms within the unit cell

Peak widths determined by instrument parameters, 
temperature, and crystal size, strain, and imperfections

244

we will return to this later…



GENERATION OF X-RAYS
X-rays beams are usually generated by colliding high-energy electrons with metals.

2p3/2 → 1s

Siegbahn notation

X-ray emission 
spectrum

+ HEAT
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Generating Bremsstrahlung

Generating Characteristic X-rays



GENERATION OF X-RAYS

Co Kα1 : 1.79 Å
Cu Kα1 : 1.54 Å  (~8 keV)
Mo Kα1 : 0.71 Å 

 /hchE 

Side-window Coolidge X-ray tube

X-ray energy is determined by anode material, accelerating voltage, 
and monochromators: 

1/2 ( )C Z   Moseley’s Law:
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SYNCHROTRON LIGHT SOURCES

SOLEIL

• brightest X-ray sources
• high collimation
• tunable energy
• pulsed operation

GeV electron accelerators
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Bremsstrahlung (“braking radiation”)



MONOCHROMATIC X-RAYS
Filters (old way)

A foil of the next lightest element 
(Ni in the case of Cu anode) can 
often be used to absorb the 
unwanted higher-energy radiation to 
give a clean Kα beam     

Crystal Monochromators
Use diffraction from a curved
crystal (or multilayer) to select
X-rays of a specific wavelength
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DETECTION OF X-RAYS

• Point detectors

• Strip detectors

• Area detectors

Detection principles
• gas ionization
• scintillation
• creation of e-h pairs
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DETECTION OF X-RAYS

Gas proportional counters

Point detectors

252

Scintillation counters



X-RAY DETECTORS
Area detectors

Charge-coupled devices

• film
• imaging plate
• CCD
• multiwire
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X-RAY DETECTORS
Imaging plates

254

photostimulated luminescence
from BaFBr0.85I0.15:Eu2+



X-RAY DETECTORS
Imaging plates

255

photostimulated luminescence
from BaFBr0.85I0.15:Eu2+

tetragonal Matlockite structure
9-coordinate Ba!



The Reciprocal Lattice and the 
Laue Description of Diffraction
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PLANE WAVES
A wave whose surfaces of constant phase are infinite parallel planes of 
equal spacing normal to the direction of propagation.

ψ: wave amplitude at point r
A: max amplitude of wave
k: wave vector 
r: space vector from arbitrary origin

k

|k|=2π/λ

Amplitude is constant in any plane normal to k because k•r is a constant 
for such planes:

k•r1 = kr1

k•r2 = kr1√2(cos45) = kr1

k

r2

wavefront

origin

k

r1 45°

k•r is indeed constant on wavefronts



THE RECIPROCAL LATTICE
The reciprocal lattice of a Bravais lattice is the set of all vectors K such that

for all real lattice position vectors R. 
1ie K R�

R = n1a1 + n2a2 + n3a3 Direct lattice position vectors:

Reciprocal lattice vectors:

 
2


2 3

1
1 2 3

a ab
a a a




K = hb1 + kb2 + lb3 

 
2


3 1

2
1 2 3

a ab
a a a




 
2


1 2

3
1 2 3

a ab
a a a




where the primitive vectors 
of the reciprocal lattice are:

and {ni} and {h,k,l} 
are integers

Reciprocal lattice: The set of all wave vectors K that yield plane waves 
with the periodicity of a given Bravais lattice.
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is satisfied when K•R = 2πn, with n an integer

To verify that the {bi} are primitive vectors of the reciprocal 
lattice, let’s first show that bi•aj = 2πδij

 
 
 

2 2 2  


    
 

1 2 32 3
1 1 1

1 2 3 1 2 3

a a aa ab a a
a a a a a a


 

 
2 0   


3 1

2 1 1
1 2 3

a ab a a
a a a




 
2 0   


1 2

3 1 1
1 2 3

a ab a a
a a a




Indeed, bi•aj = 2πδij

so, K•R = (hb1 + kb2 + lb3)•(n1a1 + n2a2 + n3a3)
= 2π(hn1 + kn2 + ln3) = 2π × integer

(since cross product of two 
vectors is perpendicular to both)  

K is indeed a reciprocal lattice vector



WHAT IS A RECIPROCAL LATTICE VECTOR?
The reciprocal lattice is defined at the lattice generated from the set of all 

vectors K that satisfy

for all direct lattice position vectors R. 
1ie K R�

What is K?
a wave vector of a plane wave that has the periodicity of the direct lattice

The direct lattice is periodic (invariant under translation by R) 

Reciprocal lattice vectors = wave vectors of plane waves that are unity 
at all direct lattice sites 260



THE RECIPROCAL LATTICE
• the reciprocal lattice is defined in terms of a Bravais lattice

• the reciprocal lattice is itself one of the 14 Bravais lattices

• the reciprocal of the reciprocal lattice is the original direct lattice

e.g., simple cubic direct lattice

ˆa1a x ˆa2a y ˆa3a z

 
2

3

2ˆ ˆ2 2 a
a a

   


2 3
1

1 2 3

a ab x x
a a a




2 ˆ
a


2b y 2 ˆ
a


3b z → simple cubic reciprocal lattice
with lattice constant 2π/a

→ b1 parallel to a1, etc.  261



Crystals with orthogonal axes (cubic, tetragonal, orthorhombic) 

b1, b2, b3 are parallel to a1, a2, a3, respectively.  

b3

a3

b1 a1

a2

b2

reciprocal lattice 

direct lattice 
2 ˆ
b


2b y

2 ˆ
a


1b x

2 ˆ
c


3b z

ˆa1a x ˆb2a y ˆc3a z
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RECIPROCAL LATTICE OF FCC IS BCC

FCC primitive vectors:

 

2

3

ˆ ˆ ˆ( ) 4 14 ˆ ˆ ˆ2 2 ( )
2(2)

8

a

a a
 


   


2 3

1
1 2 3

y z - xa ab y z - x
a a a




Note: not orthogonal

4 1 ˆ ˆ ˆ( + )
2a


2b z x - y 4 1 ˆ ˆ ˆ( + )

2a


3b x y - z

→ BCC reciprocal lattice with lattice constant 4π/a 263



RECIPROCAL LATTICE OF BCC IS FCC

BCC primitive vectors (not orthogonal):

 

2

3

ˆ ˆ(2 2 ) 4 14 ˆ ˆ2 2 ( )
2(4)

8

a

a a
 


   


2 3

1
1 2 3

y za ab y z
a a a




4 1 ˆ ˆ( )
2a


2b z + x 4 1 ˆ ˆ( )

2a


3b x + y

→ FCC reciprocal lattice with lattice constant 4π/a 264



RECIPROCAL LATTICES

• simple orthorhombic → simple orthorhombic

• FCC → BCC

• BCC → FCC

• simple hexagonal → simple hexagonal (rotated)
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FIRST BRILLOUIN ZONES
The Wigner-Seitz cell of the reciprocal lattice is called the first Brillouin zone 

(FBZ).

Wigner-Seitz cell: primitive cell with lattice point at its center

enclosed region is W-S cell
for 2D hexagonal lattice

d.l. FCC
r.l. BCC

1st Brillouin zone:

truncated octahedron
rhombic dodecahedron 

d.l. BCC
r.l. FCC

1st Brillouin zone:
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Theorem:
For any family of lattice planes separated by distance d, there are 
reciprocal lattice vectors perpendicular to the planes, the shortest of 
which has a length of 2π/d.

Conversely, any reciprocal lattice vector K has a family of real-space 
planes normal to it, separated by d. 

hk in 2D
hkl in 3D

here, g = K

K and LATTICE PLANES
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Orientation of a plane is determined by its normal vector

It is natural to pick the shortest perpendicular reciprocal 
lattice vector to represent the normal

Miller indices: coordinates of this reciprocal lattice vector

i.e., A plane with Miller indices hkl is normal to 
the reciprocal lattice vector K = hb1 + kb2 + lb3 

→ Definition #2: directions in k-space

(Definition #1 was inverse intercepts in the real lattice)

MILLER INDICES OF LATTICE PLANES
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Proof that K = hb1 + kb2 + lb3 is normal to (hkl)

h
1a

AB

If K = hb1 + kb2 + lb3 is normal to the plane at left, 
its dot product with any in-plane vector is zero.

Consider vector AB that lies in the plane.

By vector addition, 

l
3a

k
2a

h l
  AB31 aa

The dot product, 

( )h k l
h l

    
 

AB K =� �31
1 2 3

aa b b b

2 2 0  =
So the reciprocal vector formed by using the Miller indices of a plane as its 
components forms a vector in space that is normal to the Miller plane. 

Furthermore, the length of the shortest vector K is equal to 2π/dhkl.

In the figure above, the spacing between the planes is the projection of                     :  on
h

K
K

1a

2 2
hkl

hd
h h

 
  

K
K K K
�1a

(hkl)

0
2

hkl

K
d


 K→
277
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POWDER (DEBYE-SCHERRER) METHOD
• single wavelength 
• fixed powder sample
• equivalent to rotating the reciprocal lattice through all possible

angles about the origin 

every point in 
reciprocal space 
traces out a shell 
of radius K

Each shell with radius K < 2k
intersects the Ewald sphere to 
form a circle.

All the diffracted beams from a 
powder lie on the surface of cones
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Peak intensities depend on (in large part):
1) intensity scattered by individual atoms (form factors)
2) the resultant wave from atoms in unit cell (structure factor)

PEAK INTENSITIES

In many cases, the intensity from certain planes (hkl) is zero.

• symmetry of crystal causes complete cancellation of beam
“systematic absences”

• happenstance

Possible reasons:

Other factors that affect intensity: • scattering angle
• multiplicities
• temperature factor
• absorption factor
• preferred orientation
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MONOATOMIC BASES

( - ) 2= 1i ' i ne e  k k R�

up to now we have considered diffraction only from Bravais lattices 
with single atom bases (i.e., atoms only at the lattice points R).

We found the diffraction condition: 

= 1ie K R�which is the same as: 

( ) iF f e   K R
K R

R
K

The scattering amplitude FK is the sum over the lattice sites:

The scattered intensity is proportional to the absolute square of the 
amplitude: 

where fR(K) is the “atomic form factor” for a given atom (disc. later).

2
0I I FK K

…this is what is actually measured in an experiment.



Crystals with n atoms in each primitive cell must be further analyzed 
into a set of scatterers at positions d1, d2 … dn within each primitive 
cell.   

( )( ) ji
j

j
F f e   K R+d

K
R

K

n-ATOM BASES

( )j j A R R dThe positions of the atoms are: 

making the scattering amplitude: 

( ) jii
j

j
e f e    K dK R

R
K

iL e   K R

R

( ) ji
j

j
f e   K d

K K“Lattice sum”

“Structure factor” of the basis

*If the structure factor = 0, there is no diffraction peak.



( ) ji
j

j
f e   K d

K K

The structure factor gives the amplitude of a scattered wave arising 
from the atoms with a single primitive cell.   

STRUCTURE FACTOR

For crystals composed of only one type of atom, it’s common to split 
the structure factor into two parts:

( )jf S K KK

ji

j
S e   K d

K

“atomic form factor”

“geometric structure factor”

S = 0 gives a systematic absence (i.e., absence of expected diff. peak).
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2
( )hklI S K

1ie K d� nie K d�
…

1

j
n

i

j
S e 



  K
K

d

The amplitude of the rays scattered at positions d1, …, dn
are in the ratios:

The net ray scattered by the entire cell is the sum of 
the individual rays: 

STRUCTURE FACTORS

Geometric 
structure
factor

-Adds up scattered
waves from unit cell 

-In particular, no
peak when SK = 0 
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For simple cubic: one atom basis (0,0,0)

0 1iS e  K
K

SIMPLE CUBIC

d1 = 0a1 + 0a2 + 0a3

297

Same result as simple monatomic basis



For monoatomic BCC: 
we can think of this as SC with two point basis (0,0,0), (½,½,½)

lkh  )1(1

S = 2, when h + k + l even
S = 0, when h + k + l odd (systematic absences)

2 ( )0 2

1

( )1

j

ai x y zi i

j

i h k l

S e e e

e 

  
   



 

  

 


KK K

K
d

MONATOMIC BCC

2 ˆ ˆ ˆ( )h k l
a


  K x y zFor SC,
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e.g. consider the powder pattern of BCC molybdenum

Powder card shows only even hkl sums b/c Mo is BCC
Why?

- Diffraction from other (hkl) results in destructive interference:

(100)

d100

Beam cancels b/c body center atoms 
scatter exactly 180° out of phase

(200)

d200

Strong reflection b/c all atoms lie on 
200 planes and scatter in phase



S = 4 when h + k, k + l, h + l all even (h, k, l all even or all odd)

S = 0 otherwise.

( ) ( ) ( )1 i h k i k l i h lS e e e       K

For monoatomic FCC: 
SC with four point basis (0,0,0), (½,½,0), (0,½,½), (½,0,½)

4 ( ) ( ) ( )0 2 2 2

1

j

a a ai x y i y z i x zi i

j
S e e e e e

     
      



    
K K KK K

K
d

MONATOMIC FCC

2 ˆ ˆ ˆ( )h k l
a


  K x y zFor SC,
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(hkl) NaCl KCl
(100)
(110)
(111) 
(200)  
(210)
(211)
(220)  
(221)
(300)
(310)
(311) 

Once again, there are more systematic absences for 
isoelectronic ions (e.g., K and Cl)

(110) always absent in RS

(111) sometimes absent
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DIAMOND STRUCTURE
Diamond: FCC lattice with two-atom basis (0,0,0,), (¼,¼,¼)  

( )0 4
, ,

( /2)( )
,

[ ][ ]

           [1 ][ ]

aiK x y ziK
diamond FCC

i h k l
FCC

S e e S

e S

  
  

 

 

 
K K

K

S = 8         h + k + l twice an even number
S = 4(1 ± i)  h + k + l odd
S = 0         h + k + l twice an odd number 

IFCC : all nonvanishing spots have equal intensity.

Idiamond : spots allowed by FCC have relative intensities 
of 64, 32, or 0. 308

Only for all even or all odd hkl is S ≠ 0. For these unmixed values,
Additional condition:



(hkl) Al Si
(100)
(110)
(111)  
(200) 
(210)
(211)
(220)  
(221)
(300)
(310)
(311)  

What about 
zinc blende?

FCC diamond

309



SUMMARY OF SYSTEMATIC ABSENCES
crystal structure condition for peak to occur

SC any h,k,l
BCC h + k + l = even
FCC h,k,l all even or all odd 
NaCl h,k,l all even,

or all odd if fA ≠ fB

diamond h,k,l all even and twice an even #, 
or all odd 

HCP any h,k,l except when h + 2k = 3n
and l is odd

( ) ji
j

j
f e   K d

K K
310

eandrei
Callout
sum =h+k+l=4n

eandrei
Callout
and Silicon



Observable diffraction 
peaks for monoatomic 
crystals

222 lkh 
SC: 1,2,3,4,5,6,8,9,10,11,12,…

BCC: 2,4,6,8,10,12,...

FCC: 3,4,8,11,12,16,24,…

SIMPLE ANALYSIS OF SIMPLE PATTERNS
What will we see in XRD patterns of SC, BCC, FCC?

SC FCC BCC

We can take ratios of (h2 + k2 + l2) to determine structure.



SIMPLE ANALYSIS OF SIMPLE PATTERNS

 nd sin2

222 lkh
adhkl


For cubic crystals:

2
2

1sin
hkld

 

2 2 2 2sin ( )h k l   

2 2 2 2
th peak th peak

2 2 2 2
1st peak 1st peak

sin ( )
sin ( )

n nh k l
h k l




 


 
312



2 2
2

2 2
1

sin sin 33 2
sin sin 22




 



 

SIMPLE ANALYSIS OF SIMPLE PATTERNS

110

200

211

α-Fe is cubic. Is it FCC or BCC? BCC!

What about Al?

2 2
2

2 2
1

sin sin 22.5 1.33
sin sin 19




 



 

111

200
220

311

222 400
331 420

FCC!
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Ex: An element, BCC or FCC, shows diffraction 
peaks at 2: 40, 58, 73, 86.8,100.4 and 114.7. 
Determine:(a) Crystal structure?(b) Lattice constant?
(c) What is the element?

2theta theta (hkl)

40 20 0.117 1 (110)
58 29 0.235 2 (200)
73 36.5 0.3538 3 (211)

86.8 43.4 0.4721 4 (220)
100.4 50.2 0.5903 5 (310)
114.7 57.35 0.7090 6 (222)

2sin 222 lkh 

BCC, a =3.18 Å  W

normalized
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ELASTIC X-RAY SCATTERING BY ATOMS
Atoms scatter X-rays because the oscillating electric field of an X-ray sets 
each electron in an atom into vibration. Each vibrating electron acts as a 
secondary point source of coherent X-rays (in elastic scattering).

Thomson relation:

The X-ray scattered from an atom is the resultant wave from all its electrons

Particle picture:

• zero phase difference for forward/backward scattering
→ scattering factor (form factor, f ) proportional to atomic number, Z

• increasingly destructive interference with larger scattering angle (to 90°)
• for a given angle, intensity decreases with decreasing X-ray wavelength 

• max scattering intensity at 2θ = 0 & 180°
• gradual decrease to 50% as 2θ approaches 90°

21 (1 cos 2 )
2

I  



SCATTERING OF X-RAYS BY ATOMS

Thomson relation: 21 (1 cos 2 )
2

I  

scattering angle probabilities for a free electron:

Low energy: Thomson
High energy: Compton 

Klein–Nishina formula



ATOMIC FORM FACTORS
Form factor f = scattering amplitude of a wave by an isolated atom

• Z (# electrons)
• scattering angle
• X-ray wavelength

For X-rays, f depends on:

consequences: • powder patterns show weak lines at large 2θ. 
• light atoms scatter weakly and are difficult to see.

0

( ) ( ) i
j jf e d


  q rq r r�

4 sinq  


with,

For θ = 0 (forward scattering),

scattering vector q

General elastic formula:

0

(0) ( )jf d # electrons


  r r =
O

K+

Cl-
Cl  

θ = 37°

3

3



PEAK WIDTHS
Peak shape is a Voigt function (mixture of Gaussian and Lorentzian)

Peak width (broadening) is determined by several factors:

• natural linewidth of X-ray emission
• instrumental effects (polychromatic λ, focusing, detector)
• specimen effects 

1) crystallite size
2) crystallite strain

• Gaussian component arises from natural linewidth and strain 
• Lorentzian component arises from coherent domain size

Pure
Lorentzian

Pure
Gaussian
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Instrument and Sample Contributions to the Peak Profile 
must be Deconvoluted

• In order to analyze crystallite size, we must deconvolute:
– Instrumental Broadening FW(I)

• also referred to as the Instrumental Profile, Instrumental 
FWHM Curve, Instrumental Peak Profile

– Specimen Broadening FW(S)
• also referred to as the Sample Profile, Specimen Profile

• We must then separate the different contributions to specimen 
broadening
– Crystallite size and microstrain broadening of diffraction peaks 
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SIZE BROADENING
Small crystallites (< 200 nm) show broadened diffraction lines

Nanocrystal X-ray 
Diffraction
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Which of these diffraction patterns comes from a 
nanocrystalline material?

66 67 68 69 70 71 72 73 74

2 (deg.)

In
te

ns
ity

 (a
.u

.)

These diffraction patterns were produced from the same sample!
• Two different diffractometers, with different optical configurations, were used
• The apparent peak broadening is due solely to the instrumentation in   

this case
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1
2
3
4

j-1
j
j+1

2j-1
2j

B 1

2

at Bragg angle,
phase lag between two planes =  
perfectly in phase, constructive

B

B 1
At some angle 

Phase lag between two planes:

At (j+1)th plane:
Phase lag: 

• Rays from planes 1 and j+1 cancel
• Ditto for 2 & j+2, … j & 2j
• Net diffraction over 2j planes = 0

 

2
  j



The finite size of real crystals results
in incomplete destructive interference
over some range of angles

Crystal with 2j planes
Total thickness T

T = (2j-1)d

The angular range θB to θ1 is the range where 
diffracted intensity falls from a maximum to 

zero (half of Bragg peak profile).



Same arguments apply to 
B 2

So we see diffracted X-rays over all scattering angles between 2θ1
and 2θ2.

– If we assume a triangular shape for the peak, the full width at
half maximum of the peak will be B = (2θ1 – 2θ2)/2 = θ1 – θ2
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If we have more than 2j planes:

1
2
3
4

j-1
j
j+1

2j+1
2j+2

B 1

2

If we have fewer than 2j planes:

1
2
3
4

j-1
j
j+1

2j-3
2j-2

B 1

2

still zero intensity at θ1 nonzero intensity at θ1

Rays from planes j-1 & j not canceledRays from new planes are canceled

Thinner crystals result in broader peaks! 327

Peak sharpens! Peak broadens!



Let’s derive the relation between crystal thickness T and peak width B:

2 sind  

1

2

2 sin (2 1)
2 sin (2 1)
T j
T j

 
 
 
 

1 2(sin sin )T    

1 2 1 22 (cos( )sin( ))
2 2

T      


1 22 (cos )( )) .
2BT   


cos B

T
B




1 22( )
2

B  


Considering the path length differences between X-rays scattered from the front 
and back planes of a crystal with 2j+1 planes and total thickness T:

If we subtract them:

Using trig identity:

Since                            and                                              ,    1 2

2 B
  

 1 2 1 2sin( )
2 2

    


But,                               , so

1 2 1 2
1 2sin sin 2cos sin

2 2
      

 

Here, T = 2jd



cos B

KT
B






2 2 2
M RB B B 

BM: Measured FWHM (in radians)
BR: Corresponding FWHM of bulk reference (large grain size, > 200 nm)

Readily applied for crystal size of 2-100 nm.
Up to 500 nm if synchrotron is used.

SCHERRER FORMULA
A more rigorous treatment includes a unitless shape factor:

Scherrer Formula (1918)
T = crystallite thickness
λ (X-ray wavelength, Å)
K (shape factor) ~ 0.9 
B, θB in radians

Accurate size analysis requires correction for instrument broadening:
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• The constant of proportionality, K (the Scherrer constant) 
depends on the how the width is determined, the shape of the 
crystal, and the size distribution
– the most common values for K are:

• 0.94 for FWHM of spherical crystals with cubic symmetry
• 0.89 for integral breadth of spherical crystals w/ cubic symmetry
• 1, because 0.94 and 0.89 both round up to 1 

– K actually varies from 0.62 to 2.08
• For an excellent discussion of K, refer to JI Langford and AJC 

Wilson, “Scherrer after sixty years: A survey and some new 
results in the determination of crystallite size,” J. Appl. Cryst. 11
(1978) 102-113.

cos B

KT
B






SCHERRER CONSTANT

0.94
cos B

T
B





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Suppose =1.5 Å, d=1.0 Å, and =49˚. Then for a crystal 1
mm in diameter, the width B, due to the small crystal
effect alone, would be about 2x10-7 radian (10-5 degree),
too small to be observable. Such a crystal would contain
some 107 parallel lattice planes of the spacing assumed
above.

However, if the crystal were only 50 Å thick, it would
contain only 51 planes, and the diffraction curve would be
very broad, namely about 43x10-2 radian (2.46˚), which is
easily measurable.
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“Incomplete destructive interference 
at angles slightly off the Bragg angles”



DIFFRACTION FROM DISORDERED SOLIDS

amorphous solids
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