2. Crystal Structure

 crystalline solid - the atoms or ions arrange in a pattern that repeats itself in three dimensions to form a solid which has long-range order amorphous solid - materials with only shortrange orderspace lattice - a network composed of an infinite three-dimensional array of points unit cell - the repeating unit in a space lattice

space lattice

lattice constants
lattice vector $-a, b, c$ interaxial angle $-\alpha, \beta, \gamma$

crystal system

only 7 different types of unit cells

 14 standard (Bravais) unit cells could describe all possible lattice networks| crystal
 system | axial lengths \& interaxial angles | space lattice |
| :---: | :---: | :---: |
| cubic | $\begin{aligned} & a=b=c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$ | simple cubic body-centered cubic face-centered cubic |
| tetragonal | $\begin{aligned} & a=b \neq c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$ | simple tetragonal body-centered tetragonal |
| orthorhombic | $\begin{aligned} & a \neq b \neq c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$ | simple orthorhombic body-centered orthorhombic base-centered orthorhombic face-centered orthorhombic |
| rhombohedral | $\begin{aligned} & a=b=c \\ & \alpha=\beta=\gamma \neq 90^{\circ} \end{aligned}$ | simple rhombohedral |
| hexagonal | $\begin{aligned} & a=b \neq c \\ & \alpha=\beta=90^{\circ} \\ & \gamma=120^{\circ} \end{aligned}$ | simple hexagonal |
| monoclinic | $\begin{aligned} & a \neq b \neq c \\ & \alpha=\gamma=90^{\circ} \neq \beta \end{aligned}$ | simple monoclinic base-centered monoclinic |
| triclinic | $\begin{aligned} a & \neq b \neq c \\ \alpha & \neq \beta \neq \gamma \neq 90^{\circ} \end{aligned}$ | simple triclinic |

metallic crystal structures

90% elemental metals crystallize into three crystal structures:

- body-centered cubic (BCC)

	$a(\mathrm{~nm})$	$\mathrm{R}(\mathrm{nm})$
Cr	0.289	0.125
Fe	0.287	0.124
Mo	0.315	0.136
K	0.533	0.231
Na	0.429	0.186
Ta	0.330	0.143
W	0.316	0.137
V	0.304	0.132

- face-centered cubic (FCC)

	$a(\mathrm{~nm})$	$\mathrm{R}(\mathrm{nm})$
Al	0.405	0.143
Cu	0.3615	0.128
Au	0.408	0.144
Pb	0.495	0.175
Ni	0.352	0.125
Pt	0.393	0.139
Ag	0.409	0.144

- hexagonal close-packed (HCP)

	a	$c(\mathrm{~nm})$	$\mathrm{R}(\mathrm{nm})$
Al	0.2973	0.5618	0.143
Zn	0.2665	0.4947	0.133
Mg	0.3209	0.5209	0.160
Co	0.2507	0.4069	0.125
Zr	0.3231	0.5148	0.160
Ti	0.2950	0.4683	0.147
Be	0.2286	0.3584	0.113

BCC

coordination number $=8$ total 2 atoms per unit cell

$$
\sqrt{3} a=4 \mathrm{R} \quad a=\frac{4 \mathrm{R}}{\sqrt{3}}
$$

atomic packing factor (APF)

$$
\mathrm{APF}=\frac{\text { volume of atoms in unit cell }}{\text { volume of unit cell }}
$$

$\mathrm{APF}=0.68$

FCC

coordination number $=12$
total 4 atoms per unit cell

$$
\sqrt{2} a=4 \mathrm{R} \quad a=\frac{4 \mathrm{R}}{\sqrt{2}}
$$

$\mathrm{APF}=0.74$
the closest packing possible of spherical atoms cubic closest-packed

HCP

coordination number $=12$
total 2 atoms per unit cell
$\mathrm{APF}=0.74$
the closest packing possible of spherical atoms

c/a ratio for ideal HCP structure is 1.633

the closest packing

HCP
$a b a b a \ldots .$.

FCC
$a b c a b c \ldots$.

atom positions in cubic unit cell

BCC unit cell

coordinates of eight corners:
$(0,0,0)$
$(1,0,0)$
$(0,1,0)$
$(0,0,1)$
$(1,1,0)$
$(1,0,1)$
$(0,1,1)$
$(1,1,1)$
coordinate of the center: $(1 / 2,1 / 2,1 / 2)$
direction index - the vector components of the direction resolved along each of the
coordinate axes and reduced to the smallest integers

all parallel direction vectors have the same direction indices
directions are crystallographically equivalent if the atom spacing along each direction is the same
ex. cubic edge directions:

$$
\begin{aligned}
& {[100][010][001][010][001][100]} \\
& \equiv<100>
\end{aligned}
$$

equivalent directions are called indices of a family or form
ex. draw the following directions:
(a) [112]

(b) $[110]$

(c) $[32 \overline{1}]$

Miller indices for crystallographic planes

Miller notation system (hkl)

Miller index - the reciprocals of the fractional intercepts that the plane makes with the x, y, and z axes of the three nonparallel edges of the cubic unit cell
procedure for determining Miller index:
(1) choose a plane not pass through $(0,0,0)$
(2) determine the intercepts of the plane with x, y, and z axes
(3) form the reciprocals of these intercepts
(4) find the smallest set of whole numbers that are in the same ratio as the intercepts
ex.

ex. draw the following crystallographic planes in cubic unit cell:
(a) (101)
(b) (110)

(c) (221)

planes of a family or form $\{h k l\}$
ex. (100), (010), (001) are a family \{100\}
an important relationship for cubic system, the direction indices of a direction perpendicular to a crystal plane are the same as the Miller indices of that plane
interplanar spacing between two closest parallel planes with the same Miller indices is designated $d_{h k l}(h, k, l$ are the Miller indices)

$$
d_{h k l}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}
$$

$a:=$ lattice constant
ex. determine the Miller indices of the planes shown as follow:
(a)

(5120)
(b)

(676)
hexagonal structure
Miller-Bravais indices - HCP crystal plane indices (hkil) $h+k+i=0$ three basal axes a_{1}, a_{2}, a_{3} and c axis

basal planes
(0001)
prism planes
(ABCD)
(1010)
(ABEF) (1100)
(CDGH)
(01"̄0)

direction indices in HCP unit cell
four indices [uvtw] $u+v+t=0$

$$
u=1 / 3(2 \mathrm{u}-\mathrm{v}) \quad v=1 / 3(2 \mathrm{u}-\mathrm{v}) \quad t=-(\mathrm{u}+\mathrm{v})
$$

directions a_{1}, a_{2}, a_{3}

$+a_{3}$ direction incorporating c axis

directions on the upper basal planes

volume, planar, linear density
volume density

$$
\rho_{v}=\frac{\text { mass/unit cell }}{\text { volume/unit cell }}
$$

ex. Cu has FCC structure, atomic radius of 0.1278 nm , atomic mass of $63.54 \mathrm{~g} / \mathrm{mol}$ calculate the density of Cu in $\mathrm{Mg} / \mathrm{m}^{3}$.
FCC structure $\sqrt{2} a=4 R$

$$
\begin{aligned}
a & =2 \sqrt{2} R=2 \sqrt{2}\left(1.278 \times 10^{-10}\right) \\
& =3.61 \times 10^{-10} \mathrm{~m} \\
\mathrm{~V} & =\left(3.61 \times 10^{-10} \mathrm{~m}\right)^{3}=4.70 \times 10^{-29} \mathrm{~m}^{3}
\end{aligned}
$$

4 Cu per unit cell

$$
\begin{aligned}
m & =4 \times 63.54 \times 1.66 \times 10^{-30} \mathrm{Mg}=4.22 \times 10^{-28} \mathrm{Mg} \\
\rho_{\mathrm{v}} & =4.22 \times 10^{-28} \mathrm{Mg} / 4.70 \times 10^{-29} \mathrm{~m}^{3} \\
& =8.98 \mathrm{Mg} / \mathrm{m}^{3} \quad\left(\text { exp. }=8.96 \mathrm{Mg} / \mathrm{m}^{3}\right)
\end{aligned}
$$

planar atomic density

> equiv. no. of atoms whose centers are intersected by selected area

$$
\rho_{p}=\frac{\text { selected area }}{}
$$

ex. calculate planar atomic density ρ_{p} on (110) plane of the α-Fe in BCC lattice in atoms $/ \mathrm{mm}^{2}$. (lattice constant $a=0.287 \mathrm{~nm}$)

$$
\begin{aligned}
& 1 \text { atom (center) }+1 / 4 \text { atom (corner) } \times 4=2 \text { atoms } \\
& \begin{aligned}
\text { area } & =a \times \sqrt{2} a=\sqrt{2} a^{2}=\sqrt{2}\left(2.87 \times 10^{-7}\right)^{2} \\
& =1.164 \times 10^{-13} \mathrm{~mm}^{2}
\end{aligned} \\
& \rho_{p}=\frac{2 \text { atoms }}{1.164 \times 10^{-13} \mathrm{~mm}^{2}}=1.72 \times 10^{13} \text { atoms } / \mathrm{mm}^{2}
\end{aligned}
$$

linear atomic density

no. of atoms diam. intersected by selected length of line in direction of interest

$$
\rho_{l}=\frac{\text { selected length of line }}{}
$$

ex. calculate linear atomic density ρ_{l} in [110] direction in Cu crystal lattice in atoms $/ \mathrm{mm}$.
(Cu is FCC and lattice constant $a=0.361 \mathrm{~nm}$)

$$
\begin{aligned}
& \text { no. of atoms }=1 / 2+1+1 / 2=2 \text { atoms } \\
& \begin{aligned}
& \text { length }=\sqrt{2} a=\sqrt{2}\left(3.61 \times 10^{-7}\right) \\
&=5.104 \times 10^{-7} \mathrm{~mm} \\
& 2 \text { atoms }
\end{aligned} \\
& \rho_{l}=\frac{}{5.104 \times 10^{-7} \mathrm{~mm}}=3.92 \times 10^{6}
\end{aligned}
$$

polymorphism or allotropy
element or compound exists in more than one crystalline form under different conditions of temperature and pressure ex.

metal	crystal structure at room temperature	at other temperature
Ca	FCC	$\mathrm{BCC}\left(>447^{\circ} \mathrm{C}\right)$
Co	HCP	$\mathrm{FCC}\left(>427^{\circ} \mathrm{C}\right)$
Hf	HCP	$\mathrm{BCC}\left(>1742^{\circ} \mathrm{C}\right)$
Fe	$\mathrm{BCC}(\alpha)$	$\mathrm{FCC}\left(912-1394^{\circ} \mathrm{C}\right)(\gamma)$
Li	BCC	$\mathrm{BCC}\left(>1394^{\circ} \mathrm{C}\right)(\delta)$
La	BCC	$\mathrm{HCP}\left(-193^{\circ} \mathrm{C}\right)$
Na	$\mathrm{HCP}\left(<-233^{\circ} \mathrm{C}\right)$	
Tl	HCP	$\mathrm{BCC}\left(>234^{\circ} \mathrm{C}\right)$
Ti	HCP	$\mathrm{BCC}\left(>883^{\circ} \mathrm{C}\right)$
Y	HCP	$\mathrm{BCC}\left(>1481^{\circ} \mathrm{C}\right)$
Zr	HCP	$\mathrm{BCC}\left(>872^{\circ} \mathrm{C}\right)$

crystal structure analysis

X-ray sources

x-rays used for diffraction are radiations with wavelengths $0.05 \sim 0.25 \mathrm{~nm}$

a voltage of 35 kV is applied between cathode
(W filament) and anode (Mo target)
x-ray spectrum $0.2 \sim 1.4 \mathrm{~nm}$
wavelength of K_{α} line 0.07 nm

X-ray diffraction

reflected wave patterns of beam are not in phase, no reinforced beam will be produced destructive interference occurs

reflected wave patterns of beam are in phase, reinforcement of the beam or constructive interference occurs

$$
\begin{equation*}
n \lambda=2 d_{h k l} \sin \theta \tag{19}
\end{equation*}
$$

ex. BCC Fe placed in an x-ray diffractometer

 using x-ray with $\lambda=0.1541 \mathrm{~nm}$. diffraction from $\{110\}$ planes was obtained at $2 \theta=$ 44.704°. calculate lattice constant a.$$
\begin{aligned}
& \lambda=2 d_{110} \sin \theta \\
& d_{110}=\frac{\lambda}{2 \sin \theta}=\frac{0.1541 \mathrm{~nm}}{2 \sin \left(22.352^{\circ}\right)}=0.2026 \mathrm{~nm} \\
& a=d_{h k 1} \sqrt{h^{2}+k^{2}+l^{2}}=0.2026 \sqrt{2}=0.287 \mathrm{~nm}
\end{aligned}
$$

X-ray diffraction analysis of crystal structures powder diffraction method diffractometer

diffraction pattern for cubic unit cell

$$
\begin{aligned}
& d_{h k l}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}} \text { and } \lambda=2 \mathrm{~d} \sin \theta \\
& \lambda=\frac{2 a \sin \theta}{\sqrt{h^{2}+k^{2}+l^{2}}}
\end{aligned}
$$

rules for determining the diffracting $\{h k l\}$ planes in cubic crystals

> | | reflection present | reflection absent |
| :--- | :--- | :--- |
| BCC | $(h+k+l)=$ even | $(h+k+l)=$ odd |

FCC (h, k, l) all odd or (h, k, l) not all odd all even or all even
ex. Diffraction pattern for W sample by the use of a diffractometer with Cu radiation

W: BCC structure

$$
\begin{aligned}
& \lambda=\frac{2 a \sin \theta}{\sqrt{h^{2}+k^{2}+l^{2}}} \\
& \sin ^{2} \theta=\frac{\lambda^{2}\left(h^{2}+k^{2}+l^{2}\right)}{4 a^{2}} \\
& \frac{\sin ^{2} \theta_{\mathrm{A}}}{\sin ^{2} \theta_{\mathrm{B}}}=\frac{h_{\mathrm{A}}^{2}+k_{\mathrm{A}}^{2}+l_{\mathrm{A}}^{2}}{h_{\mathrm{B}}^{2}+k_{\mathrm{B}}^{2}+l_{\mathrm{B}}^{2}}
\end{aligned}
$$

Miller indices of the diffracting planes for BCC and FCC

$\{\mathrm{hkl}\}$	$\Sigma\left[h^{2}+k^{2}+l^{2}\right]$	FCC	BCC
$\{100\}$	1	$\ldots .$.	\ldots.
$\{110\}$	2	$\ldots .$.	110

first two sets of diffraction planes
FCC \{111) and $\{200\}$
$\frac{\sin ^{2} \theta_{\mathrm{A}}}{\sin ^{2} \theta_{\mathrm{B}}}=\frac{h_{\mathrm{A}}^{2}+k_{\mathrm{A}}^{2}+l_{\mathrm{A}}^{2}}{h_{\mathrm{B}}^{2}+k_{\mathrm{B}}^{2}+l_{\mathrm{B}}^{2}}=0.75$

BCC $\{110$) and $\{200\}$
$\frac{\sin ^{2} \theta_{\mathrm{A}}}{\sin ^{2} \theta_{\mathrm{B}}}=\frac{h_{\mathrm{A}}^{2}+k_{\mathrm{A}}^{2}+l_{\mathrm{A}}^{2}}{h_{\mathrm{B}}^{2}+k_{\mathrm{B}}^{2}+l_{\mathrm{B}}^{2}}=0.5$
ex. an element that has either BCC or FCC structure shows diffraction peaks at following 2θ angles: $40,58,73,86.8,100.4$ and 114.7. wavelength of x-ray $\lambda=0.154$ a. BCC or FCC?
b. determine the lattice constant a.
c. identify the element.
(a)

2θ	θ	$\sin \theta$	$\sin ^{2} \theta$
40	20	0.3420	0.1170
58	29	0.4848	0.2350
73	36.5	0.5948	0.3538
86.8	43.4	0.6871	0.4721
100.4	50.2	0.7683	0.5903

first and second angles
$0.1170 / 0.3420=0.5 \quad B C C$ structure
(b)

$$
\begin{aligned}
& a=\frac{\lambda}{2} \frac{\sqrt{h^{2}+k^{2}+l^{2}}}{\sin \theta}=\frac{0.154}{2} \frac{\sqrt{2}}{0.342} \\
& =0.318 \mathrm{~nm}
\end{aligned}
$$

(c) W

