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The Compton Effect
Introduction

In this experiment we will study two aspects of the interaction of photons with electrons.  The
first of these is the Compton effect named after Arthur Holly Compton who received the Nobel Prize
for physics in 1927 for its discovery.  The other deals with the radiation emitted when a tightly bound
electron from a heavy element is kicked out by a photon.  This gives rise to “characteristic” X-rays
that can be used to identify the element.

Kinematics of the Compton Effect

If a photon with energy E0 strikes a stationary electron, as in Figure 1, then the energy of the
scattered photon, E, depends on the scattering angle, Θ, that it makes with the direction of the incident
photon according to the following equation:
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where me is the mass of the electron.

E0

E

Θ

Ε e

Fig. 1: Schematic diagram of Compton Effect kinematics.

For instance, the lowest energy for the scattered photon results when it emerges at 180
degrees with respect to its original direction, in which case Eq. 1 shows that the incident and
scattered photon energies are related as:
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The total energy of the electron Ee is the sum of its kinetic energy Te and its rest energy
mec2

, i.e. Ee = Te + mec2.  The total energy of the recoiling electron can be computed from energy
conservation in the reaction and is given by:

Ee = E0 + mec
2 − E (3)

or equivalently:
Te= E0 - E



PHY 192 Compton Effect 2

Clearly the electron energy achieves its maximum value in this scattering where the photon
is back scattered.

The Klein-Nishina Formula
While Equations 2 and 3 tell us how to compute the energies of the scattered photon and

electron in terms of the photon's angle, they do not tell us anything about the likelihood of finding a
scattered photon at one angle relative to another.  For this we must analyze the scattering process in
terms of the interactions of electrons and photons.

The electron-photon interaction in the Compton effect can be fully explained within the
context of our theory of Quantum Electrodynamics or QED for short.  This subject is beyond the
scope of this course and we shall simply quote some results. We are interested particularly in the
angular dependence of the scattering or the differential cross-section and the total cross-section
both as a function of the energy of the incident photon.

First the differential cross-section, also known as the Klein-Nishina formula:
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where ε = E0/mec2  and r0 is the "classical radius of the electron"  defined as e2/mec2 and equal to
about 2.8 x 10-13 cm.  The formula gives the probability of scattering a photon into the solid angle
element dΩ = 2π sin Θ dΘ when the incident energy is E0.

We illustrate this angular dependence in Figure 2 for three energies of photons, where the
vertical scale is given in units of cm2.

Fig. 2: Differential Cross-section of Compton scattering vs. angle

Note that the most likely scattering is in the forward direction and that the probability of
scattering backward is relatively constant with angle.
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It will be of interest to us in this experiment to know the probability of measuring electrons
with a given kinetic energy T = Ee - mec2.  We can readily get this expression by substituting for
the angle Θ in Eq. 4 via Equations (2) and (3) and noting that:
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In Figure 3 we plot this energy dependence for an incident photon with energy equal to the
rest mass of an electron.

Fig. 3: The probability of finding an electron with reduced kinetic energy t for a photon with
incident energy E0 = mec2.

Note the rise in the cross-section with increasing kinetic energy up to the kinematic limit
where it abruptly falls to zero.  In our experiment we will be looking for this edge.
Energy dependence

The Klein-Nishina formula can be integrated to yield the total cross-section which displays
the energy dependence for the process:
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