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Electromagnetic Boundary Conditions 

Object 

To test experimentally Fresnel equations for the case of a non-conducting, nonmagnetic 
transparent medium and to  measure the index of refraction, n, for an unknown 
transparent material.  

References 

1.  D. Corson and P. Lorrain: Electromagnetic Fields and Waves, Freeman, 1962 

2.  D. J. Griffiths: Introduction to Electrodynamics, 2nd ed., Prentice-Hall, 1981 

3.  N. Tralli:  Classical Electromagnetic Theory, McGraw-Hill, 1963 

4.  M. Born and E. Wolf:  Principles of Optics; Macmillan, 1964. 

5.  E. M. Purcell:  Electricity and Magnetism, 2nd ed., (Berkeley Physics Course, v. 2), 
McGraw-Hill, 1985 

6.  E. Kretschmann:  Die Bestimmung optischer Konstanten von Mettalen durch 
Anregung von Oberflachenplasmaschwingen, Z. Physik 241, 313-324 (1971) 

7.  E. D. Palik:  Handbook of Optical Constants of Solids, Academic Press 1985, QC 
176.8.06.H36, ISBN 0-12-544420-6 

8.  R. W. Ditchburn:  Light, Academic Press, 3rd ed. , 1976, QC 355.2.D57.76; Dover, 
1991, (paper), QC 355.2.D57.1991 

9.  O. S. Heavens and R. W. Ditchburn: Insight into Optics, Wiley, 1991, 
QC358.H43.1991 

10.  G. R. Fowles:  Introduction to Modern Optics, 2nd ed., Dover, QC395.2.F68.1989, 
ISBN 0-486-65957-7 

11.  P. C. Clemmow: An Introduction to Electromagnetic Theory, Cambridge, 1973, 
QC670.C74.1973, ISBN 521 20239 6 (hardcover), 521 09815 7 (paper) 

12.  G. Scharf:  From Electrostatics to Optics, Springer-Verlag, 1994, QC 631.S33.1994 
ISBN 3-540-57682-7, 0-387-57682-7 

13.  C. Kittel:  Introduction to Solid State Physics, 6th ed., Wiley, 1986 

14.  Monk:  Light: Principles and Experiment, 1937, p. 444. 

 



  2 

Apparatus: 

Laser diode ( negative 3.0 volts; -3.2 absolute maximum), silicon detector (+6 to 18 
volts), digital voltmeter, angle table, semicircular glass and plastic samples 

I  Introduction 

In a uniform medium an electromagnetic wave plane wave travels without bending; at an 
interface reflection (at the mirror angle) and refraction of the incident wave (according to 
Snell's law) occur.  In the steady state the frequencies of all waves (incident, reflected 
and refracted) must be the same; the wavelengths v must differ in media of different 
propagation velocities (index of refraction n = c/v, where c is the free space wave 
velocity). 

Reflection and refraction at the interface between dissimilar media are governed by 
boundary equations implied by Maxwell's equations,  and are expressed by Fresnel's 
equations which specify reflected and refracted field strengths relative to those of an 
incoming electromagnetic wave.  Two fundamental field quantities are involved, the 
electric field E and magnetic induction B, and two auxiliary fields involved in relating E 
and B to their sources, the displacement field D and the magnetic field intensity H.  
Properties of the  propagation media involved are parameterized by (frequency 
dependent) material constants of linear relations among D and E (D = εE), and B and H 
(B = μH).  Since the boundary conditions are statements of continuity between certain 
tangential and normal components of these four vector quantities, geometric quantities 
such as the angle of incidence and the polarization state (E vector direction, by 
convention) of the incident wave enter into Fresnel's equations. 

The observed quantities, intensities of reflected and refracted waves, follow 
(quadratically) from the amplitudes of the E and H vectors of the traveling waves, as 
specified by the Poynting vector. 

A.  Static theories 

Classical (non-string) sources are considered to be point; the net effect of a 
distributed collection of point sources can be expanded (for distant field point) 
into a convergent series of multipoles with increasing powers of inverse distance.  
In mks units, forces between point charges located within a homogeneous, 
isotropic medium are given by 

   F = q1q2(4πεr2) 

or, defining the electric field in terms of force, 

   E12 = F12/q2 = q1(4πεr2) 

where the dimensionless permittivity constant ε characterizes the polarizibility of 
the medium, as discussed below and, typically, ε > ε0, the free space value.  The 
incorporation of the 4π into the definition of the proportionality constant ε is a 
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matter of choice to make more convenient the form of Gauss' law.  The ratio ε/ε0 
= Ke is called the dielectric constant of the medium; the quantity χ = Ke-1 = ε/ε0 - 
1 = (ε-ε0)/ε0 (the fractional difference in dielectric constants between the medium 
and free space) is called the electric susceptibility. 

Macroscopic distributions of "free" charges and currents are possible, which can 
be treated by summation or integration, or with a truncated multipole expansion 
but, in addition, the existence of microscopic, distributed charge and current in 
neutral matter frequently plays a profound role , as with dielectric capacitors or 
ferromagnetic yokes.  This charge is bound, but polarizable (non-polar molecules, 
diamagnetism) or orientable (in the case of permanent, intrinsic moments); its 
contribution to the distant field quantities is that of volume and surface dipole 
distributions (with the above caveat concerning  the near range effect of magnetic 
sources being not that of a dipole constructed of two monopoles (since there is no 
evidence for magnetic monopoles in ordinary life), but that of an elementary 
current loop).  (See Corson & Lorrain.) 

The distributed polarization, induced or intrinsic, is expressed in terms of vectors 
P or M, representing electric or magnetic  dipole moment per unit volume.  
Different field vectors are defined to correspond to the contributions of these two 
source types of quite different character: "free" charges and currents , and 
"bound" (distributed dipole, bulk-neutral matter distributions) .   These 
latter involve the macroscopic effects of the polarization properties of matter, 
expressed by numerical parameters which are frequency dependent in general, 
and temperature dependent in some cases.  These parameters are simple scalars 
for  isotropic materials, but may have several matrix components in case of 
anisotropy.  For our materials, they will pertain to homogeneous materials and 
will be the same at all points of the material. 

For electricity the field quantities are defined according to the two major source 
types with the net field E given by 

E = D/ε0 - P/ε0 

where D/ε0 represents the field due to "free" charges only (in that D field lines 
begin and end only on free charge) and -P/ε0 represents the field due to bound 
charges, with E field lines beginning and ending on either free or bound charge.  
(See Tralli, p 78; Corson & Lorrain, p 98.) 

For common, isotropic and homogeneous, dielectrics the relation  between P 
(dipole moment per unit volume) and the polarizing field E can be parameterized 
linearly by 

    P = ε0χE = ε0(Ke-1)E  whence 

    D = εE = ε0KeE. 
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where χ , as discussed earlier, is the fractional difference between the 
permittivities of the medium and of free space, and Ke is the electric permittivity 
ratio ε/ε0. 

As discussed above, in classical (non-string) field theory, the elementary electric 
field point source has monopole (point) character, and 1/r2 separation 
dependence.  In contrast, for the magnetic field there are no apparent elementary 
monopole sources; the elementary magnetic point source is a current loop with 
distant dipole field character (1/r^3  strength) but non-dipole near character (field 
loops surrounding the loop current).  (See the contrasting E and B field patterns in 
Fig. 7-6, p267, Corson & Lorrain.)  Again, the static theory relating electric fields 
and sources is expressed in terms of vector quantities E, D and P, where 

D represents the field due to "free" charges only (typically charge on a 
conductor, in a beam, etc.) 

P represents the field due to dipole polarization of a dielectric, and 

ε0E represents the field due to all charges. 

Here, ε0 is a constant of proportionality in the basic free-space  force law 

FE = (1/4pe0) q1q2/r^2 

and the relations between the vectors are given by  

D = εE P = ε0(Ke-1)E 

where ε is the permittivity defined above from the point force equation, Ke = ε/ε0 
is the dielectric constant and (Ke-1) is the electric susceptibility. 

The magnetic properties of materials and the magnetic fields defined are parameterized in 
a manner similar to the electric case: 

B is the basic magnetic induction field (units webers/meter^2 = tesla, weber = volt 
second) defined by the force between two  

    dF = μ0 I1I2 dl1dl2/(4π) 

with the free space permeability proportionality constant μ0 defined arbitrarily as 4πx107 
newton/ampere. 

Similar to this treatment of the electric field vectors, the (magnetic) dipole moment M per 
unit volume of matter, induced or permanent, is related to the polarizing field B and an 
auxiliary magnetic field intensity vector H by 

    B = μ0H + M = μH 
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with dimensionless magnetic susceptibility χm = and relative permeability Km = μ/μ0 = 
1+χm. 

B.  Dynamic theories 

Maxwell's equations unify the theories of electricity and magnetism, and successfully 
predict the existence and propagation velocity of coupled free space waves of electricity 
and magnetism, mutually generating one another through their time variation (Faraday's 
law, displacement "currents"). 

With parameterization of material properties as in the static case (but with different and 
frequency dependent) values of the dielectric and magnetic susceptability, these 
equations also specify changes in the E and B field magnitudes for a traveling wave 
incident on an interface between media with different properties.  Application of these 
"boundary conditions" specifies the field magnitudes for the transmitted and reflected 
waves; these, in turn, allow the transmitted and reflected intensities (quadratic in the 
fields) to be calculated. 

Traveling electromagnetic waves have their E and B fields perpendicular to the direction 
of propagation (for isotropic media), so there are two possible directions for the 
"polarization" direction, conventionally the direction of the electric field.  For plane wave 
incident on an interface, the propagation direction unit vector and the normal to the 
interface determine a plane; it is useful to define this plane as that of "parallel" (P) 
polarization and the perpendicular plane as that of "perpendicular" or norma (N) 
polarization.  These two electric field polarizations have quite different transmission and 
reflection properties at boundaries. 

Application of the theoretical boundary conditions gives E and B field ratios , separately 
for the parallel and perpendicular polarization components to the incident radiation.  
These and the corresponding expressions for the reflected and transmitted energies are 
referred to as the Fresnel equations, derived by him in a less general form (based on an 
elastic theory of light) in 1823, before Maxwell's work. 

Useful observable quantities are incident, reflection and transmission (refraction) angles 
(i, r, and t), and the incident and reflected intensities, which are proportional to the 
squares of the theoretically treated quantities (electric and magnetic fields).  (Since these 
intensities are measured in the same medium (air) there are no material complications 
(for non-absorbing materials) in calculation of the Poynting vector, which gives the flux 
of electromagnetic energy, and which is proportional to the product of electric and 
magnetic field oscillation amplitudes.  In vacuum (and in air to excellent approximation) 
E and B are equal so ExB = E2 (or  B2) 

 (Determination of the refracted intensity would require measurement inside the 
refracting material, whereas inference from the intensity of the refracted wave exiting 
into air would be complicated by multiple reflections between the entrance and exit 
interfaces which might, however, be calculated from theory.) 
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Assumption of steady state implies that the refracted and reflected waves have the same 
frequency as the forcing incident wave.  Since the propagation velocity is different in the 
refracting medium the wavelengths differ, and  node matching at the interface requires 
refraction according to Snell's law 

n1sini = n2sint . 

Most texts on electromagnetic theory derive and list the Fresnel equations.  In words, the 
applicable boundary conditions are: 

a, b )  The normal components of D and B, and  

 

c,d)  The tangential components of E and H  

 

are continuous across an interface between two dissimilar materials. 

Employing the material parameterization constants μ and ε (or the corresponding Ke and 
Km), with η21 = n2/n1, Fresnel's equations are derived: 

Set 1 

For perpendicular (normal) polarization (N): 

(E0r/E0i)N = (μ2 cosi - η21 μ1 cost)/(μ2 cosi + η21 μ1 cost) 

(E0t/E0i)N = (2 μ2 cosi)/(μ2 cosi + η21 μ1 cost) 

and for parallel polarization (P): 

(E0r/E0i)P = (η21 μ1 cosi - μ2 cost)/(η21 μ1 cosi + μ2 cost) 

(E0t/E0i)P = (2 μ2 cosi)/(η21 μ1 cosi + μ2 cost) 

For non-magnetic materials (μ1 = μ2 = μ0) these reduce to: 

Set 2 

(E0r/E0i)N = (cosi - η21 cost)/(cosi + η21 cost) 

(E0t/E0i)N = (2 cosi)/(cosi + η21 cost) 

(E0r/E0i)P = (η21 cosi - cost)/(η21 cosi + cost) 
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(E0t/E0i)P = (2 cosi)/(η21 cosi + cost) 

or, utilizing η21 = n2/n1 = sini/sint (Snell's law) and trigonometric identities: 

Set 2' 

(E0r/E0i)N = - sin(i-t)/sin(i+t) 

(E0t/E0i)N = 2 sint cosi/sin(i+t) 

(E0r/E0i)P = -tan(i-t)/tan(i+t) 

(E0t/E0i)P = 2 sint cosi/(sin(i+t) cos(i-t)). 

Both E0r and E0t are real quantities, so their electric vector phases relative to that of the 
incident wave E0i is either 0 or 180 degrees (field ratios above ± 1). 

From these forms we see that, for perpendicular polarization, (E0r)N has a 180 degree 
phase relation to the incoming wave and that, for parallel polarization, (E0r)P can have 
either zero or 180 degree relative phase  (E0's are wave amplitudes).  This is illustrated 
below for an air-->water interface  (η21 = n2/n1 = 4/3): 
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The general case for incident polarization can be treated by a linear superposition of these 
results.  For unpolarized incident beam (equal mixture of perpendicular and parallel 
polarizations) the reflected and transmitted waves are polarized in general, since the 
reflection coefficients above differ for the two incoming polarizations.  This is 
particularly evident for near-grazing incidence, leading to the choice of orientation for 
Polaroid sunglasses. 
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The Poynting (energy density flow) vector gives relative intensities (average energy per 
unit time per unit area = energy density x phase velocity) as Sav = [(Er0xHr0)/2] / 
[(E0xH0)/2] and [(Et0xHt0)/2] / [(E0xH0/2], respectively for reflection and transmission, 
where the factors of 1/2 represent the time average of sin2 and the x represents the cross 
product of two vectors.  Equivalent expressions are: 

Sav = 1/2 [(ε/μ)1/2] E02 = 1/2 [1/((εμ)1/2)] εE02 = 2.65x10-3 [(Ke/Km)1/2] E2rms 

where E0 is the electric field amplitude, E2rms = 1/2 E02, Ke = ε/ε0, Km = μ/μ0,  

[1/((εμ)1/2)] is the phase velocity and [(Ke/Km)1/2] is the index of refraction n. 

These expressions give energy flow rate per unit area.  In calculating reflection (R) and 
transmission (T) coefficients we are interested in the total energy flow rate:   Sav x (laser 
beam area).  For the simple case of reflection at an interface the beam areas are the same 
for the incident and reflected beams, as are the material parameters, and it suffices to 
express the simple ratio E0r2/E02. 

This is not so for the transmitted beam; the beam area changes.  The consideration of 
beam areas in calculating energy flow instead of energy flow per unit area introduces an 
additional geometrical factor multiplying the Poynting vector expression, giving the 
following expressions for reflected and transmitted energy ratios (R and T), for the two 
incident polarizations: 

Energy reflection and transmission coefficients: 

RN = [(η12cosi-cost)/(η12cosi+cost)]2 

TN = (4η12cosi cost)/((((η12cosi+cost))))2 

RP = [(-cosi+η12cost)/(cosi+η12cost)]2 

TP = (4η12cosi cost)/(cosi+η12cost)2 

where η12 = n1/n2 and RN + TN = 1, RP + Tp = 1. 

The non-magnetic set 2 form of Fresnel's equations show that the single parameter n2/n1 
= η21 governs not only the refraction angle in terms of incidence angle, via Snell's law, 
but also all electric field reflection and transmission ratios, and therefore the reflection 
and transmission intensity coefficients R and T.  A single measurement of Snell's law 
would suffice to specify the entire behavior.  We will seek to check the theory by non-
linear least-square fit to multiple measurements (KaleidaGraph or equivalent).  Since we 
expect the single governing parameter η21 = n2/n1 to be over determined, it may be best 
in fitting to leave the incoming intensity I0 as a multiplicative fit parameter to be 
compared with the measured quantity.  (This is equivalent to an unknown, constant 
multiplier of the theoretical energy ratio.  We would expect the ratio of the best fit value 
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to the initially measured measured zero-degree intensity (with sample removed)  to be 
close to one.  The absolute value of I0 will depend on laser intensity, etc.) 

Further, refraction angle and reflected intensity will form independent data sets for fit to 
η21.  We might also introduce, on a trial basis, a systematic angle offset in the refracted 
or reflected angle. 

In general i ≠ t, except for i = t = 0 degrees.  For i = t = 0, the a plane of refraction is 
undefined and any incident polarization lies in the interface plane, so (E0r)P and (E0t)P 
are zero.  Then set 1 gives 

Special case 1: normal incidence 

(E0r/E0i)N = (μ2 cosi - η21 μ1 cost)/(μ2 cosi + η21 cost) 

--> (μ2 - η21 μ1)/(μ2 + η21  μ1)  

--> (1 - η21)/(1 + η21)  (for μ1 = μ2 = 1) 

(E0t/E0i)P = (2 μ2 cosi)/(μ2 cosi + η21 μ1 cost) 

--> (2 μ2)/(μ2 + η21 μ1 ) 

--> 2/(1 + η21)    (for μ1 = μ2 = 1) 

For the singular angle given by (i+t) = π/2 radians, for non-magnetic media, set 2' 
becomes 

Special case 2: Brewster's angle for non-magnetic media 

(E0r/E0i)N = - sin(i-t)/sin(i+t)   --> -sin(i-t) 

(E0t/E0i)N = 2 sint cosi/sin(i+t)  --> 2 sint cosi 

(E0r/E0i)P = tan(i-t)/tan(i+t) *  --> 0 

(E0t/E0i)P = 2 sint cosi/(sin(i+t) cos(i-t)) --> 2 sint cosi/cos(i-t). 

(*  The numerator and denominator both become zero for the uninteresting case of 
normal incidence: i = t = 0.  Brewster's angle is found for infinite denominator.) 

Application of Snell's law, with (i+t) = 90 degrees, gives Brewster's angle in terms of the 
relative indices of refraction: 

n2/n1 = η21 = siniB/sintB= siniB/cosiB = taniB. 
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At Brewster's angle, any reflected wave is polarized only in the perpendicular direction, 
whatever the incident wave polarization. 

For a particular pair of media there are two Brewster's angles, for the two different 
arrangements of incidence and transmission material.  For a plane wave incident on a 
planar dielectric slab at Brewster's angle the entire wave is transmitted through the slab if 
the incident wave is polarized in the plane of polarization, since the Brewster conditions 
are satisfied both at wave entry and exit of the slab (entrance condition is taniB = η21, 
exit condition is tani'B = 1/η21), as can be seen by application of Snell's law.  Thus 
Brewster angle windows allow loss-less laser beam exit from a lasing medium into air 
(for proper polarization), where adjustment of the reflecting cavity mirrors is easy. 

Where μ1 ≠ μ2, there can be a Brewster's angle situation for both incident polarizations.  
In this case the numerator can be zero while denominator remains finite.  Setting the Set 
1 reflection numerators equal to zero, we obtain (E0r/E0i) = 0 for: 

Special case 3:  Brewster's angles for magnetic media 

(E0r/E0i)N = (μ2 cosi - η21 μ1 cost)/(μ2 cosi + η21 μ1 cost) 

--> 0 for cosi = (η21/Km) cost 

(E0r/E0i)P = (η21 μ1 cosi - μ2 cost)/(η21 μ1 cosi + μ2 cost) 

See the footnote on page 369, Corson and Lorrain, for an interesting refutation of a 
common explanation of Brewster's angle polarization for non-magnetic materials. 

Special case 4:  Total internal reflection and evanescent wave 

Where n2 > n1 (η21 = n2/n1 <1)  there is an critical incidence angle ic (ic = invsin(η21)) 
beyond which Snell's law gives sint > 1.  For greater angles the beam energy is totally 
reflected back into medium 1 at the usual mirror angle i.  Application of Maxwell's 
equations and corresponding boundary conditions shows that there must be in addition a 
shallow wave penetration into the "forbidden" dielectric 2, the wave amplitude decaying 
exponentially with distance from the interface boundary and consisting of an wave 
traveling unattenuated, and without energy loss, in the direction parallel to the interface 
with a wavelength λ2 = λ0/sini (> λ0), oscillating without energy absorption (once 
established) somewhat like a resonant LC circuit. 

The amplitude of penetration into medium 2 in this case damps as e-δ where 

δ2 = [(λ2/(2π)]/(η122sin2i - 1)1/2  . 

This shallow penetration implies, for a sufficiently thin film of medium 2, the possibility 
of coupling energy through "forbidden" medium 2 to form again a traveling wave in a 
third medium, just as in quantum mechanical barrier penetration situations (electron 
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tunneling, alpha decay).  Such "leakage" (e.g., through a thin air gap between two glass 
dielectrics) has been observed. 

Absorptive materials 

For perfectly transparent (i.e ., non-absorptive) materials, the single parameter η21 = 
n2/n1, which gives the relative wave numbers (via the relative phase velocities) in the two 
media completely specifies the reflected and refracted relative wave amplitudes and 
energies.  When  the second medium is absorptive description of the transmitted wave 
requires specification, not only of the wave number (phase velocity) in the absorptive 
medium, but also of an (exponential) spatial rate of damping perpendicular to the 
interface, corresponding to energy loss from the wave into other forms.  Thus two 
parameters, rather than one, are required.  Correspondingly, the relative index of 
refraction n' (and the dielectric constant of absorbing medium 2) become complex 
numbers and Snell's law implies imaginary angles, though there is a real angle of 
refraction.  Nertheless, the Maxwell boundary conditions can be satisfied and reflection 
and transmission coefficients can be expressed in term of two constants (see Ditchburn's 
chapter on the theory of reflection and dispersion): 

n' = n(1+iκ)   where n and κ are real numbers. 

 (For a real dielectric constant ε > 0, there is wave propagation without damping.  For 
real ε < 0, or for complex ε, there is  damped propagation in the medium.  See Kittel for 
further discussion.) 

 Snell's law and Fresnel's equations in the form of set 2 are formally employed, with 

cost = (1/n') (sqrt(n'2-sin2i)) and tant = sini/(sqrt(n'2-sin2i)) . 

 

For n2+n2κ2 = n'n'* (square of modulus of the complex index n') >> 1 (strong absorption) 
the reflection coefficients for perpendicular (normal) and parallel polarization are, 
respectively (Ditchburn; see also Palik, p26 for an equivalent expression) on dividing 
through: 

RN = [n2(1+κ2) - 2ncosi + cos2i]/[n2(1+κ2)cos2i + 2ncosi + cos2i] and 

RP =   [n2(1+κ2)cos2i - 2ncosi + 1]/[n2(1+κ2)cos2i + 2ncosi + 1] . 

where n and κ are the real numbers representing the real and imaginary parts of the 
complex index of refraction, n' = n+iκn. 

RP can show a minimum, as for Brewster's angle for non-absorptive dielectrics, but not a 
zero minimum. 

Special case 5:  Strong absorption in metals 
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Here the absorption, (for a good conductor) can be so strong that the penetrating, damped 
wave in the metal travels perpendicular to the interface, for all angles of incidence.  
Nevertheless, despite the damping, the penetration depth δ is small (δ ≈ λ, the 
wavelength in the metal, which is much smaller than λ0, the wavelength outside)), and 
there is little energy loss, most of the energy being reflected.  The  expression for δ is 
(neglecting a small correction) 

δ = sqrt(2/(ωσμ)) 

(ω = 2πf) where δ indicates the exponential spatial damping constant for the transmitted 
electric field amplitude (energy damping as exp(-δ2)). 

Corson and Lorrain give the reflection amplitude coefficients (for Ei normal (N) to the 
plane of incidence): 

{[(E0r/E0i)N = [n1Km2 cosi-(λ/(2πδ))(1-j)]/[n1Km2 cosi+(λ/(2πδ))(1-j)]} ≈ -1, 

and similarly for Ei parallel (P) to the plane of incidence. 

Procedures and analysis 

 Be careful not to look into the laser beam or into any reflected or refracted beam.  
Choose a stool which puts your eyes well above the beam reflection plane!!  Avoid 
shining refracted or reflected beams in the direction of neighboring experimenters.

Never exceed 3 volts in the laser supply.  The voltage to the power meter is not critical, 
6 - 18 volts. 

1.  Snell's law 

i i

t
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Observe and record corresponding angles i and t and plot sini/sint for a pair of  refracting 
materials (e.g., air - glass).  Obtain (nmedium/nair) from the slope of a linear fit.  Submit 
these plots , showing equations and errors in slope and intercept.  (A least square 
KaleidaGraph fit equation displays immediately the uncertainties in slope and intercept, 
somewhat more conveniently than the coefficient R from which these errors may be 
derived.)  Note that the semicular sample must be centered on its turntable to avoid angle 
changes on exit. 

 

2.  Reflection coefficients: air --> dielectric (n2 > n1) 

The data polarization order (N or P) is immaterial. 

A simple way to take data is to loosen the detector arm locking screw and rotate it 
slightly from its previous position, without attempting to set at a precise angle.  (Grip the 
arm, not the detector.  Be careful not to move the laser.)  Then rotate the sample table 
until the reflected laser beam is visible on the photodetector, lock the detector arm and 
adjust its angle for maximum meter voltage with the fine control screw.  Read the coarse 
angle and vernier.  For detector angle  readings R to the right of zero, angle i is (180-
R)/2; to the left, i = (R-180)/2.  (Check that these make sense.)  Record read angles R and 
let the fitting program (e.g., KG) calculate later the corresponding values of i. 

It is not practical to measure the intensity of the transmitted wave within the second 
medium, and the intensity on emergence into air is reduced by any reflection at the 
second interface, although this may be small for exit normal to the second interface 
(semicircular geometry with initial incidence at the center of the diameter), especially if 
the second interface is metallized. 

The reflected wave, for air incidence, is not subject to multiple reflections.  Observe and 
record I0 (laser beam intensity at zero degrees before sample placement), then Ir 
(reflected beam intensity) vs. incidence angle i, separately for perpendicular and parallel 
polarization.  (For parallel incident polarization, note the occurrence of a Brewster's 
angle.  Reflectance will be low near this angle.  therefore, though the relative index η21 is 
sensitive to Brewster's angle, direct observation may be more difficult with the linear 
meter than with the non-linear eye.  Therefore a fit to data observations both below and 
above Brewster's angle may well determine it more easily than a direct observation.  
Calculate and record Brewster's angle from your best fit. 

Calculate and plot separately the corresponding reflection coefficients RP and RN  = Ir/I0, 
as a function of incidence angle i.  By conservation of energy (for non-absorptive 
material), we expect that (R + T) =  1, for corresponding reflection and transmission 
coefficients. 

For the reflected wave, both I and I0 are measured in air, and the reflection coefficient 
R(i) is given simply by the square of the electric field ratios, in either of two equivalent 
forms (set 2 or 2').  From the  set 2' form of Fresnel's equations: 
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[(E0r/E0i)N2 = [-sin(i-t)/sin(i+t)]2 

[(E0r/E0i)P]2= [-tan(i-t)/tan(i+t)]2 . 

These expressions involve both incidence and transmission angles i and t; a theoretical 
fitting function of incidence angle i alone is needed.  Angle t is expressed as a function of 
angle i via Snell's law 

t = invsin(sin(i)/m3) = invsin(sin(m0)/m3) 

if m3 is chosen for the KG parameter referring to the relative index η21 = n2/n1 of 
refraction of the two dielectrics.  (Note that η21 will be > 1 for air --> plastic, and will 
have the inverse value (< 1) for plastic --> air; this is relevent for starting parameter 
specification in least square curve fitting.)   

(Alternatively, if the set 2 form of Fresnel's equations are used cost appears, which can be 
expressed as sqrt[1-sin2t] = sqrt[1-η122sin2i]) which becomes, in KG notation: 

cost = sqrt(1-m32sin2i). 

KaleidaGraph allows for nine independent search parameters (format: m1 to m9), with 
m0 reserved for the independent variable (angle i, here). 

Use KaleidaGraph to plot as a function of incident angle i the reflected intensity ratio R = 
I/I0, separately for parallel (P) and perpendicular (N) polarization.  (KG requires plotting 
before it will fit.)  From the RP fit (parallel incident polarization),  determine Brewster's 
angle as well as you can, and thence the relative indices of refraction. 

Perform, for each polarization, non-linear least square fits (for KG, choose General under 
Curve Fit, enter function to be fit after clicking Define) to the appropriate form (N or P) 
representing (E/E0)2.  Submit the plots, showing equations and best fit parameters and 
errors.  KG Define fit-functions for the two (perpendicular and parallel incident 
polarization) forms, with some possible starting search  parameters, are  (set 2' forms): 

[(E0r/E0i)N]2 = [sin(i-t)/sin(i+t)]2   --> (KaleidaGraph notation) 

 m1+m2*((sin(m0-invsin(sin(m0)/m3))) 

/(sin(m0+invsin(sin(m0)/m3))))^2; m1=.002; m2=1;m3=1.5 and 

[(E0r/E0i)P]2 = [tan(i-t)/tan(i+t)]2   --> (KaleidaGraph notation) 

m1+m2*((tan(m0-invsin(sin(m0)/m3))) 

/(tan(m0+invsin(sin(m0)/m3))))^2; m1=.002; m2=1;m3=1.5  . 
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These can be copied directly from this Word file and pasted into the definition box of the 
KaleidaGraph general fit.  Remember that a better starting m3 parameter for plastic --> 
air would be 1/1.5.  Starting parameters too far from actual values may result in a "false" 
(non-global chi-square minimum) fit, with corresponding erroneous best-fit parameters.  
The Snell's law η21 value should be a good stating value for m3. 

(The corresponding set 2 KG forms for N and P polarizations respectively are somewhat 
longer but give identical fits, as they should: 

m1+m2*(((1/m3)*cos(m0)-cos(invsin(sin(m0)/m3))) 
/((1/m3)*cos(m0)+cos(invsin(sin(m0)/m3))))^ 2;  m1=.002;m2=1;m3=1.5 
     and 

m1+m2*((-cos(m0)+(1/m3)*cos(invsin(sin(m0)/m3))) 
/(cos(m0)+(1/m3)*cos(invsin(sin(m0)/m3))))^ 2;  m1=.002;m2=1;m3=1.5 
     ). 

In these expressions m1 represents a possible constant offset in I/I0, m2 is a scale factor 
(expected to be 1, if the data follows theory) and m3 is the relative index of refraction 
η12, written in the denominator so as to represent  (nglass/nair >1).1,2  Be sure to select 

                                                 

1  m1, and the deviation of m2 from the expected value of 1, might represent the effects of constant, 
additive readings to the true values E 2and E02 :  E2 -->E2+e, E02 --> E02+e0.  The effect on the ratio is 
then, using the binomial expansion of the denominator: 

 

R' = (E2+e)/(E02+e0)= [(E2/E02+e/E02)/(1+e0/E02)] --> [R+e/E02] [1-e0/E02+2(e0/E02)2+ ---] 

--> [R+e'] [1-e''+2e''2+ ---] -->  [e'-e'e''+2e'e''2+ ---] + R[1-e''+2e''2+ ---].  Keeping only first order small 
quantities, R' = e' + R[1-e''], where m1 above = e' and m2 = [1-e''] (R' = observed data ratio, R = theoretical 
ratio, e'=e/E02, e''=e0/E02). 

 

To investigate the fit with the assumption that e = e0 (same additive constant for E2 and E'2) only two fit 
parameters should be used, not three, since then e' = e'' and m2 = (1-m1).  If  m1 and the deviation of m2 
from 1 have the same sign and approximate magnitude (for a three parameter fit), the corresponding two 
parameter fit mightn be tried.  The relative sizes of errors and fit parameters must be considered in deciding 
whether a one, two or three parameter fit is appropriate.  Formation of an estimated random error data 
column (perhaps constant error or constant percentage error, or other) will permit use of a weghted least 
square fit and will give a meaningful best-fit chi square value.  Dividing by the number of degrees of 
freedom to obtain a reduced chi square for the best fit will then provide further guidance as to whether the 
fit is reasonably related to the random errors, or whether systematic effects or another fit function should 
be considered. 

 



  17 

degrees instead of radians before OK'ing the plot and fit, if this is your angular data unit.  
Never specify 0.0 as a starting search parameter; use a small number instead.  
KaleidaGraph is unable to proceed with its initial operations for a zero initial parameter 
value. 

If the error in the best-fit m1 value is comparable to m1, include also  in your report 
general least squares fits with m1 set equal to zero.  (It is not necesary to remove the 
corresponding starting values from the fit definition; KG will ignore them.) 

List together the various values of η21 obtained from:  Snell's law, Brewster's angle, RN 
and RP best fits.  For easy comparison list 1/η21 fit for the plastic --> air fits. 

3.  Reflection coefficients for dielectric --> air (n2 < n1); total internal reflection 

The data polarization order (N or P) is immaterial. 

Reverse the semicircular glass or plastic sample.  Use a sample for which you took 
previous external reflection data.  (Mount the semi-circular glass or plastic sample so that 
the incident beam enters and exits radially.  Then the beam will not refract at these points 
(ignoring finite beam width effects) and the internal angle of incidence can be simply 
determined.)  For parallel incident polarization observe qualitatively the doubly 
transmitted beam exiting into air, and the reflected beam exiting normally into air, as the 
incidence angle is varied.  Note the occurrence of a Brewster's angle and of a (larger) 
angle of critical reflection at the second surface.  Record these angles. 

Take quantitative Ir (internal) vs. i   data for the P (parallel incident polarization) 
reflected at the glass (or plastic)-air interface. Plot observed intensities for i < icritical and 
fit as before, with the intensity represented by a multiplicative search parameter.  
Examine the non-linear best fit parameters and their associated errors. 
                                                                                                                                                 
1 Possible sources of such additive data constants are a zero offset of the meter reading (may be + or -), or 
room light in addition to the laser light (+ only).  If these are the only sources, a negative fit value (outside 
of errors)  fit for  m1 would indicate dominance by zero offset; room light effect could still be present. 

 

2  If a slight mis-orientation is suspected, the fit function could be augmented by addition of the form for 
the second (small) polarization component, multiplied by a search parameter m4, the sum of both terms 
being multiplied by  m2 (or (1-m1) , depending on whether it is assumed that e=e0 or e ≠e0.   The 
expression would then correspond to   

 

m1+m2*[Rperpendicular(m3)+m4*Rparallel(m3)];m1 = ,m2 = ;m3 = ;m4=  , 

 

where the R's are the theoretical expressions in KG syntax and numerical starting search values (≠0) are 
specified for  m1, m2, m3 and m4. 
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The theory suggests a sharp onset for total reflection, but the data may show a steep, 
finite rise to a constant value.  This may be due to laser beam divergence and/or non-
normal incidence and exit at the circular face.  The width of such a rise is of practical 
interest (please report it), but corresponding points must be excluded from the fit.  
Further, while the data for i < icritical should contain information on the laser beam 
intensity, a multiplicative fit parameter (intensity parameter) may be poorly determined.  
Fit also with a numerical value for this obtained by averaging the "flat" total reflection 
intensities. 

(Note that transmission losses in entrance and exit from the circular face will be a 
constant fractional correction, to the extent that all rays are normal.  Then the shape of 
the data curve will be unaffected.  However, while the observed total reflection 
intensities also contain this common loss factor, a zero degree intensity measurement 
does not and would therefore not be an appropriate intensity normalization, in contrast to 
the case for external reflection.) 

Determine the internal Brewster's angle as well as possible, and the corresponding 
relative index of refraction. 

Repeat for the N beam (perpendicular incident polarization). 

Indices for some common transparent glasses are given in the table below, taken from 
Monk.  The numerical part of this table can be copied and pasted directly into a 
KaleidaGraph data file.  As discussed in the Faraday effect experiment instructions, 
Cauchy found that the dispersion curve (n vs. λ) for most materials is well fit by a power 
series in inverse even powers of the wavelength. For the Faraday effect, the derivative of 
this curve is of interest. 

λ− A.U Light 
Crown 

Dense 
crown 

Light  

Flint 

Dense 
Flint 

Heavy 
Flint 

Fused 
Quartz 

Fluorite 

       

4000 1.5238 1.5854 1.5932 1.6912 1.8059 1.4699  1.4421 

4600 1.5180 1.5801 1.5853 1.6771 1.7843  1.4655 1.4390 

5000 1.5139 1.5751 1.5796 1.6770 1.7706 1.4624   1.4366 

5600 1.5108 1.5732 1.5757  1.6951 1.7611 1.4599  1.4350 

6000 1.5085 1.5679  1.5728 I.6542 1.7539  1.4581 1.4336 

6500 1.5067 1.5651 1.5703 I.6503 1.7485  1.4566 1.4324 

7000 1.5051 1.5640 1.5684 1.6473 1.7435  1.4553 1.4318 
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7500 1.5040 1.5625 1.5668 1.6450 1.7389  1.4542 1.4311 

4.  Reflection coefficients for absorbing media 

A KG fit form, adapted from an approximation shown in Ditchburn (1953 edition, p 444, 
for parallel polarization (adjust scale factor m1 to data), is 

RP = m1*(m2^ 2*(1+m3^ 2)*(cos(m0))^ 2-2*m2*cos(m0)+1) 

/(m2^ 2*(1+m3^ 2)*(cos(m0))^ 2+2*m2*cos(m0)+1) 

;m1=1;m2=1.5;m3=1.00 

and for perpendicular polarization 

RN = m1*(m2^ 2*(1+m3^ 2)-2*m2*cos(m0)+(cos(m0))^2) 

/(m2^ 2*(1+m3^ 2)+2*m2*cos(m0)+(cos(m0))^2) 

;m1=1;m2=1.5;m3=1.00 

(m1 could be adjustedto the plot data). 

In Ditchburn's notation the damped, travelling wave propagating in the z direction in the 
absorbing medium can be described by the expression 

Ex = A0 {exp{ -αz +i(ωt-κz)}, or 

Ex = A0 { exp[iω(t-(ncomplex/c)z]  

where the "complex index of refraction" ncomplex = n(1-iχ) 

with    n = κc/ω and χ = α/κ . 

Ditchburn approximation condition is 

n2 + n2χ2  >> 1 or, in the KG notation above 

m22 +m22 m32  >> 1 . 

which can be checked after a fit has been performed. 

Using the parameters given by Ditchburn for his Figure 15.1 (p 444) (n = 1.5, c = 1.00, 
reflection of 1 at 90 degrees for both polarizations, data for the figure can be simulated 
by KG (Formula Entry, with incidence angles in column c0 and putting the parallel and 
normal theoretical intensities in columns c1 and c2 respectively), using the expressions 
below derived from the KG forms above: 
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for parallel (P) incident polarization 

c1 = 1*(1.5^ 2*(1+1.00^ 2)*(cos(c0))^ 2-2*1.5*cos(c0)+1) 

/(1.5^ 2*(1+1.00^ 2)*(cos(c0))^ 2+2*1.5*cos(c0)+1) 

and for perpendicular (Normal) polarization 

c2 = 1*(1.5^ 2*(1+1.00^ 2)-2*1.5*cos(c0)+(cos(c0))^2) 

/(1.5^ 2*(1+1.00^ 2)+2*1.5*cos(c0)+(cos(c0))^2) . 

The corresponding plots are shown below 
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KG reproduction of Ditchburn's Fig. 15.1
Strong absorption: n = 1.5; chi = 1.00

R(Parallel)
R(Normal)

incident angle i in  degrees
 

For strong absorption (n still 1.5, but c = 100) the simulation approcahes the near 100% 
reflection of metals, for both polarizations: 
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Modification of Ditchburn's Fig. 15.1
Very strong absorption: n = 1.5, chi = 100

R(Parallel)
R(Normal)

i degrees
 

KG plots and data formula forms for several metal reflections are given below, using 
Dirchburn's complex index parameters and approximate expressions for the two incident 
polarizations. 
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welcome datacomp 

From Ditchburn: Light   (1953 edition) Metals, p 449, Table 15.1: 

KaleidaGraph normal polarization expressions from Ditchburn's approximate Eq. 15(19a) 
and 15(19b) (approximation condition: n^2+n^2k^2 >>1):  c0 (KG column 0) = angle of 
incidence 

-----------------------------------------------------------------------------------------------------------
- 

Copper (normal):  n = 0.64, k = 4.08; n^2+k^2 = 7.23 

c1 = 1*(0.64^ 2*(1+4.08^ 2)*(cos(c0))^ 2-2*0.64*cos(c0)+1) 

/(0.64^ 2*(1+4.08^ 2)*(cos(c0))^ 2+2*0.64*cos(c0)+1) 

----------------------------------------------------------------------------------------------------------- 

Gold (normal):  n = 0.366, k = 7.70; n^2+k^2 = 8.076 

c2 = 1*(0.366^ 2*(1+7.70^ 2)*(cos(c0))^ 2-2*0.366*cos(c0)+1) 

/(0.366^ 2*(1+7.70^ 2)*(cos(c0))^ 2+2*0.366*cos(c0)+1) 

----------------------------------------------------------------------------------------------------------- 

Nickel (normal):  n = 1.79, k = 1.86; n^2+k^2 = 14.289 
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c3 = 1*(1.79^ 2*(1+1.86^ 2)*(cos(c0))^ 2-2*1.79*cos(c0)+1) 

/(1.79^ 2*(1+1.86^ 2)*(cos(c0))^ 2+2*1.79*cos(c0)+1) 

-----------------------------------------------------------------------------------------------------------
- 

Platinum (normal): n = 2.06, 2.06; n^2+k^2 = 22.251 

c4 = 1*(2.06^ 2*(1+2.06^ 2)*(cos(c0))^ 2-2*2.06*cos(c0)+1) 

/(2.06^ 2*(1+2.06^ 2)*(cos(c0))^ 2+2*2.06*cos(c0)+1) 

-----------------------------------------------------------------------------------------------------------
- 

Silver (normal):  n = 0.181, k = 20.2; n^2+k^2 = 13.400 

c5 = 1*(0.181^ 2*(1+20.2^ 2)*(cos(c0))^ 2-2*0.181*cos(c0)+1) 

/(0.181^ 2*(1+20.2^ 2)*(cos(c0))^ 2+2*0.181*cos(c0)+1) 

-----------------------------------------------------------------------------------------------------------
- 

Steel (normal):  n = 2.41, k = 1.38; n^2+k^2 = 16.87 

c6 = 1*(2.41^ 2*(1+1.38^ 2)*(cos(c0))^ 2-2*2.41*cos(c0)+1) 

/(2.41^ 2*(1+1.38^ 2)*(cos(c0))^ 2+2*2.41*cos(c0)+1) 

============================================================= 

KaleidaGraph parallel polarization expressions from Ditchburn's approximate Eq. 
15(19a) and 15(19b) (approximation condition: n^2+n^2k^2 >>1):  c0 (KG column 0) = 
angle of incidence i. 

-----------------------------------------------------------------------------------------------------------
- 

Copper (parallel):  n = 0.64, k = 4.08; n^2+k^2 = 7.23 

c8 = 1*(0.64^ 2*(1+4.08^ 2)-2*0.64*cos(c0)+(cos(c0))^2) 

/(0.64^ 2*(1+4.08^ 2)+2*0.64*cos(c0)+(cos(c0))^2) 

----------------------------------------------------------------------------------------------------------- 

Gold (parallel):  n = 0.366, k = 7.70; n^2+k^2 = 8.076 



  25 

c9 = 1*(0.366^ 2*(1+7.70^ 2)-2*0.366*cos(c0)+(cos(c0))^2) 

/(0.366^ 2*(1+7.70^ 2)+2*0.366*cos(c0)+(cos(c0))^2) 

----------------------------------------------------------------------------------------------------------- 

Nickel (parallel):  n = 1.79, k = 1.86; n^2+k^2 = 14.289 

 

c10 = 1*(1.79^ 2*(1+1.86^ 2)-2*1.79*cos(c0)+(cos(c0))^2) 

/(1.79^ 2*(1+1.86^ 2)+2*1.79*cos(c0)+(cos(c0))^2) 

-----------------------------------------------------------------------------------------------------------
- 

Platinum (parallel): n = 2.06, 2.06; n^2+k^2 = 22.251 

c11 = 1*(2.06^ 2*(1+2.06^ 2)-2*2.06*cos(c0)+(cos(c0))^2) 

/(2.06^ 2*(1+2.06^ 2)+2*2.06*cos(c0)+(cos(c0))^2) 

-----------------------------------------------------------------------------------------------------------
- 

Silver (parallel):  n = 0.181, k = 20.2; n^2+k^2 = 13.400 

c12 = 1*(0.181^ 2*(1+20.2^ 2)-2*0.181*cos(c0)+(cos(c0))^2) 

/(0.181^ 2*(1+20.2^ 2)+2*0.181*cos(c0)+(cos(c0))^2) 

-----------------------------------------------------------------------------------------------------------
- 

Steel (parallel):  n = 2.41, k = 1.38; n^2+k^2 = 16.87 

c13 = 1*(2.41^ 2*(1+1.38^ 2)-2*2.41*cos(c0)+(cos(c0))^2) 

/(2.41^ 2*(1+1.38^ 2)+2*2.41*cos(c0)+(cos(c0))^2) 

============================================================= 

 

λ− A.U Light 
Crown 

Dense 
crown 

Light  

Flint 

Dense 
Flint 

Heavy 
Flint 

Fused 
Quartz 

Fluorite 
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4000 1.5238 1.5854 1.5932 1.6912 1.8059 1.4699  1.4421 

4600 1.5180 1.5801 1.5853 1.6771 1.7843  1.4655 1.4390 

5000 1.5139 1.5751 1.5796 1.6770 1.7706 1.4624   1.4366 

5600 1.5108 1.5732 1.5757  1.6951 1.7611 1.4599  1.4350 

6000 1.5085 1.5679  1.5728 I.6542 1.7539  1.4581 1.4336 

6500 1.5067 1.5651 1.5703 I.6503 1.7485  1.4566 1.4324 

7000 1.5051 1.5640 1.5684 1.6473 1.7435  1.4553 1.4318 

7500 1.5040 1.5625 1.5668 1.6450 1.7389  1.4542 1.4311 

 

 


