Rutgers University Department of Physics & Astronomy

01:750:271 Honors Physics I Fall 2015

Lecture 7

Home Page
Title Page
•• ••
Page 1 of 31
Go Back
Full Screen
Close
Quit

Midterm 1: Monday October 10th

- Motion in one, two and three dimensions
- Forces and Motion I
- No energy and work.
- 1:55-2:50pm in the Physics Lecture Hall

Home Page
Title Page
•• ••
Page 2 of 31
Go Back
Full Screen
Close
Quit

Gradebook

• www.physics.rutgers.edu/ugrad/271

			C	GradeBook			
🗌 🖓 https	://gbook.physics.r	utgers.edu/gboo	ok/student.p	l?271&semeste	r=fall2014	¢ Q+ Go	ogle
Google	Apple Mathscine	t Wikipedia	YouTube N	lews (1,416) 🔻	Popular v		
GERS		Hone	ors Phys	ics 271 -	Fall2014		GRA
	Please	enter your	Rutger	s NetID a	and Passwo	ord to logi	in
F	Rutgers Net	ID:		Pas	sword:		Login

Home Page
Title Page
••
Page 3 of 3 1
Go Back
Full Screen
Close
Quit

6. Forces and Motion II

• Friction

- Suppose an object is launched with velocity \vec{v}_0 along a surface.
- Newton's 1st law: if $\vec{F}_{net} = 0$ it should move forever with constant velocity \vec{v}_0 .
- Does it really happen in practice?

• **Experiment:** a toy truck is quickly accelerated to some velocity \vec{v}_0 and then released.

Home Page

Title Page

Page 5 of 31

Go Back

Full Screen

Close

Quit

It stops in finite time; x vs time \sim parabola v_x vs time \sim linear once it starts deccelerating \Rightarrow constant negative acceleration What force is necessary to set a static object in motion and then maintain constant velocity?

Static

In motion

Home Page	
Title Page	
••	
Page 6 of 31	
Go Back	
Full Screen	
Close	
Quit	

- Static friction $\vec{f_s}$ acts when no relative motion between object and contact surface.
- The magnitude f_s increases as the applied force increases until it reaches a maximum value $(f_s)_{max}$.
- Kinetic friction \vec{f}_k acts when there is relative motion between object and contact surface.
- Usually $f_k < (f_s)_{\max}$.

• Properties of friction

1. For a stationary object $\vec{F} + \vec{f_s} = 0$ i.e. the applied force and the **static friction** balance each other out.

2. The magnitude of static friction has a maximum value depending on the magnitude of the normal force F_N :

$$(f_s)_{\max} = \mu_s F_N$$

where $\mu_s = \text{coefficient of static friction}$. When $F \ge (f_s)_{\text{max}}$ the object begins to slide.

3. When sliding begins, the magnitude of friction rapidly decreases to a value

 $f_k = \mu_k F_N$, $\mu_k =$ coefficient of kinetic friction

Home Page
Title Page
••
Page 10 of 31
Go Back
Full Screen
Close
Quit

i-Clicker

An object is placed on an inclined plane of angle θ . The coefficient of static friction between at the contact surface is μ_s . For which values of θ will the object stay on the plane.

F_q

- A) For all values of θ .
- B) There is no such value of θ .
- C) For $\tan \theta \leq \mu_s$.
- D) For $\sin \theta \leq \mu_s$.
- E) For $\tan \theta > \mu_s$.

Answer

An object is placed on an inclined plane of angle θ . The coefficient of static friction between at the contact surface is μ_s . For which values of θ will the object stay on the plane.

- A) For all values of θ .
- B) There is no such value of θ .
- C) For $\tan \theta \leq \mu_s$.
- D) For $\sin \theta \leq \mu_s$.
- E) For $\tan \theta > \mu_s$.

Home Page
Title Page
•••
Page 12 of 31
Go Back
Full Screen
Close
Quit

The object will stay on the plane if

$$F_{gx} = f_s$$

$$F_{gx} = mg \sin\theta \qquad f_s \leq (f_s)_{max} = \mu_s F_N$$

$$F_N = -F_{gy} = mg \cos\theta$$

$$mg \sin\theta \leq \mu_s mg \cos\theta \implies \tan\theta \leq \mu_s.$$

Home	Page
Title F	Page
	••
Page 13	of 31
Go B	ack
Full Sc	creen
Clos	5e
Qu	it

• **Example:** emergency braking

Home Page

Title Page

Page 14 of 31

Go Back

Full Screen

Close

Quit

A car slides 290 m on pavement with wheels locked. Assuming $\mu_k = 0.6$ and constant acceleration, what is v_0 ?

Constant acceleration model:

$$v^2 = v_0^2 - 2\mu_k g(x - x_0)$$

 $v = 0 \implies v_0^2 = 2\mu_k g(x - x_0) = 58 \text{ m/s} = 210 \text{ km/h}.$

• Example:

A horizontal tension force \vec{T} is appplied to an object of mass m on an inclined plane.

The object moves upwards along the plane with constant acceleration \vec{a} .

Find the kinetic friction coefficient μ_k between the object and the plane.

For which values of T, a is this motion possible?

Newton's 2nd law:

 $\vec{F}_{net} = m\vec{a} = ma\hat{i}$ $\vec{F}_{net} = \vec{T} + \vec{F}_g + \vec{F}_N + \vec{f}_k$

$$(F_{\text{net}})_x = T\cos\theta - mg\sin\theta - f_k$$

$$(F_{\text{net}})_y = -T\sin\theta - mg\cos\theta + F_N$$

Home Page
Title Page
•• ••
•
Page 18 of 31
Go Back
Full Screen
Close
Quit

$$(F_{net})_x = ma$$
 $(F_{net})_y = 0$

$$(F_{\text{net}})_x = T\cos\theta - mg\sin\theta - f_k$$

$$(F_{\text{net}})_y = -T\sin\theta - mg\cos\theta + F_M$$

 $f_k = T\cos\theta - mg\sin\theta - ma, \qquad f_k = \mu_k F_N$

$$F_N = T\sin\theta + mg\cos\theta$$

$$\mu_k = \frac{T\cos\theta - mg\sin\theta - md}{T\sin\theta + mg\cos\theta}$$

For which values of T, a is the motion possible?

$$\mu_k = \frac{T\cos\theta - mg\sin\theta - ma}{T\sin\theta + mg\cos\theta} \ge 0$$

$$T\cos\theta \ge m(g\sin\theta + a)$$

Home Page
Title Page
•• >>
Page 20 of 31
Go Back
Full Screen
Close
Quit

• Drag force and terminal speed

Drag force:

- force caused by relative motion of an object and a fluid
- opposed the relative motion and points in the direction the fluid flows relative to the object

For a fast blunt object moving through air such that the flow becomes turbulent

$$D = \frac{1}{2}C\rho Av^2$$

- A = effective crossection: area of crossection $\perp \vec{v}$
- $C = drag \ coefficient$
- $\rho = \operatorname{air} \operatorname{density}$

• Terminal velocity:

As the cat's speed increases, the upward drag force increases until it balances the gravitational force.

Body falling from rest through air:

The drag force increases gradually until it balances the gravitational force.

The body reaches terminal velocity.

 $\vec{D} + \vec{F}_g = 0$

$$\frac{1}{2}CA\rho v_y^2 - mg = 0 \implies v_y = -\sqrt{\frac{2mg}{C\rho A}}$$

 \vec{D}

 \vec{F}_g

i-Clicker

Theoretically, how long does it take to reach terminal velocity?

(A)
$$\Delta t = \sqrt{\frac{2m}{gC\rho A}}$$

 $(B) \ \Delta t = 0$

(C) Infinite amount of time.

(D) None of the above.

Answer

Theoretically, how long does it take to reach terminal velocity?

(A)
$$\Delta t = \sqrt{\frac{2m}{gC\rho A}}$$

 $(B) \ \Delta t = 0$

(C) Infinite amount of time.

(D) None of the above.

Why?

Home Page	
Title Page	
•• ••	
Page 25 of 31	
Go Back	
Full Screen	
Close	
Quit	

$$\vec{F}_{net} = m\vec{a}$$
 $\vec{F}_{net} = \vec{D} + \vec{F}_g$

$$\left(F_{\text{net}}\right)_y = \frac{1}{2}CA\rho v_y^2 - mg$$

$$\frac{dv_y}{dt} = \kappa v_y^2 - mg, \qquad \kappa = \frac{1}{2}CA\rho$$

 \Downarrow

$$v_y = -\sqrt{\frac{mg}{\kappa}} tanh\left(\sqrt{mg\kappa}t\right) = -\sqrt{\frac{mg}{\kappa}} \frac{e^{\sqrt{mg\kappa}t} - e^{-\sqrt{mg\kappa}t}}{e^{\sqrt{mg\kappa}t} + e^{-\sqrt{mg\kappa}t}}$$

Home Page
Title Page
•• >>
Page 26 of 31
Go Back
Full Screen
Close
Quit

Terminal velocity:

$$\lim_{n \to \infty} v_y = -\sqrt{\frac{mg}{\kappa}} = -\sqrt{\frac{2mg}{C\rho A}}$$

$$\lim_{t \to \infty} a_y = \lim_{t \to \infty} \frac{dv_y}{dt} = 0$$

Quit

Some	Terminal	Speeds	in Air
------	----------	--------	--------

Object	Terminal Speed (m/s)	95% Distance ^a (m)
Shot (from shot put)	145	2500
Sky diver (typical)	60	430
Baseball	42	210
Tennis ball	31	115
Basketball	20	47
Ping-Pong ball	9	10
Raindrop (radius $= 1.5 \text{ mm}$)	7	6
Parachutist (typical)	5	3

"This is the distance through which the body must fall from rest to reach 95% of its terminal speed. Source: Adapted from Peter J. Brancazio, Sport Science, 1984, Simon & Schuster, New York.

Home Page Title Page 44 •• Page 28 of 31 Go Back Full Screen Close Quit

i-Clicker

A sky diver jumps from flying airplane and falls а for several seconds before she reaches terminal velocity. She then opens her parachute, reaches a new terminal velocity, and continues her descent to the ground. Which one of the following graphs of the drag force versus time best represents this situation?

Answer

A sky diver jumps from flying airplane and falls а for several seconds before she reaches terminal velocity. She then opens her parachute, reaches a new terminal velocity, and continues her descent to the ground. Which one of the following graphs of the drag force versus time best rep- $D = \frac{1}{2}C\rho Av^2$, resents this situation?

Home Page Title Page Page 30 of 31 Go Back Full Screen Close Quit

Before opening the parachute terminal velocity is reached when

$$\vec{D} + \vec{F}_g = 0 \qquad D = F_g$$

After opening the parachute terminal velocity is again reached when

$$\vec{D} + \vec{F}_g = 0 \qquad D = F_g$$

A sufficiently long time after opening the magnitude of the drag force must equal its value before opening. At the same time it should spike upwards during opening.

