Rutgers University Department of Physics & Astronomy

01:750:271 Honors Physics I Fall 2015

Lecture 6

Midterm 1: Monday October 10th 2015

- Motion in one, two and three dimensions
- Forces and Motion I (Newton's laws)
- No energy and work.
- Practice problems and sample exam posted at physics.rutgers.edu/ugrad/271/exams.html

Webassign Troubleshooting

• If correct answers are marked incorrect by the system, please send me a screenshot of the problem in question and your answer after the due date.

Home Page
Title Page
•• ••
Page 2 of 30
Go Back
Full Screen
Close
Quit

5. Forces and Motion I

• Force: \sim physical effect which changes the velocity of an object

• Newton's 1st law

If no net force acts on a body, $\vec{F}_{\rm net}=0,$

the body's velocity cannot change;

the body cannot accelerate.

• Inertial System: reference system where Newton's laws are valid

What is the main effect of a nonzero net force?

• An applied force can set a static object in motion or can stop a moving object.

change in velocity, hence acceleration.

 \downarrow

Newton's second law

$$\vec{F}_{net} = m\vec{a},$$

• **m=Mass: intrinsic characteristic** of a body relating a force on the body to the resulting acceleration.

• Force unit: Newton (N)

Fig. 5-1 A force \vec{F} on the standard kilogram gives that body an acceleration \vec{a} .

1 Newton = the force exerted on a standard mass of 1 kg to produce an acceleration of 1 m/s².

i-Clicker

The graph below represents the x-component of the velocity of an object as a function of time.

Which of the following graphs represents the time dependence of the *x*-component of the net force acting on the object?

Answer

The graph below represents the *x*-component of the velocity of an object as a function of time.

Which of the following graphs represents the time dependence of the *x*-component of the net force acting on the object?

• Example: puck on frictionless ice

A puck of mass m is simultaneously pulled by two ideal cords as shown above. What is its acceleration?

Free body diagram.

 F_{2y}

α

F_{1x}

 F_{1v}

 F_{2x}

F

Recall: ideal cord = massless, unstretchable cord

X

Free body diagram.

$$\vec{F}_{net} = \vec{F}_1 + \vec{F}_2$$
$$\left(\vec{F}_{net}\right)_x = F_{1x} + F_{2x}$$
$$= F_1 \cos \alpha - F_2 \sin \alpha$$
$$\left(\vec{F}_{net}\right)_y = F_{1y} + F_{2y}$$
$$= F_1 \sin \alpha - F_2 \cos \beta$$

Newton's secon law:

 $\vec{F}_{\rm net} = m \vec{a}$

$$ma_x = F_1 \cos \alpha - F_2 \sin \beta$$
$$ma_y = F_1 \sin \alpha - F_2 \cos \beta$$

- Gravitational force
 - Pull force $\vec{F_g}$ acting on any object near the Earth's surface. How do we compute it ?
 - Free fall acceleration $\vec{a} = -g\hat{j}$.
 - Newton's second law for freely falling object:

$$\vec{F_g} = -mg\hat{j}$$

• Note: approximation of a more general theory (studied later)

• Weight: magnitude of gravitational force acting on the object.

Home Page

$$W = F_q = mg$$

• Normal force: \vec{F}_N stops the object from falling through; always perpendicular to the surface

$$\vec{F}_N + \vec{F}_g = m\vec{a} \Rightarrow (F_N)_y + (F_g)_y = ma_y \Rightarrow F_N = m(g + a_y)$$

 a_y vertical acceleration of table + block

Close

Home Page

Quit

• Example: box pulled up a frictionless inclined plane by an ideal cord

 $\vec{F}_{net} = m\vec{a} \qquad \vec{F}_{net} = \vec{F}_g + \vec{F}_N + \vec{T}$ $T - mg\sin\theta = ma_x \qquad F_N - mg\cos\theta = ma_y$ $a_y = 0 \text{ (no motion along y axis)} \Rightarrow F_N = mg\cos\theta.$ $a_x = (T - mg\sin\theta)/m$

i-Clicker

A box of mass m is pulled along a frictionless table as shown below. What is the horizontal component a_x of the accleration of the box?

A)
$$a_x = 0$$

B) $a_x = -(T/m)\cos\theta$
C) $a_x = T/m$
D) $a_x = (T/m)\sin\theta$
E) $a_x = -T/m$

Answer

A box of mass m is pulled along a frictionless table as shown below. What is the horizontal component a_x of the accleration of the box?

A)
$$a_x = 0$$

B) $a_x = -(T/m)\cos\theta$
C) $a_x = T/m$
D) $a_x = (T/m)\sin\theta$
E) $a_x = -T/m$

$$\vec{F}_{net} = m\vec{a}$$
$$\vec{F}_{net} = \vec{T} + \vec{F}_g + \vec{F}_N$$
$$(F_{net})_x = T_x = -T\cos\theta$$
$$ma_x = -T\cos\theta$$
$$a = -(T/m)\cos\theta$$

i-Clicker

A box of mass m is pulled along a frictionless table as shown below. For which values of T, m, θ will the box remain on the table?

A) For all values of T, m, θ B) $T\sin\theta > mg$ C) $T\sin\theta \leq mg$ D) $T\cos\theta < mg$ E) None one the above

Answer

A box of mass m is pulled along a frictionless table as shown below. For which values of T, m, θ will the box remain on the table?

$$ec{F}_{
m net} = mec{a}$$

 $ec{F}_{
m net} = ec{T} + ec{F}_g + ec{F}_N$
 $(F_{
m net})_y = T {
m sin} heta + F_N - mec{g}$
 $ma_y = T {
m sin} heta + F_N - mec{g}$

The condition for the box to stay on the table is

$$a_y = 0 \Rightarrow T\sin\theta + F_N - mg = 0$$

Note that $F_N \ge 0$ since it is the magnitude of \vec{F}_N . Hence

 $T{\rm sin}\theta \le mg$

Home Page Title Page Page 20 of 30 Go Back Full Screen Close Quit

Newton's Third Law

When two bodies interact, the forces on the bodies from each other are always equal in magnitude and opposite in direction.

Home Page
Title Page
••
•
Page 21 of 30
Go Back
Full Screen
Close
Quit

$$\vec{F}_{BC} + \vec{F}_{CB} = 0$$

 $F_{BC} = F_{CB}$

Home Page
Title Page
••
Page 22 of 30
Go Back
Full Screen
Close
Quit

 $ec{F}_{CE}+ec{F}_{EC}=0$ $ec{F}_{CT}+ec{F}_{TC}=0$

Home Page
Title Page
••
Page 23 of 30
Go Back
Full Screen
Close
Ouit

• Example:

• The object of mass m_2 hangs at the end of an ideal cord tied to the object of mass m_1 .

- The object of mass m_1 is placed on a frictionless inclined plane.
- The cord is wrapped around an ideal pulley attached to the plane.
- Find the acceleration \vec{a}_2 .

Step 1: free body diagram for object 1

$$\vec{F}_{net1} = m_1 \vec{a}_1$$

$$\vec{F}_{net1} = \vec{T}_1 + \vec{F}_{g1} + \vec{F}_N$$

$$(F_N)_x = 0, \quad (F_{g1})_x = -m_1 g \sin\alpha$$

$$T_1 - m_1 g \sin\alpha = m_1 a_{1x}$$

$$a_{1y} = 0 \text{ (no motion } \perp \text{ to plane)}$$

$$m_1 a_{1x} = T_1 - m_1 g \sin\alpha$$

Home Page
Title Page
<
Page 26 of 30
Go Back
Full Screen
Close
Quit

Step 2: free body diagram for object 2

Title Page
Page 27 of 30
Go Back
Full Screen
Close

Home Page

Quit

Step 3: put equations together
$$m_1a_{1x} = T_1 - m_1gsin\alpha$$
Can we solve? $m_2a_{2y} = T_2 - m_2g$ Need extra conditions! $m_2a_{2y} = T_2 - m_2g$ Need extra conditions! $m_1 = T_2$ $(\Delta x)_1 = -(\Delta y)_2$ at all times $m_1 = T_2$ $(\Delta x)_1 = -(\Delta y)_2$ at all times $m_1 = T_2$ $m_1 = T_2$ $m_1 = T_2$ $m_2 = T_2 = T_2$ $m_1 = T_2$ $(\Delta x)_1 = -(\Delta y)_2$ at all times $m_1 = T_2$ $m_2 = T_2$ $m_1 = T_2$ $m_2 = T_2$ $m_2 = T_2 = T_2$ $m_2 = T_2$ $m_1 = T_2$ $m_2 = T_2$

Quit

Which way will box 2 move? Up or down?

$$a_{2y} = \frac{m_1 g \sin \alpha - m_2 g}{m_1 + m_2}$$

$$a_{2y} > 0 \iff m_1 \sin \alpha > m_2$$
 Up

$$a_{2y} < 0 \iff m_1 \sin lpha < m_2$$
 Down

 $a_{2y} = 0 \Leftrightarrow m_1 \sin \alpha = m_2$ No motion (if initial velocity is 0)