Rutgers University Department of Physics & Astronomy

01:750:271 Honors Physics I

Lecture 3

3. Vectors

Goals:

- To define vector components and add vectors.
- To introduce and manipulate unit vectors.
- To define and understand scalar product.
- To define and understand vector product.

Vectors and scalars.

• Vectors: quantities which indicate both magnitude and direction.

Examples: displacement, velocity, acceleration

• Scalars: quantities which indicate only magnitude.

Examples: time, speed, mass

• Vectors are represented by arrows:

(i) The length of the arrow signifies magnitude. (ii) The head of the arrow signifies direction.

Displacement vector for a particle travelling from *A* to *B* on a straight path

Note: All three vectors are identical because they have the same direction and magnitude.

Home Page
Title Page
••
Page 4 of 37
Go Back
Full Screen
Close
Quit

Displacement vector for a particle travelling on a curved path.

Note: independent of the path from A to B.

Quit

• Notation:

 $\mathbf{a}, \mathbf{b}, \mathbf{c}, \dots$ or $\vec{a}, \vec{b}, \vec{c}, \dots$ The magnitude of a vector \vec{a} : \mathbf{a} or $|\vec{a}|$

Adding vectors geometrically

• What is the **sum** of two vectors?

• Step 1. Draw the vectors head to tail

• Step 2. The vector sum of \vec{a} and \vec{b} is the vector \vec{c} pointing from the tail of \vec{a} to the head of \vec{b} .

$$\vec{a} + \vec{b} = \vec{c}$$

Mathematical formula:

• Commutativity: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

Home Page
Title Page
•• ••
Page 8 of 37
Go Back
Full Screen
Close
Quit

• Associativity: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$

• Inverse: $\vec{a} + (-\vec{a}) = 0$

Note: $-\vec{a}$ has the same magnitude as \vec{a} , but it points in opposite direction

• Vector subtraction: $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$.

Multiplying vectors by scalars

Home Page

Title Page

• If \vec{a} vector, $s \neq 0$ number then $s\vec{a} =$ vector with magnitude $|s\vec{a}| = s|\vec{a}|$

i-Clicker

Which of the following statements is false for the three vectors below? \neg

A)
$$\vec{a} + \vec{b} + \vec{c} = 0$$

B) $\vec{c} + \vec{b} = -\vec{a}$
C) $|\vec{c}| < |\vec{a}| + |\vec{b}|$
D) $|\vec{c}| = |\vec{a}| + |\vec{b}|$
E) None of the above.

Home Page
Title Page
•••
Page 12 of 37
Go Back
Full Screen
Close
Quit

Answer

Which of the following statements is false for the three vectors below?

A)
$$\vec{a} + \vec{b} + \vec{c} = 0$$

B) $\vec{c} + \vec{b} = -\vec{a}$
C) $|\vec{c}| < |\vec{a}| + |\vec{b}|$
D) $|\vec{c}| = |\vec{a}| + |\vec{b}|$
E) None of the above.

Home Page Title Page Page 13 of 37 Go Back Full Screen Close

Quit

Triangle inequality: $|\vec{c}| < |\vec{a}| + |\vec{b}|$ since $\vec{a}, \vec{b}, \vec{c}$ not colinear.

Components of vectors

• Axis = line equipped with a preferred direction, also called orientation.

Example: one dimensional motion

positive direction
$$x \nearrow$$

$$O = origin: x = 0$$

Home Page
Title Page
•••
Page 14 of 37
Go Back
Full Screen
Close
Quit

Projection: suppose a a and a given axis are in the same plane

Note:

- \vec{a}_{proj} is a **vector**
- along the given axis.
- \vec{a}_{proj} is **not** the component
- of \vec{a} along the given axis.
- (as stated in the textbook.)

• The **component** of \vec{a} along given axis is a **number**

 $a_{\parallel} = \begin{cases} |\vec{a}_{\text{proj}}| & \text{if } \vec{a}_{\text{proj}} \text{ points in the positive direction} \\ \\ -|\vec{a}_{\text{proj}}| & \text{if } \vec{a}_{\text{proj}} \text{ points in the negative direction} \end{cases}$

Home Page
Title Page
•• ••
Page 16 of 37
Go Back
Full Screen
Close
Quit

• Right triangle rule

$$a_{\parallel} = a\cos{ heta}$$

 θ = angle between the axis and the vector (counterclockwise)

 θ = angle between the axis and the vector (counterclockwise)

Home Page Title Page Page 18 of 37 Go Back Full Screen Close Quit

Summary:

- The **projection** of \vec{a} is the **vector** \vec{a}_{proj} .
- The **component** of \vec{a} is the **number**

$$a_{\parallel} = a \cos \theta$$

Home Page
Title Page
••
Page 19 of 37
Go Back
Full Screen
Close
Quit

 Right handed coordinate system: three mutually orthogonal axes meeting at a point O called origin.

90° =
$$\pi/2$$

90° = $\pi/2$
 $90° = \pi/2$
 y
 $90° = \pi/2$
 x
 $O = origin$

The x and y axes are in the page.

The z-axis sticks out of the page.

x, y, z: coordinates

Home Page
Title Page
•• ••
Page 20 of 37
Go Back
Full Screen
Close
Quit

• The **components** of \vec{a} along the three axes

 \vec{a}_1 , \vec{a}_2 , \vec{a}_3 : the **projections** of \vec{a} on the x, y, z axes. (vectors)

 a_x, a_y, a_z : the **components** of \vec{a} along the x, y, z axes (**numbers**)

÷

• **Planar vectors** in x, y plane

The components and the vector form a right triangle.

 a_{v}

• The right triangle rules for planar vectors

$$a_x = a\cos\theta$$
$$a_y = a\sin\theta$$

 $a = \sqrt{a_x^2 + a_y^2}$

$$\tan \theta = \frac{a_y}{a_x}$$

(if $a_x \neq 0$).

Home Page	
Title Page	
••	
Page 23 of 37	
Go Back	
Full Screen	
Close	
Quit	

i-Clicker

A vector \vec{a} is contained in the (y, z) plane such that the angle between \vec{a} and the y axis is ϕ . What are the components of \vec{a} ?

A)
$$a_x = a\cos\phi$$
, $a_y = a\sin\phi$, $a_z = 0$
B) $a_x = a\cos\phi$, $a_y = 0$, $a_z = a\sin\phi$
C) $a_x = 0$, $a_y = a\sin\phi$, $a_z = a\cos\phi$
D) $a_x = 0$, $a_y = a\cos\phi$, $a_z = a\sin\phi$
E) $a_x = a\sin\phi$, $a_y = 0$, $a_z = a\cos\phi$

Quit

Home Page

Title Page

of 37

ick

reen

Answer

A vector \vec{a} is contained in the (y, z) plane such that the angle between \vec{a} and the y axis is ϕ . What are the components of \vec{a} ?

A)
$$a_x = a\cos\phi$$
, $a_y = a\sin\phi$, $a_z = 0$
B) $a_x = a\cos\phi$, $a_y = 0$, $a_z = a\sin\phi$
C) $a_x = 0$, $a_y = a\sin\phi$, $a_z = a\cos\phi$
D) $a_x = 0$, $a_y = a\cos\phi$, $a_z = a\sin\phi$
E) $a_x = a\sin\phi$, $a_y = 0$, $a_z = a\cos\phi$

Quit

Home Page

Unit vectors

• Unit vector = vector of magnitude 1 pointing in the positive direction along an axis

• Unit vectors for a right handed coordinate system

The unit vectors point along axes.

If
$$\vec{a}$$
 has **components** a_x, a_y, a_z
its **projections** are

$$egin{aligned} ec{a}_1 &= a_x \widehat{i} \ ec{a}_2 &= a_y \widehat{j} \ ec{a}_3 &= a_z \widehat{k} \end{aligned}$$

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$

• Two vectors are equal if and only if their

components are equal.

$$\vec{a} = \vec{b} \quad \Leftrightarrow \ a_x = b_x, \ a_y = b_y, \ a_z = b_z.$$

Home Page
Title Page
•••
Page 29 of 37
Go Back
Full Screen
Close
Quit

i-Clicker

Which of the following expressions is correct for the vector \vec{a} shown below?

Answer

Which of the following expressions is correct for the vector \vec{a} shown below?

A)
$$\vec{a} = a\cos\phi\hat{i} + a\sin\phi\hat{j}$$

B) $\vec{a} = a\sin\phi\hat{i} + a\cos\phi\hat{j}$
C) $\vec{a} = -a\sin\phi\hat{i} + a\cos\phi\hat{j}$
D) $\vec{a} = a\cos\phi\hat{i} - a\sin\phi\hat{j}$
E) None of the above.

Home Page
Title Page
Page 31 of 37
Go Back
Full Screen
Close
Quit

Adding vectors by components

• For any two vectors:

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$
 $\vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k}$

we have:

$$\vec{a} + \vec{b} = (a_x + b_x)\hat{i} + (a_y + b_y)\hat{j} + (a_z + b_z)\hat{k}$$

$$\vec{a} - \vec{b} = (a_x - b_x)\hat{i} + (a_y - b_y)\hat{j} + (a_z - b_z)\hat{k}$$

More generally, if s, t are scalars,

$$s\vec{a} + t\vec{b} = (sa_x + tb_x)\hat{i} + (sa_y + tb_y)\hat{j} + (sa_z + tb_z)\hat{k}$$

Vectors and the laws of physics

• Relations among vectors do not depend on the choice of a coordinate system.

• Relations in physics are also independent ^a, of the choice of a coordinate system.

Rotating the axes
changes the components
but not the vector.

$$y' = \frac{y'}{a_{y}} = \frac{y'}{a_{x}} = \frac{y'}{a_{x}}$$

$$a = \sqrt{a_x^2 + a_y^2} = \sqrt{(a_x')^2 + (a_y')^2} \qquad \theta = \theta' + \phi$$

Home Page Title Page Page 33 of 37 Go Back Full Screen Close Quit

Multiplying vectors

Associates to any two vectors \vec{a} , \vec{b} the **number**

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \phi$$

= $\vec{b} \cdot \vec{a}$

commutative

Order is irrelevant!

• Scalar product in unit vector notation

$$\widehat{i}\cdot\widehat{i}=\widehat{j}\cdot\widehat{j}=\widehat{k}\cdot\widehat{k}=1$$

$$\widehat{i} \cdot \widehat{j} = \widehat{j} \cdot \widehat{k} = \widehat{k} \cdot \widehat{i} = 0$$

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$
 $\vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k}$

$$\vec{a} \cdot \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \cdot (b_x \hat{i} + b_y \hat{j} + b_z \hat{k})$$
$$= a_x b_x + a_y b_y + a_z b_z$$

Home Page
Title Page
•••
Page 35 of 37
Go Back
Full Screen
Close
Quit

• Vector (cross) product

 $\vec{c} \perp$ to the plane of the two vectors

direction of \vec{c} : right hand rule

 $\vec{a} \times \vec{b} = \vec{c}$ $|\vec{c}| = |\vec{a}| \, |\vec{b}| \sin \phi$

$$\vec{b} \times \vec{a} = -\vec{c}$$

Anti-commutative

Order is relevant !

• Vector product in unit vector notation

$$\widehat{i} \times \widehat{j} = -\widehat{j} \times \widehat{i} = \widehat{k}$$
 $\widehat{j} \times \widehat{k} = -\widehat{k} \times \widehat{j} = \widehat{i}$

$$\widehat{k} \times \widehat{i} = -\widehat{i} \times \widehat{k} = \widehat{j}$$

$$\widehat{i} \times \widehat{i} = \widehat{j} \times \widehat{j} = \widehat{k} \times \widehat{k} = 0$$

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$
 $\vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k}$

$$\vec{a} \times \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \times (b_x \hat{i} + b_y \hat{j} + b_z \hat{k})$$

= $(a_y b_z - b_y a_z)\hat{i} + (a_z b_x - b_z a_x)\hat{j} + (a_x b_y - b_x a_y)\hat{k}$

Home Page
Title Page
•••
Page 37 of 37
Go Back
Full Screen
Close
Quit