Rutgers University Department of Physics & Astronomy

01:750:271 Honors Physics I Fall 2015

Lecture 19

Home Page

Title Page

←

→

Page 1 of 36

Go Back

Full Screen

Close

12. Equilibrium and Elasticity

How do objects behave under applied external forces?
 Under what conditions can they remain static or stationary?

• Under what conditions do objects deform and what are the effects of their deformations?

Home Page

Title Page

44

◀

Page 2 of 36

Go Back

Full Screen

Close

• Equilibrium

An object is in **equilibrium** if:

- The linear momentum \vec{P} of its center of mass is constant.
- Its angular momentum about its center of mass, or about any other point, is also constant.

 $\vec{P}, \ \vec{L} \ ext{constant}$

Home Page

Title Page

44 | 1

4

Page 3 of 36

Go Back

Full Screen

Close

An object is in **static equilibrium** if

$$\vec{P} = 0, \quad \vec{L} = 0$$

No translation, no rotation.

Home Page

Title Page

44 | →

4

Page 4 of 36

Go Back

Full Screen

Close

Static equilibrium is:

- **Stable** if the body returns to the state of static equilibrium after having been displaced from that state by a **small** force.
- Unstable if any small force can displace the body and end the equilibrium.

Home Page

Title Page

← || →

Page **5** of **36**

Go Back

Full Screen

Close

(a) **unstable** static equilibrium (c), (d) **stable** static equilibrium

Home Page

Title Page

← | | →

Page 6 of 36

Go Back

Full Screen

Close

Home Page

Title Page

44

Page 7 of 36

Go Back

Full Screen

Close

Conditions for equilibrium

$$rac{d\vec{P}}{dt} = \vec{F}_{\text{net}} \quad \vec{P} \; extbf{constant} \; \Rightarrow \vec{F}_{\text{net}} = 0$$
 $rac{d\vec{L}}{dt} = \vec{\tau}_{\text{net}} \quad \vec{L} \; extbf{constant} \; \Rightarrow \vec{\tau}_{\text{net}} = 0$

- 1. The vector sum of all the external forces that act on the body must be zero.
- 2. The vector sum of all external torques that act on the body, measured about any possible point, must also be zero.

Home Page

Title Page

Page 8 of 36

Go Back

Full Screen

Close

Conditions for equilibrium

$$egin{aligned} F_{ ext{net},x} &= 0 & au_{ ext{net},x} &= 0 \ F_{ ext{net},y} &= 0 & au_{ ext{net},y} &= 0 \ F_{ ext{net},z} &= 0 & au_{ ext{net},z} &= 0 \end{aligned}$$

Home Page

Title Page

→

◀ |

Page 9 of 36

Go Back

Full Screen

Close

- ullet A ladder of length $L=12\mathrm{m}$ and mass $m=45\mathrm{kg}$ leans against a frictionless wall. Its upper end is at height $h=9.3\mathrm{m}$ above the pavement.
- \bullet The ladder's center of mass is L/3 from the lower end.
- A firefighter of mass $M=72\mathrm{kg}$ climbs the ladder until her center of mass is L/2 from the lower end.
- What then are the magnitudes of the forces on the ladder from the wall and the pavement?

Home Page

Title Page

←

Page 10 of 36

Go Back

Full Screen

Close

Here are all the forces. Firefighter \overrightarrow{Mg} Ladder (b)

Forces on the ladder:

Ladder's weight:

$$m\vec{g} = -mg\hat{j}$$

• Firefighter's weight:

$$M\vec{g} = -Mg\hat{j}$$

• Normal to wall:

$$\vec{N}_w = N_w \hat{i}$$

• Normal to pavement:

$$\vec{N_p} = N_p \hat{j}$$

• Static friction:

$$\vec{f_s} = -f_s \hat{i}$$

Home Page

Title Page

← →

Page 11 of 36

Go Back

Full Screen

Close

Force balance:

$$x - axis: N_w - f_s = 0$$

$$y - axis: N_p - Mg - mg = 0$$

Torque balance about O:

$$Mg(a/2) + mg(a/3) - N_w h = 0$$

a = length of projection of ladder onto pavement

$$a = \sqrt{L^2 - h^2}$$

Home Page

Title Page

())

←

Page 12 of 36

Go Back

Full Screen

Close

Home Page

Title Page

•

Page 13 of 36

Go Back

Full Screen

Close

Quit

 $N_w = \frac{ag}{h} \left(\frac{M}{2} + \frac{m}{3} \right)$ $f_s = N_w$

 $N_p = (M+m)g$

Center of gravity

 Gravitational force acting on a rigid body:

$$ec{F}_g = \sum_i (\Delta m_i) ec{g} = M ec{g}$$

provided that the gravitational field is **uniform** i.e. \vec{g} is the same for **all** mass elements Δm_i

Home Page

Title Page

 \longleftrightarrow

← →

Page 14 of 36

Go Back

Full Screen

Close

• Torque of gravitational force acting on a rigid body:

$$ec{ au}_{F_g} = \sum_i (\Delta m_i) ec{r}_i imes ec{g}$$
 $= ec{r}_{\mathsf{com}} imes (M ec{g})$

provided that the gravitational field is **uniform** i.e. \vec{g} is the same for **all** mass elements Δm_i

Home Page

Title Page

←

Page 15 of 36

Go Back

Full Screen

Close

Conclusions:

- 1. The gravitational force \vec{F}_g on a body effectively acts at a single point, called the **center of gravity** (cog) of the body.
- 2. If \vec{g} is the same for all elements of a body, then the body's **center of gravity** (cog) is coincident with the body's **center of mass** (com).
- 3. If \vec{g} is **not** the same for all mass elements $\mathbf{COG} \neq \mathbf{COM}$

Home Page

Title Page

← → → → →

←

Page 16 of 36

Go Back

Full Screen

Close

Home Page

Title Page

4 **>>**

→

Page 17 of 36

Go Back

Full Screen

Close

Hang it, twice, from different points (if 2 dimensional object)

- C of G must be under each pivot point, for it to be in static equilibrium - other $F_{gravity}$ and $F_{support}$ do not line up, and there is a torque (more on this in a few minutes)

Home Page

Title Page

44

Page 18 of 36

Go Back

Full Screen

Close

- 'Rigid' objects actually deform under applied external forces.
- Elastic deformations: the object returns to its original shape when the force is removed.

Home Page

Title Page

44 | | |

4

Page 19 of 36

Go Back

Full Screen

Close

- Stress: force per unit area
- **Strain:** deformation per unit length

• Elastic deformations:

 $stress = modulus \times strain$

The modulus is an intrinsic property of the material.

Home Page

Title Page

(**4** | **>>**

← || →

Page 20 of 36

Go Back

Full Screen

Close

• Tensile stress:

the force stretches the cylinder.

• Shearing stress:

the deformation is perpendicular to main axis.

Home Page

Title Page

←

Page 21 of 36

Go Back

Full Screen

Close

• Hydraulic stress: uniform applied force from all sides

Title Page

Go Back

Full Screen

Close

Tension and compression

ullet Suppose the applied force is \bot to the face of the object. It can stretch or compress the object.

• Strain:

$$\frac{\Delta L}{L}$$

Young's modulus:

$$\frac{F}{A} = E \frac{\Delta L}{L}$$

Home Page

Title Page

(4)

←

Page 23 of 36

Go Back

Full Screen

Close

Fig. 12-12 A stress—strain curve for a steel test specimen such as that of Fig. 12-11. The specimen deforms permanently when the stress is equal to the *yield strength* of the specimen's material. It ruptures when the stress is equal to the *ultimate strength* of the material.

• **Small stress:** elastic deformations.

• Yield strength: magnitude of stress causing permanent deformations.

• Ultimate strength: magnitude of stress tearing the object apart.

Home Page

Title Page

4 **>>**

←

Page 24 of 36

Go Back

Full Screen

Close

 same steel, same diameter, same applied force.

Home Page

Title Page

44

_____>>

Page 25 of 36

Go Back

Full Screen

Close

Quit

Compared to the first rod the second rod has:

- A) more stress and more strain.
- B) the same stress and more strain.
- C) the same stress and less strain.
- D) less stress and less strain.
- E) the same stress and the same strain.

 same steel, same diameter, same applied force.

Home Page

Title Page

44

>>

Page 26 of 36

Go Back

Full Screen

Close

Quit

Compared to the first rod the second rod has:

- A) more stress and more strain.
- B) the same stress and more strain.
- C) the same stress and less strain.
- D) less stress and less strain.
- E) the same stress and the same strain.

- same steel, same applied force.
- longer rod has greater diameter

Home Page

Title Page

Page 27 of 36

Go Back

Full Screen

Close

Quit

Compared to the first rod the second rod has:

- A) more stress and more strain.
- B) the same stress and more strain.
- C) the same stress and less strain.
- D) less stress and less strain.
- E) the same stress and the same strain.

- same steel, same applied force.
- longer rod has greater diameter

Compared to the first rod the second rod has:

- A) more stress and more strain.
- B) the same stress and more strain.
- C) the same stress and less strain.
- D) less stress and less strain.
- E) the same stress and the same strain.

Home Page

Title Page

Page 28 of 36

Go Back

Full Screen

Close

• Shearing

- Applied force vector lies in the same plane as the face of the object.
- Stress: force per unit area

$$\frac{F}{A}$$

• Strain:

$$\frac{\Delta x}{L}$$

• Shear modulus:

$$\frac{F}{A} = G \frac{\Delta x}{L}$$

Home Page

Title Page

Page 29 of 36

Go Back

Full Screen

Close

• Hydraulic Stress

- Force applied uniformly from all sides.
- Stress = pressure = force per unit area p
- Strain: change in volume per unit volume

$$\frac{\Delta V}{V}$$

• Bulk modulus:

$$p = B \frac{\Delta V}{V}$$

Home Page

Title Page

44 | >>

←

Page 30 of 36

Go Back

Full Screen

Close

15. Oscillations

• Periodic or harmonic motion: periodic in time that is motion that repeats itself in time.

Home Page

Title Page

44 | ▶I

Page **31** of **36**

Go Back

Full Screen

Close

• Frequency:

f = number of oscillations per unit time.

Units: 1 hertz = $1 \text{ Hz} = 1 \text{ oscillation per second} = 1 \text{ s}^{-1}$

• Period:

T= time needed to complete one oscillation

$$T = \frac{1}{f}.$$

Home Page

Title Page

→

)

Page 32 of 36

Go Back

Full Screen

Close

• Projection of uniform circular motion

- Consider a particle P' on a circular trajectory of radius x_m with constant angular speed ω .
- The **projection** P of the particle on the x-axis moves according to the law:

$$x(t) = x_m \cos(\omega t + \phi)$$

Home Page

Title Page

(→)

•

Page 33 of 36

Go Back

Full Screen

Close

$$v_{Px} = v_{P'x}$$

$$v_{Px} = -\omega x_m \sin(\omega t + \phi).$$

$$v_{Px} = v_{P'x}$$
 $a_{Px} = a_{P'x}$ $v_{Px} = -\omega x_m \sin(\omega t + \phi).$ $a_{Px} = -\omega^2 x_m \cos(\omega t + \phi).$

Home Page

Title Page

Page 34 of 36

Go Back

Full Screen

Close

• Simple harmonic motion (SHM)

SHM is the projection of uniform circular motion on a diameter of the circular trajectory.

One dimensional motion of a point particle given by $x(t) = x_m \cos(\omega t + \phi)$.

Home Page

Title Page

M | >>

Page 35 of 36

Go Back

Full Screen

Close

- x_m amplitude = maximum displacement
- t time
- $\bullet \omega$ angular frequency
- φ phase constant or phase angle

Home Page

Title Page

|

•

Page 36 of 36

Go Back

Full Screen

Close