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9. Center of Mass. Linear Momentum I

The center of mass of
a system of particles is
the point that moves as
though:

(1) all of the systems
mass were concentrated
there and

(2) all external forces
were applied there.

The center of mass of the baseball bat follows a
parabolic path, but all other points follow more com-
plicated paths.
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• The center of mass: a system of particules

x
x x x1

1
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m m m

CM

Discrete linear
distribution of particles

Note: in general •
does not have to be
one of the particles
in the system.

xcom =
m1x1 +m2x2 + · · ·+mNxN

m1 +m2 + · · ·+mN

=
1

M

N∑
i=1

mixi
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• Three dimensions: discrete distribution of parti-
cles

r

r
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rCM

xcom =
1

M

N∑
i=1

mixi

ycom =
1

M

N∑
i=1

miyi

zcom =
1

M

N∑
i=1

mizi

~rcom =
m1~r1 +m2~r2 + · · ·+mN~rN

m1 +m2 + · · ·+mN

=
1

M

N∑
i=1

mi~ri
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• Solid body: continuous mass distribution

dm= dvr

com
~rcom = xcom̂i+ycomĵ+zcomk̂

xcom =
1

M

∫
xdm ycom =

1

M

∫
ydm zcom =

1

M

∫
zdm

M =

∫
dm total mass of the object
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Mass density:

ρ =
dm

dv
dv = dxdydz volume element

Uniform mass distribution:

ρ = constant as function of ~r

⇓

xcom =
1

V

∫
xdv ycom =

1

V

∫
ydv zcom =

1

V

∫
zdv

V =

∫
dv =

∫
dxdydz total volume
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• Symmetry: if the object has a symmetry axis

and ρ = constant then its com must lie on that axis
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• Example
Consider an L shape made up
of 4 blocks each a square with
sides of length d.

• Assume all blocks are uni-
form and have the same mass
M

• Treat this as a 2-
dimensional problem – ignore
width in the z-direction.

xcom =
3M(d/2) +M(3d/2)

4M
=

3

4
d
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i-Clicker

Consider an L shape made up
of 4 blocks each a square with
sides of length d.

• Assume all blocks are uni-
form and have the same mass
M

• Treat this as a 2-
dimensional problem - ignore
width in the z-direction.

What is ycom ?

A) d B) 7d/8 C) 5d/4 D) 3d/4 E) d/2
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Answer

Consider an L shape made up
of 4 blocks each a square with
sides of length d.

• Assume all blocks have the
same mass M

• Treat this as a 2-
dimensional problem ignore
width in the z-direction.

What is ycom ?

A) d B) 7d/8 C) 5d/4 D) 3d/4 E) d/2
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ycom =
2M(d/2) +M(3d/2) +M(5d/2)

4M
=

5

4
d
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• Example:

Consider the two uniform
squares shown each with sides
of length d.

• Assume mblue = 2 kg,
morange = 1 kg

• Treat this as a 2-
dimensional problem.

xcom =
mbluexblue +morangexorange

mblue +morange
= −

d

6
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i-Clicker

Consider the two squares
shown each with sides of
length d.

• Assume mblue = 2 kg,
morange = 1 kg

• Treat this as a 2-
dimensional problem.
What is ycom ?

A) d B) d/4 C) 0 D) 3d/2 E) d/2
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Answer

Consider the two squares
shown each with sides of
length d.

• Assume mblue = 2 kg,
morange = 1 kg

• Treat this as a 2-
dimensional problem.
What is ycom ?

A) d B) d/4 C) 0 D) 3d/2 E) d/2
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ycom =
mblueyblue +morangeyorange

mblue +morange
=
d

2
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• Subtraction example

A metal plate P is has the
shape of a disk of radius
R with a hole of radius R.
Assuming uniform density,
ρ = constant, find xcom.

Treat the problem as two
dimensional ignoring thick-
ness in the z-direction.



Home Page

Title Page

JJ II

J I

Page 18 of 34

Go Back

Full Screen

Close

Quit

= -

• P : holed disk

• D: whole big disk

• H: the small disk removed
from D

P = D −H

xPcom =

∫
P
xdxdy∫
P
dxdy

=
XP

AP

XP =

∫
D

xdxdy −
∫
H

xdxdy = XD −XH

AP =

∫
D

dxdy −
∫
H

dxdy = AD −AH
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-R

xDcom = 0 xHcom = −R

xDcom =
XD

AD

xHcom =
XH

AH

XD = 0, XH = −RAH

xPcom =
XD −XH

AD −AH

= R
AH

AD −AH

=
R

3



Home Page

Title Page

JJ II

J I

Page 20 of 34

Go Back

Full Screen

Close

Quit

• Newton’s 2nd law for a system of particles

~Fnet = M~acom

Fnet,x = Macom,x

Fnet,y = Macom,y

Fnet,z = Macom,z

• ~Fnet is the net force of all ex-
ternal forces acting on the sys-
tem. Internal forces are not
included.

• M is the total mass of the
system. If M is constant, the
system is said to be closed.

• ~acom is the acceleration of the
center of mass of the system.
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Derivation

M~rcom = m1~r1 +m2~r2 + · · ·+mN~rN

⇓ d/dt

M~vcom = m1~v1 +m2~v2 + · · ·+mN~vN

⇓ d/dt

M~acom = m1~a1 +m2~a2 + · · ·+mN~aN

M~acom = ~F1 + ~F2 + · · ·+ ~FN
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M~acom = ~F1 + ~F2 + · · ·+ ~FN
~Fi = the sum of all forces acting on particle i,

including internal ones.

~Fi = ~Fi,ext + ~Fi,int

Newton’s 3rd law:

N∑
i=1

~Fi,int = 0

M~acom = ~F1,ext + ~F2,ext + · · ·+ ~FN,ext



Home Page

Title Page

JJ II

J I

Page 24 of 34

Go Back

Full Screen

Close

Quit

M~acom =~F1 + ~F2

+ ~F3

M =m1 +m2

+m3



Home Page

Title Page

JJ II

J I

Page 25 of 34

Go Back

Full Screen

Close

Quit

• Linear momentum

How can we predict the
outcome of a collision?

Assuming energy is con-
served

K1 +K2 = K ′1 +K ′2

Not sufficient!

Energy is a scalar quantity.

No direction!
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Linear momentum of a particle

~p = m~v
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The rate of change of the momentum is equal
to the net force acting on the particle:

d~p

dt
= ~Fnet

d(m~v)

dt
= m

d~v

dt
= m~a = ~Fnet
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• Linear momentum of a system of particles

The linear momentum of a system of particles is
equal to the product of the total mass M of the system
and the velocity of the center of mass.

~P = M~vcom

~P =

N∑
i=1

~pi =

N∑
i=1

mi~vi = M~vcom
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The rate of change of the momentum is equal
to the net external force acting on the system:

d~P

dt
= ~Fext
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• Collision and Impulse

The figure depicts the col-
lision at one instant. The
ball experiences a force F (t)
that varies during the colli-
sion and changes the linear
momentum of the ball.
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The change in linear momentum is related to the
force by Newton’s second law:

~F =
d~p

dt
⇒ ∆~p =

∫ tf

ti

d~p =

∫ tf

ti

~Fdt

• Impulse:

~J =

∫ tf

ti

~Fdt
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• The magnitude of ~J
equals the area under the
curve F (t).

• Average force

~Faverage =
~J

∆t

• Newton’s 3rd law:

~Fball(t) + ~Fbat(t) = 0

at all times. Hence:
~Jbat = − ~Jball

| ~Jbat| = | ~Jball|
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i-Clicker

Consider two ways to slow a toy car from 15km/h to
a complete stop.

(i) The car slams into a wall and stops.

(ii) The car gradually plows into a tube of gelatine
and comes to a gradual halt.

In which case is the magnitude of the impulse bigger?

A) Case (i) B) Case (ii)

C) They are equal. D) Cannot be decided.
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Answer

Consider two ways to slow a toy car from 15km/h to
a complete stop.

(i) The car slams into a wall and stops.

(ii) The car gradually plows into a tube of gelating
and comes to a gradual halt.

In which case is the magnitude of the impulse bigger?

A) Case (i) B) Case (ii)

C) They are equal. D) Cannot be decided.

~J = ∆~p, the same in both cases.


