Rutgers University Department of Physics & Astronomy

01:750:271 Honors Physics I

Lecture 1

Course Instructor

Duiliu Emanuel Diaconescu
Office: Serrin E358
Phone: 848 445 9054
E-mail: duiliu@physics.rutgers.edu
Office Hours: M 3-4pm or by appointment

Room & Time: Physics Lecture Hall M 1:55-2:50pm,

W 1:55-2:50pm

Web page:

http://www.physics.rutgers.edu/ugrad/271/

Home Page
Title Page
•• ••
Page 2 of 33
Go Back
Full Screen
Close
Quit

Course Overview

Classical mechanics: the science of motion

Motion in every day life

Planetary and satellite motion (cosmic scale)

Mollecular and subatomic motion

(microscopic scale)

Mathematical model for motion

Isaac Newton 1689, Principia Mathematica

Quit

What causes motion: force

How hard is it to stop a moving object?How hard is it to move a stationary object?Quanta of motion: momentum and energy

tere teres de la constante de

Rotation.

Gravity.

Home Page

Title Page

1 complete Oscillation

Oscillations. Kinetic theory of gases.

Close

Quit

Mathematical Background

Trigonometry.

Vector calculus.

Home Page	
Title Page	
(()	
Page 13 of 33	
Go Back	
Full Screen	
Close	
Quit	

Required Textbook

David Halliday, Robert Resnik, Jearle Walker, *Fundamentals of Physics*, 10th edition ISBN 9781118230640 (or the 9th edition.)

EDITION: 10TH 14 PUBLISHER: WILEY ISBN: 9781118230640

Grade Evaluation

Component	Weight	Date
Homework	25%	10 assignments
Exam 1	15%	Monday Oct 10
Exam 2	15%	Monday Nov 14
Final	25%	ТВА
Quiz	15%	10-12 quizzes
Attendance	5%	iClicker answers

Final letter grade: based on grade distribution.

Homework Assignments

- 10 assignments due at 1 or 2 week intervals
- 1st assignment due on Sept 26th 2015, 11:59pm.
- Internet based Webassign: http://webassign.net/
- No late assignments accepted
- Lowest 2 homework assignments will be dropped.

00									WebAssign – LOG IN	
	+	WA https	://www.	webassig	n.net/login.h	tml				
⇔ m		Google	Apple	Yahoo!	Mathscinet	Wikipedia	YouTube	News (623) 🔻	Popular 🔻	

CATALOG 🗸	INSTRUCTORS 🗸	STUDENTS 🗸	SUPPORT 🗸

Welcome to WebAssign!

WebAssign.

Use the username, institution, and password provided by your instructor or account representative.

Username		Forgot your username?	
Institution	rutgers	What's this?	Go
Password		Forgot your password?	Fulls
	LOG IN Trouble Logging In?		
			Cl

Instructor Sign Up

Cont

Quit

Home Page

Title Page

Page 18 of 33

Back

creen

se

••

Webassign Login:

Username: 1st letter of last name in lowercase followed by 9 digit Id number

Institution: rutgers (lowercase)

Password: 9 digit Id number

Note: need to purchase access code from RU bookstore or Webassign website

Exams

- All exams multiple choice
- Exams 1 and 2: 1 hour exams
- The Final: 3 hour exam in the exam period.

• Closed book, but you may bring one $8.5'' \times 11''$ sheet of paper (both sides) with formulas and notes to consult during the exam. You may also use a scientific calculator.

• Practice problems and sample tests posted on course webpage

iClicker

- $\bullet \sim$ 4-5 questions/lecture
- answer 75% to get full credit for attendance

 $\Theta \Theta \Theta$ Register Your Clicker | iClicker RSS 🖒 +C http://www1.iclicker.com/register-clicker/ 🔂 🛄 🎆 Google Apple Yahoo! Mathscinet Wikipedia YouTube News (624) ▼ Popular ▼ iclicker. Home Page **Register Your Clicker** Title Page Register your i>clicker remote so your instructor will be able to give you credit for using your clicker in class. Have guestions? Visit our student support portal. Country: United States å •• First Name: Last Name: i>clicker 1 i>clicker 2 Student ID: i-clicker i-clicker,2 A and alter dilitate of this for 88 The ID assigned by your school. Check your syllabus or ask your instructor if you are unsure what to enter. 12383C78 Page 22 of 33 Remote ID: The 8-character code found on your remote (see image). Codes only use letters A-F and numbers 0-9. 100000 Go Back ۰. And the second s Q a ANO ALL Full Screen Image Code: Behind Battery Back Back Power On Screen (newer models) The verification code shown in the image above. 123ABC78 Close **Reset Form** i>clicker is committed to respecting your privacy. Read our Privacy Policy to learn more. Quit

Recitations

Section	Day	Time	Room
H1	Thursday	10:35-11:30am	ARC-105
H2	Thursday	12:15-1:10pm	ARC-206
H3	Thursday	1:55-2:50pm	ARC-206
H4	Friday	1:55-2:50pm	SEC-202
H5	Friday	3:35-4:30pm	SEC-212
H7	Friday	10:35-11:30am	SEC-216
H8	Thursday	3:35-4:30pm	ARC-206
HA	Friday	8:55-9:50am	SEC-212
HB	Thursday	10:35-11:30am	ARC-205

Note:

- short written quiz at the end of most recitations; 10-12 quizzes in total
- lowest 2 quizzes will be dropped
- no recitations the first week; will start the second week, Sept 12-16.

1. Measurement

All physical quantities are measured in terms of specific units.

- length: miles, yards, feet ...
- time: hours, minutes, seconds ...
- temperature: degrees

Standard units should be invariable: independent of

- physical characteristics of a particular observer
- geographic location, weather, seasons, ...

Home Page
Title Page
••
Page 25 of 33
Go Back
Full Screen
Close
Quit

International System of Units (SI or metric system)

• 7 Base units :

Ta	ble l	. SI	base	units	

Base quantity	Name Symbol SI base unit		
length	meter	m	
mass	kilogram	kg	
time	second	S	
electric current	ampere	Α	
thermodynamic temperature	kelvin	K	
amount of substance	mole	mol	
luminous intensity	candela	cd	

The first 3 relevant for classical mechanics.

Home Page Title Page •• Page 26 of 33 Go Back Full Screen Close Quit

• Second:

The time taken by 9 192 631 770 oscillations of the light emitted by a cesium-133 atom.

• Meter:

The length of the path traveled by light in vacuum in a time interval of 1/299792458 seconds.

• Kilogram:

The mass of a platinum-irridium cylinder 0.039 m in height and diameter.

Prefixes

	Pret	fixes	for	SI	Uni	ts
--	------	-------	-----	----	-----	----

Factor	Prefix ^a	Symbol	Factor	Prefix ^a	Symbol		
1024	yotta-	Y	10-1	deci-	d		
10 ²¹	zetta-	Z	10-2	centi-	с		
1018	exa-	E	10 ⁻³	milli-	m		
1015	peta-	Р	10-6	micro-	μ		
10 ¹²	tera-	Т	10-9	nano-	n		
10 ⁹	giga-	G	10-12	pico-	р		
106	mega-	M	10 ⁻¹⁵	femto-	f		
10 ³	kilo-	k	10^{-18}	atto-	а		
10 ²	hecto-	h	10^{-21}	zepto-	z		
10 ¹	deka-	da	10^{-24}	yocto-	у		
$1 \mathrm{cm} =$	$1 \mathrm{cm} = 10^{-2} \mathrm{m} = 0.01 \mathrm{m}$ $1 \mathrm{km} = 10^3 m = 1000 \mathrm{m}.$						

Home Page

Title Page

++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
<

Page 28 of 33

Go Back

Full Screen

Close

Quit

 $1 \,\mathrm{ft} = 0.3048 \,\mathrm{m}$ $1 \,\mathrm{lb} = 0.4536 \,\mathrm{kg}$

1 m = 3.281 ft 1 kg = 2.205 lbExamples:

$$2.6 \text{ kg} = 2.6 \times 2.205 \text{ lb} = 5.733 \text{ lb}$$

 $0.7 \,\mathrm{cm} = 0.7 \times 10^{-2} \,\mathrm{m} = 0.7 \times 10^{-2} \times 3.281 \,\mathrm{ft} = 2.2967 \times 10^{-2} \,\mathrm{ft}$

Derived units

• Area

$$a = 2 \text{ m}, b = 3 \text{ m}$$

Area = $2 \text{m} \times 3 \text{m} = 6 \text{ m}^2$

Square meter: area of a $1m \times 1m$ square. $1m \times 1m = 1 m^2$

• Volume

$$a = 2 m$$

$$Volume = 2m \times 2m \times 2m = 8 m^{3}$$

$$Page 31 of 33$$

$$Go Back$$

$$a \times 1m = 1 m^{3}$$

$$Cose$$

Cubic meter: volume $1 \text{m} \times 1 \text{m}$ • Density

$$\rho = \frac{\text{Mass}}{\text{Volume}}$$
Density unit = $\frac{1 \text{ kg}}{1 \text{ m}^3} = 1 \frac{\text{kg}}{\text{m}^3}$

= 1 kilogram per cubic meter

Note: scientific notation $5000000 = 5 \times 10^6 = 5 \text{ E6}$ $0.00007 = 7 \times 10^{-5} = 7\text{E} - 5$

Next class: Monday September 12th, PHL 1:55-2:50pm

Motion along a straight line

9th edition: Ch. 2.1-2.10

10th edition: Ch 2.1-2.6

