4 Physics 613: Problem Set 4 (due Thursday March
21)

4.1 Feynman Parameters
Starting from the Feynman parameter trick we introduced in class:
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Derive the following additional identities
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4.2 QED with multiple fermions

Consider QED with N fermions W; with charge @); and mass m;, ¢ = 1,... Ny. (The

basic case we have been studying in class is Ny = 1 with (1 = 1 and my; = m.)

1. What is the vacuum polarization function II(p?) in this theory? You don’t need
to derive this from scratch or evaluate any integrals; rather you should start from

the result we derived in class for the basic Ny = 1 case, which is
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2. In the Standard Model, there are 3 leptons with charge -1 (electron, muon, tau);
and 9 quarks with charge 2/3 (up,charm,top with 3 colors each); and 9 quarks
with charge —1/3 (down, strange, bottom with 3 colors each). Assuming these all
have a common mass (let’s say 1 GeV for simplicity), use your answer in part 1 to
figure out where is the Landau pole of QED for the Standard Model.

4.3 71 =2

In this problem we will prove that Z; = Z, at one-loop including the finite parts, starting

from the expressions for the electron self energy and vertex function that we derived in



class (with some typos and conventions fixed — in this problem we are in the mostly plus

signature):
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where f dFy =2 f dxidxedrsd(xy + x9 + x3 — 1). Impose the renormalization conditions
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and
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to determine Z; and Zs, and show that Z; = Z5. (You only need to show this for the
singular and finite terms in the ¢ — 0 and m, — 0 limits. The calculation is quite
messy, you are encouraged to use Mathematica to evaluate the necessary integrals and

expansions.)

4.4 (Gordon Identity

In this problem we will prove the Gordon identity:

2ma(p’ )y u(p) = a(p’)(p' + p)* — 2iS" (' — p)Lu(p) (7)

where S = 7[y*,~7"]. This identity plays a key part in the derivation of the anomalous

magnetic moment of the electron.
1. Prove the identities y"p = —p# — 2iS*p, and py* = —p™ + 2iS"p),.

2. Use part 1 to prove the Gordon identity.
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