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1 X-ray diffraction
X-ray diffraction patterns were collected on a ground single crystal of PdPb2, and refinements were performed, as shown below
in Figure 1.
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Figure 1. Laboratory X-ray diffraction pattern of PdPb2, with data shown as black points and a fit to the I4/mcm literature
structure shown as a red line1. Measurements down to T = 20 K (not shown) show no signs of a structural phase transition
down to that temperature.

2 Laue X-ray diffraction
The Laue patterns for oriented single crystals of PdPb2 are shown in Figure 2 (110) and Figure 3 (001). Both crystals were
cut from the same grown induction furnace crystal. The surfaces were polished to minimize oxidation. The exposed crystal
directions are within 2% tilt.
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Figure 2. Laue diffraction pattern image of PdPb2. The sample has been aligned in the [110] direction.

3/14



Figure 3. Laue diffraction pattern image of PdPb2. The sample has been aligned in the [001] direction.

3 Micro-computed tomography
X-ray µCT measurements were performed on crystals to both determine whether macroscopic inclusions were present and to
accurately assess the volume of crystals used in measurements of microwave perturbation and magnetization. No macroscopic
inclusions were detected, as shown in Figure 4. A video of the scan can be found at [link].

The determined volumes of the crystals used for magnetization were 0.006584(2) cm−3 for the 110 oriented crystal, and
0.005924 (1) cm−3 for the 001 oriented crystal. The volume of the sample used in microwave cavity perturbation measurements
was 0.000588(2) cm−3.
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Figure 4. A micro-computed tomography analysis was carried out on a small piece of PdPb2 single crystal. This is the sample
that was measured using heat capacity. A video can be found at [link]. No large-scale inclusions can be seen, nor secondary
phases by differences in contrast

.

4 Sample demagnetization and lower critical field
The lower critical field H∗c1 of two crystals of PdPb2, with the applied field parallel to the 110 and 001 directions, was
determined after accounting for demagnetization due to the geometry of the samples measured. This was performed by fitting
the linear portion of the M(H) curves at varying tempertures to M f it = aµ0H +b, where the slope a is related to the sample
demagnetization factor N by −a = 1/4π(1−N). For the 110 aligned sample, N = 0.6182. For the 001 aligned sample,
N = 0.6211.

The lower critical field H∗c1 was then determined by subtracting the linear portion of the M(H) curves and then determining
the field at which a deviation occurred, as shown in Figure 5.
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Figure 5. Magnetization plots of a PdPb2 crystal aligned along two crystallographic directions, [110] and [001].
Demagnetization effects due to sample geometry were taken into account, and the zero-field cooled (ZFC) curve for either
direction shows that the superconducting volume fraction is at least 97% for the sample
.

5 Zero-field cooled vs. field-cooled magnetization: superconducting volume fraction
Temperature dependent susceptibility data is shown in Figure 6 for 110 and 001 aligned crystals of PdPb2. Sample demagneti-
zation was accounted for as aforementioned, using the same values. Our data indicates that 99.1(2)% of the volume of the 110
aligned sample is superconducting, whereas 97.7(1)% of the 001 aligned sample is. The error arises from the measurement
error in the volume susceptibility χV .
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Figure 6. Magnetization plots of a PdPb2 crystal aligned along two crystallographic directions, [110] and [001].
Demagnetization effects due to sample geometry were taken into account, and the zero-field cooled (ZFC) curve for either
direction shows that the superconducting volume fraction is at least 97% for the sample
.

6 Analysis of high temperature heat capacity
To justify our use of a higher order β5 phonon term in the low temperature heat capacity, measurements of heat capacity were
performed up to T = 100 K. The presence of an Einstein mode with TE = 49.5(4) K is evident, as shown in Figure 7 as a
C/T 3 vs T plot.
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Figure 7. Heat capacity over temperature cubed, highlighting the Einstein mode that is present at low temperature.
.

The fit shown is to the following equation:

CP
T 3 =

E(ΘE ,T )
T 3 + D(ΘD,T )

T 3 + γ

T 2

where the Einstein contribution E(ΘE ,T ) is given by:

E(ΘE ,T ) = 3sER(ΘE/T )2 exp(ΘE/T )
[exp((ΘE)/T )−1]2

and the Debye contribution D(ΘD,T ) is given by:

D(ΘD,T ) = 9sDR(T/ΘD)
3 ∫ ΘD

T
0

(ΘD/T )4exp(ΘD/T )
[exp(ΘD/T )−1]2 d ΘD

T

Here, s is the oscillator strength, R is the molar Boltzmann constant, and ΘD and T hetaE are the Debye and Einstein
temperatures, respectively. The final fit parameters are sE = 0.21(1), sD = 2.86(2), ΘD = 142.9(8) K, and ΘE = 49.5(6) K.
The total number of oscillators adds up to stot = 3.07(9), in agreement with the total number of atoms per formula unit.
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7 Derivations of superconducting parameters
Based on measurements of heat capacity, resistivity, and magnetization, the superconducting parameters in the main paper were
obtained in the following way.

The lower critical field H∗c1 for each crystallographic orientation was obtained by first subtracting off the linear portions of
the M(H) curves, then taking the points where the magnetization started to be non-zero. This was done after accounting for
demagnetization effects, as previously discussed, thus resulting in H∗c1.

The upper critical field Hc2 for each crystallographic orientation was determined by taking the greatest linear slope of each
ρ(T ) curve under discrete magnetic fields, and taking the x-intercept of each line.

Based on the values of H∗c1 and Hc2, the values for the penetration depth λ (T = 0) and coherence length ξ (T = 0) were
determined. The coherence length was determined by:

Hc2 = Φ0/2πξ (0)2

This value was then used along with the lower critical field values to determine the penetration depth via:

H∗c1 = Φ0/4πλ (0)2lnλ (0)/ξ (0)+α

Where α is a mathematical parameter defined as:

α = 1/2+(1+ ln2)/(2κ−
√

2+2)

Given these two values, the derived Ginzburg-Landau parameter κ was derived via:

κ = λ (0)
ξ (0)

Lastly, the thermodynamic critical field Hc was calculated by:

H∗c1Hc2 = Hclnκ

8 Scanning electron microscopy and energy dispersive spectroscopy
Two SEM images are shown for PdPb2 in Figure 8 A, as well as EDS maps at two different length scales. These length scales
are relatively large (0.5 mm (B) and 0.05 mm (C)), though no macroscopic structure is observed in either Pd or Pb content. The
sample appears to be fully homogenous. Despite observations of excess Pb through a higher-than-3.0 K Tc in resistivity and
magnetization, there appear to be no density fluctuations in EDS scans targeting Pb at either length scale. It is possible that this
occurs at lower length scales. Further, there appear to be no inclusions of other elements, nor do there appear to be Pd or Pb
rich/deficient phases.

The samples were also polished right before inserting them into the SEM instrument to minimize surface oxidation. By
doing so rapidly, nearly all surface oxidation is avoided. Samples with heavy surface oxidation (exposed to air for greater than
24 hours) were also measured, and showed Pd-Pb-O ratios consistent with the presence of PbO and PdPbO2 on the surface,
both of which are non-metallic.
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Figure 8. SEM and EDS maps of a [110] oriented crystal of PdPb2. A shows direct images of the surfaces. The crystal was
polished using sand paper before the measurement, leading to mesoscopic scratches on the surface. B and C show
energy-dispersive spectroscopic maps at the mm and µm scale, showing no signs of any secondary phases or areas of
non-stoichiometry within these length scales. Scans were run for one hour each.

Table 1. Table of sample values extracted from EDS.

Formula Mass% Atom% Sigma Net K Ratio Line
Pd 20.52 33.42 0.13 64470 0.0018304 L
Pb 79.58 66.58 0.22 351540 0.0086860 M

9 Microwave cavity perturbation technique measurement procedure
The microwave cavity perturbation technique (MCPT) was used to resonantly measure the microwave complex surface
impedance of the PdPb2 single crystals. The sample was mounted using N-grease on an insulating sapphire rod in a super-
conducting right-circular cylindrical cavity resonator made of NbTi, Tc ∼ 10 K, designed to resonate on the TE011 mode at
resonant frequency of ω0 ≈ 18.66 GHz. Before measuring the sample itself, the empty cavity resonant frequency, ω0, and
bandwidth of the resonance, Γ0, as a function of temperature were measured. The bandwidth is related to quality factor of the
cavity Q through the relation Q = ω0/Γ, and the quality factor for our cavity is ∼ 106 in the superconducting state. Upon the
insertion of the PdPb2 sample into the cavity, the change in resonant frequency, ∆ω(T ) = ωs(T )−ω0(T ), and the bandwidth
∆Γ(T ) = Γs(T )−Γ0 was measured for temperature ranging from 0.5 K to 5 K. Assuming all external conditions were kept
constant during both measurements, external contributions to the Γ from cables and coupling would ideally be removed. Sample
heating was minimized by using a low microwave power of -20 dBm.

The technique relies on the fact that the introduction of the sample is a small perturbation on the overall structure of
the electromagnetic standing wave pattern within the cavity and is therefore adiabatic. Thus, a PdPb2 crystal of ∼ 3 mg
(∼ 6.8× 10−4 cm−3) was placed in the cavity of volume 9.26 cm−3. For the measurement, the sample was placed at the
magnetic field antinode of TE011 mode of the cavity, see Figure 9. This results in the measured frequency shift to contain
components of both the electric and magnetic responses of the sample. This results in the measured frequency shift to contain
components of both the electric and magnetic responses of the sample. Thus, the measured resonant properties can be related to
generalized electromagnetic susceptibility2, 3. In the skin-depth regime applicable only to samples with large conductivities,
such as superconductors, where the microwaves are confined close to the sample surface the measured resonant properties,
∆ω u ∆ω+ i∆Γ/2, can be related to complex surface impedance, Z̃s = Rs+ i∆Xs, through the equation ∆ω̃

ω0
= ξ Z̃s+ lim|σ̃ |→∞

∆ω̃

ω0

where constants ξ and lim|σ̃ |→∞
∆ω̃

ω0
are known as the resonator constant and metallic shift respectively, both of which depend
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on the mode of resonance, the sample geometry, and the sample position within the cavity. Physically, the metallic shift
corresponds to the shift in the complex frequency of the sample if it was infinitely conducting. The resonator constant ξ

accounts for the size of electromagnetic field at the sample position. These quantities are calibrated from the normal state
resistivity of the sample. The real part of complex surface impedance, Rs is the surface resistance, and the imaginary part ∆Xs is
the change in surface reactance.

The sample geometric factors, metallic shift, and resonator constant, in the expression Z̃s =
1
ξ

(
∆ω̃

ω0
− lim|σ̃ |→∞

∆ω̃

ω0

)
, can

either be calculated analytically by solving the field equations inside the resonator cavity or experimentally by comparing
the normal state resistivity. For example, if a perfect spherical metallic sample is placed at the magnetic field antinode of the
cavity, in the Hagen-Rubens limit (ωτ � 1), the metallic shift is given by −γ0(Vs/Vc)/(n−1) and the resonator constant is
given by −9iγ0(Vs/Vc)ω0Z0a/4c0, where γ0 is the mode constant, n is the depolarization factor, ω0 is the cavity frequency, Vs
is the sample volume, Vc is the volume of the cavity and z0 is the impedance of vacuum3. However, the samples used in our
measurement are small and not of well defined shape, making it hard to analytically calculate the exact geometric factors in
order to accurately determine the metallic shift and the resonator constant.

In the present case, we calculate the value of metallic shift by equating the experimentally obtained Rs(T ) = Xs(T ) in the
normal state. Similarly, one can determine the value of the resonator constant ξ by comparing the experimentally measured
Rs with the calculated Rs =

√
µωρdc/2 from electrical resistivity ρdc of a dc transport measurement in the normal state or

by directly equating the microwave conductivity in the normal state with the dc conductivity from a transport measurement.
This equality is expected for good metals in Hagen-Rubens limit (ωτ � 1), where the scattering rate is much higher than the
measurement frequency (1/τ� ω), so the conductivity of the sample (described by the Drude model: σ̃ = ne2τ/m∗(1+ iωτ))
has only a real part to a good approximation3. We can obtain the scattering rate in the normal state by comparing the conductivity
to the Drude model, iωµ/Z̃s = ne2τ/m∗(1+ iωτ). This equation can be solved by considering the real and the imaginary parts
individually as the two equations with ne2/m∗ and τ as two variables. We find the Oscillator strength ne2/m∗ = 1.53×1029

C2m−3kg−1 and ωτ ≤ 0.04� 1.

10 Deriving effective surface impedance in terms of layers
For a thin film normal fluid with conductivity σ and thickness t backed by a bulk superconducting material with an impedance
Zsc, A. R. Kerr has derived the expression for the effective impedance4,

Zeff =
k
σ

[
ekt+ σZsc−k

σZsc+k e−kt

ekt− σZsc−k
σZsc+k e−kt

]
Here, the wave vector for normal fluid channel is given by k(σ) = 1+i

δ (σ) and the classic skin depth is δ =
(

2
ωσ µ

)1/2
.

Assuming kt = x, σZsc−k
σZsc+k = a and take ex = 1+ x (for small x). Thus:

Zeff =
k
σ

[
ex+ae−x

ex−ae−x

]
= k

σ

[
(1+a)+(1−a)x
(1−a)+(1+a)x

]

=
k
σ

[
σZsc + kx
k+σZscx

]
= k

σ

[
σZsc+k(kt)
k+σZsc(kt)

]
Zeff =

Zsc
σt +( k

σ
)2

1
σt +Zsc

Ignoring higher order terms and taking normal impedance 1/σt = Rt we get,

Zeff ≈ ZscRt
Zsc+Rt

At low temperatures T < Tc/3, the bulk superconductor should have a purely imaginary impedance e.g. Zsc = iXsc. This
implies that

Rs + iXs =
Rt iXsc

Rt+iXsc
,

Rt =
R2

s+X2
s

Xs
.

These expressions are used to extract Rt in the main text.
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Figure 9. Schematic of our cavity resonator. A cut away on the front is included so that the sapphire rod, used to mount a
sample, is visible. The top plate contains holes for inserting coaxial cables with small antenna to couple to the cavity. These
coupling ports are located at the magnetic field maximums of the TE011 mode.
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11 Penetration depth
One of the important properties one can extract from the complex conductivity is the effective penetration depth. For a
conventional superconductor, in the superconducting state for T → 0, σ1� σ2 implies Rs + iXs = i

√
µ0ω/σ2. In the case of

Rs� Xs, taking σ2 = 1/µ0ωλ 2, we obtain Xs = µ0ωλ . Thus, the temperature-dependent penetration depth λ (T ) is directly
proportional to the sample’s reactance, as Xs(T ) = µ0ωλ (T ), where µ0 s the permeability of free space and ω is the microwave
resonance frequency. In our case σ2(T → 0)/σ1(T → 0)∼ 10, so the condition σ1� σ2 is satisfied weakly as compared to a
convetional superconductor where σ1(0)/σ2(0) = 0. We take our extracted penetration depth as a good approximation of the
actual penetration depth. The superconducting gap magnitude can further be extracted at temperatures Tc/T ≥ 3 by fitting to
λ (T ) using the following:

∆λ (T ) = λ (0)
√

π∆(0)
2kBT exp

(
−∆(0)

kBT

)
where λ (0) is the penetration depth at T = 0 K and kB is the Boltzmann constant. The superconducting gap is found to be
∆(0)≈ 0.4 meV, which is in good agreement with the superconducting energy gap extracted from heat capacity measurement.
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Figure 10. The change in penetration depth as a function of temperature is extracted from the surface reactance Xs for PdPb2.
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