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I. COMPUTATIONAL DETAILS

Our all-electron DFT+DMFT implementation1 ex-
tremizes the following functional2

Γ[ρ, VKS , Gloc,Σ, Vdc, nd] = −Tr ln

(
(iω + µ+∇2 − VKS)δ(r− r′)−

∑
τLL′

P (rr′, τLL′)(Σ− Vdc)L′L

)
(1)

−
∫

[VKS − Vext]ρd3r − Tr (ΣGloc) + Tr(Vdcnd) + ΦH [ρ] + Φxc[ρ] + ΦDMFT[Gloc]− Φdc[nd]

of three pairs of conjugate variables. Imposing station-
arity leads to

δΓ

δVKS
= 0 : Trω(G(rr′)δ(r− r′))− ρ(r) = 0 (2)

δΓ

δρ
= 0 : −(VKS − Vext) +

δ[ΦH + Φxc]

δρ
= 0 (3)

δΓ

δGloc
= 0 : −Σ +

δΦDMFT[Gloc]

δGloc
= 0 (4)

δΓ

δΣ
= 0 : Trr(P (rr′, τLL′)G)−Gloc = 0 (5)

δΓ

δVdc
= 0 : −Trωr(P (rr′, τLL′)G) + nd = 0 (6)

δΓ

δnd
= 0 : Vdc −

δΦdc
δnd

= 0 (7)

where Trω = T
∑
iωn

and Trr =
∫
d3rd3r′. At the

saddle-point ρ and VKS are the electronic charge den-
sity and the Kohn-Sham potential, Gloc and Σ are the
local Green’s function and DMFT self-energy, Vdc is the
double-counting potential, and nd is the occupancy of
the correlated orbital, ΦH [ρ] and Φxc[ρ] are the Hartree
and the exchange-correlation energy functionals, and
ΦDMFT[Gloc] is the sum of all skeleton diagrams con-

structed from Gloc and local Coulomb repulsion Û . This
summation is carried out by the impurity solver. The
local Coulomb repulsion Û is parametrized with Slater
parametrization. The impurity model is solved by the
continuous-time quantum Monte Carlo method.3,4

Vext is the external potential, containing the material
specific information. P (rr′, τLL′) is the projector to the
local correlated orbital at atom τ with angular momen-
tum indices L,L′. We use the projector P 2(rr′, τLL′)

introduced in Ref. 1 with an energy window of ≈ 20 eV
around the Fermi level. For maximal locality of corre-
lated states, this projector is implemented in real space.
The iridium t2g states are treated dynamically, while the
rest of the valence states in the interval of ≈ 20 eV are
treated in a mean-field way.

For the double-counting correction, the method ex-
plained in Ref. 1 is used, where Φdc[nd] = ndEdc and
Edc is parametrized by the standard fully-localized-limit
formula5 Edc = U(n0d − 1/2) − J/2(n0d − 1), and n0d is
the nominal occupancy of the correlated ion. In particu-
lar, for the Ir4+ ion in Ruddlesden-Popper series we take
n0d = 5.

The DFT part of our code is based on the WIEN2k
package.6 The exchange-correlation energy in DFT
(Φxc[ρ]) is evaluated using the PBE functional.7 The
DFT+DMFT calculations are fully self-consistent in the
electronic charge density, chemical potential, and impu-
rity levels. The experimental crystal structures as ob-
tained in Ref. 8, Ref. 9, and Ref. 10 are used for 214, 327,
and 113, respectively. To obtain spectra on the real axis,
maximum entropy method is used for analytical contin-
uation of the self-energy.11

The energy range in computing the hybridizations
and self-energies spanned a 20 eV window around the
Fermi energy (EF), allowing us to use a set of system-
independent local Coulomb interaction parameters U and
J . This is in contrast to other DMFT calculations on iri-
dates19,20 where downfolding to Ir t2g−orbitals was per-
formed, so that the proper values of U and J depend
sensitively on the screening by the bands eliminated from
the model. The value of U for our large energy window
was estimated for the undistorted 214 with tetragonal
structure (P4/mmm) using the method of Ref. 14, which
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leads to U ≈4.5 eV and J≈0.8 eV. To properly simulate
the non-collinear magnetic state in 214, we chose different
local coordinates on each Ir atom, with local quantiza-
tion axis of spin in the direction of the ordered magnetic
moment, and used proper Wigner rotations of spins and
orbitals to transform the local self-energy to a common
global axis.

The DOS and optical conductivities were computed
from analytic continuation of the self-energy from the
imaginary frequency axis to real frequencies using an
auxiliary Green’s function and the maximum-entropy
method. The DMFT calculations were performed at
50 K, below the AFM transition temperature of the 214
(240 K)15 and 327 (280 K)16. Brillouin zone integrations
were done over 1000 k points in the whole zone in the self-
consistent calculations and 8000 k points for the density
of states and optical conductivity computations.

For comparison, we also carried out DFT+U cal-
culations using the full-potential linearized augmented
plane wave (FLAPW) method as implemented in the Elk
code.17 Since DFT+U does not include screening effects,
the fully screened interaction on Ir is needed, which is
here determined to be U ≈ 2.5 eV by fitting the size of
the gap and magnetic moments in 214 to the DMFT re-
sults. The calculations are done on a 4×4×1 (6×6×4)
k-mesh for the 214 and 327 (113) compounds with well
converged total energies and magnetic moments.

When considering epitaxial strain, the out-of-plane lat-
tice parameter and internal lattice coordinates are re-
laxed using VASP.18 The plane-wave energy cutoff is
taken to be 550 eV, with atomic forces converged to
1.0 × 10−3 eV/Å in the GGA approximation. The cal-
culations are done on a 6× 6× 2 (13× 13× 9) k-mesh for
the 214 and 327 (113) compounds. The magnitude of or-
bital and spin moments and their ratios calculated using
VASP with GGA+U+SOC agree well with the values we
presented using the Elk code.

II. VARIATION OF MAGNETIC MOMENTS
WITH RESPECT TO EPITAXIAL STRAIN

The variation of the magnetic moments with respect to
epitaxial strain can be understood utilizing the general-
ized effective J=1/2 wave functions defined in the main
text (Eq. 1). Within the low-energy subspace of ψ±1/2,
the orbital and spin moments can be evaluated by:

〈Ô〉 =

(
〈ψ+1/2 | Ô | ψ+1/2〉 〈ψ+1/2 | Ô | ψ−1/2〉
〈ψ−1/2 | Ô | ψ+1/2〉 〈ψ−1/2 | Ô | ψ−1/2〉

)
,

(8)

where Ô is the spin/orbital moment operator Sα/Lα
(α = x, y, z), and ψ±1/2 refer to the generalized effec-

tive J=1/2 states

|ψ+ 1
2
〉=−

√
3− 2γ(ω)2

3
|dxy ↓〉+

γ(ω)√
3

(|dyz ↑〉 − i |dxz ↑〉),

|ψ− 1
2
〉=
√

3− 2γ(ω)2

3
|dxy ↑〉+

γ(ω)√
3

(|dyz ↓〉+ i |dxz ↓〉),

(9)

defined in the main text.
Using these states, it is straightforward to derive the

magnitude of the magnetic moments when magnetization
points along z-direction:

〈µzL〉=
2

3
γ2∆n≈(

2

3
+

4

3
γ̃)∆n

〈µzS〉=(
4

3
γ2 − 1)∆n≈(

1

3
+

8

3
γ̃)∆n,

(10)

and when it is in-plane:

〈µxyL 〉=
2

3
γ
√

3− 2γ2∆n≈(
2

3
− 2

3
γ̃)∆n

〈µxyS 〉=
3− 2γ2

3
∆n≈(

1

3
− 4

3
γ̃)∆n.

(11)

Here ∆n≡n1/2−n−1/2 is the difference of the occupation
numbers of the ψ±1/2 states.

III. DENSITY OF STATES AND ORBITALLY
RESOLVED SPECTRA
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FIG. 1: Total Density of states and its 5d projection. SC
corresponds to the fully charge self-consistent calculation, and
NSC to the calculation with Kohn-Sham potentil fixed at the
DFT charge.

In Fig. 1 we show the total Density of States (DOS)
as well as orbitally resolved Ir-5d DOS of Sr2IrO4 in an
extended energy range. The oxygen states are peaked
below −2 eV while the energy range between −2 eV and
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FIG. 2: Spectral function of Sr2IrO4 orbitally resolved into
effective J=1/2 (orange) and J=3/2 (blue) components.

+4 eV is dominated by Ir-5d states. A smaller part of
the Ir-5d spectral weight is located at frequencies below

−4 eV.

Many implementations of LDA+DMFT do not update
electronic charge on the self-consistent DMFT density
matrix, instead in these implementations the LDA Kohn-
Sham potential is fixed at the LDA charge density. We
show in Fig. 1 that such non-charge self-consistent ap-
proximation to our functional Eq. (1) is a quite good
approximation, since there is very little difference in the
DOS in the two variants of the method. The main differ-
ence between our calculations and previous LDA+DMFT
literature on Sr2IrO4

19,20 is then coming from the inclu-
sion of oxygen ligands states, but not from charge self-
consistency.

In Fig. 2 we resolve the momentum dependent spectral
function of Sr2IrO4 into its orbital contributions from
J = 1/2 and J = 3/2. As stated in the main text, the
conduction band is overwhelmingly of J = 1/2 nature,
while the valence band has both J = 1/2 and J = 3/2
character. It is primarily of J=1/2 at (π, 0) point and of
J=3/2 at (0, 0) point. Moreover, at (0, 0) point there is
almost no weight with J=1/2 character in the occupied
part of the spectra.
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