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Abstract. We extend our first-principles study of novel ferroelectric perovskite sys-
tems in which compositional inversion symmetry is broken [N. Sai, B. Meyer and D.
Vanderbilt, Phys. Rev. Lett. 84, 5636 (2000)] by (i) focusing on the piezoelectric re-
sponse of the triple-cell heterovalent system Ba(Ti-§,Ti,Ti+d)O3, and (ii) studying the
strength of the symmetry breaking in the double-cell system (Ba,Sr)(Ti-6,Ti+d)O3
with simultaneous A-site and B-site substitutions. We observe the enhanced piezo-
electric response coefficient es3 when increasing the compositional parameter § in the
triple-cell system. This enhancement is quite drastic for the metastable minimum,
but only modest for the stable minimum, corresponding respectively to the minority
and majority wells of the ferroelectric double-well structure. In the double-cell sys-
tem, we find that the increase in strength of symmetry breaking with the chemical or
concentration perturbation is dominated by the term linear in §, in contrast with the
0% dependence found in the triple-cell system. A symmetry-based justification of the
dominance of the linear term is provided.

INTRODUCTION

Technologically important materials that display ultra-high piezoelectric re-
sponse have recently been found in many alloy ferroelectrics or more complex
solid-solution systems [1]. Numerous theoretical calculations have been carried out
on perovskite oxides such as Pb(Zr,Ti)O3 or ferroelectric relaxors represented by
Pb(Zr,Nb,Ti)O3 and Pb(Mg,Nb,Ti)O3 to investigate the origin of the large response
[2-5]. It was shown that the ferroelectric and piezoelectric properties exhibit great
sensitivity to composition [1,4]. This feature, together with the variety of crys-
tal configurations, has provided this class of materials with an exceptional tuning
ability for improving the efficiency of applications.

The potential, however, for designing new materials with tuning freedom has
by no means been exhausted. Very recently, we have for the first time reported
a theoretical study of ferroelectric systems with compositionally broken inversion
symmetry [6]. To summarize briefly, we studied ferroelectric systems of the form



FIGURE 1. Side view of the (Al/QA'l/Q)(Bl/QBi/Q)O;; structure. In our study, A and A’ are
Ba and Sr, and B and B’ are either Sc and Nb or virtual Ti-6 and Ti+d atoms.

(Al/gAll/g ’1’/3)303 and A(Bl/g,Bi/3 1’/3)03 with three different cations that alter-
nate layer by layer along the stacking direction. Focusing on the breaking of the
inversion symmetry along the ferroelectric direction, we found a great disparity be-
tween the effects of heterovalent substitutions, such as in Ba(Sc/3Ti;/3Nby/3)Os,
and isovalent substitutions, such as in (Ba,/35ri/3Ca;/3)TiO3. The heterovalent
symmetry-breaking perturbation is so strong as to completely suppress one of the
minima in the ferroelectric double well, while isovalent substitution only weakly
affects the ferroelectric behavior. In particular, the study has emphasized a triple-
cell model system with cyclically alternating cations Ti, Ti—d and Ti+d. Here o
is a continuous parameter, tunable between 0 and 1, that accounts for the nuclear
charge difference between a true Ti atom and virtual atoms having slightly less
or more nuclear charge. Surprisingly at first sight, the strength of the symmetry
breaking in this system was found to scale as §°.

It is generally expected that the piezoelectric response will increase for a system
of lowered symmetry [7]. Therefore one might expect that it should be possible to
enhance certain ferroelectric properties, such as the piezoelectric response, using the
enormous freedom allowed for by the type and pattern of imposed compositional
order. In the first part of the present paper, we describe previously unreported
calculations of the piezoelectric response for the Ba(Ti-d,Ti,Ti+d)O3 system.

In the second part of our paper, we study a double-unit-cell system denoted by
(Al/gAll/z)(Bl/QBi/z)Og as shown in Fig. 1. In contrast with the triple-cell system,
inversion symmetry in the double-cell system is broken by simultaneous substi-
tutions on the A- and B-sites. As before, the spontaneous polarization direction
is assumed to lie along the tetragonal stacking direction. We will show that the
strength of the symmetry breaking in the double-cell system has a quite different
behavior compared to the triple-cell symmetry-breaking system.

METHOD

Total-energy calculations are based on the Vanderbilt ultrasoft pseudopotential
[8] scheme within the local-density approximation. Details of the pseudopotentials
can be found in Ref. [9]. A 4 x4 x 2 Monkhorst-Pack mesh [10] is used for sampling



the Brillouin zone in the self-consistent calculations and a 25-Ry plane-wave cutoff
is used throughout. Our procedure for locating both local energy minima in the
case of a distorted double-well potential has been reported previously in Ref. [6]. To
study the piezoelectric response, the polarization P is calculated for each structure
using the Berry-phase approach [11,12], with a 4 x 4 x 10 k-point grid used for the
k-space integration in the polarization calculations.

RESULTS

A Piezoelectric response of the triple-cell system

The lattice parameters for the Ba(Ti-0,Ti,Ti+d)O3 system are chosen so that
the volume is 1248.9au® and c/a = 3.036. We have assumed the ferroelectric
order parameter to lie only along the z-axis. In order to study quantitatively the
symmetry breaking as a function of J, we have tracked the ferroelectric ground
state configurations at different 6 by gradually increasing 0 by small amounts.
Each calculated relaxed structure at one value of ¢ is taken as the initial guess for
the next structure, and the atomic coordinates are relaxed again. However, there
exists a critical value of 9 beyond which the secondary minimum vanishes and only
one minimum remains locally stable.

The piezoelectric coefficients e;; are defined as derivatives of the polarization with
respect to strain at zero macroscopic electric field. Thus, in leading order, P =
P’ +e¢;j€;, where P? is the spontaneous polarization of the unstrained system along
the i-th Cartesian direction, €, is the strain tensor, and e;; is the piezoelectric tensor
[2] in Voigt notation. It has been shown that the proper piezoelectric response is
just related to the variation of the Berry phase with strain deformation [13]; we
can therefore compute the proper response directly using

e dog,
€ij = % 8 d—ej Rai (1)

where ¢, is the Berry phase in direction «, R,; is the real-space lattice vector, and
Q) is the volume. In our calculations, we focus on the principal element ez3 and
introduce several additional strains in the range |es| < 0.01 into the fully relaxed
ground-state structure (reference state), and re-optimize the coordinates. We find
that in order to obtain a good fit for every structure within the strain of this
range, the variation of the polarization has to be fitted with at least a third-order
polynomial in strain, where the linear coefficient gives the piezoelectric constant.
We also separately computed the clamped-ion piezoelectric response that involves
only external strains at fixed coordinates. Its magnitude amounts to only 2-3% of
the total piezoelectric response and it carries the opposite sign. Therefore, the
total piezoelectric response is mainly due to the atomic sublattice displacements,
or “internal strain,” similar to what has been found in the PT and PZT materials
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FIGURE 2. Calculated and fitted piezoelectric response es3 as a function of § in the
Ba(Ti-6,Ti,Ti+6)O3 system.

2,3]. In the following, we report only the total piezoelectric response including
both clamped-ion and internal-strain contributions.

The eg3 piezoelectric response for both the principal (“majority”) and the sec-
ondary (“minority”) minima are plotted together as function of § in Fig. 2 (solid
squares). For d=0 the system is just BaTiOjz in the tetragonal phase. We find
that the polarization P, = 0.24C/m? is very close to the experimental value of 0.27
C/m?. es3 is found to be 7.5 C/m?2. For positive §, we plot the piezoelectric response
for the energetically-favored principal minimum. The eg3 coefficient increases by
a factor about 1.4 as it reaches a maximum at 0 ~ 0.4. Then the value starts to
drop and becomes lower than that of BaTiO3z at 6 = 0. The response is found to
be significantly different for negative §, corresponding to the secondary minimum;
here esz3 increases sharply for 6 < —0.25 and appears to diverge as 0 approaches
some critical value from above. The divergence is well fitted by a power law of the
form eg3 ~ Ag(6 —0.)~7, where 7 = 0.31, Ay = 5.58, and the critical value d. equals
—0.34.

An intuitive explanation for the divergence of the piezoelectric response at d,. is
readily available. To produce a large piezoelectric response, the structure needs to
have a nearly flat internal energy surface [14]. Thus, in ferroelectrics, the piezoelec-
tric response tends to diverge at the paraelectric-to-ferroelectric phase transition
(7). When ¢ is tuned in the present system so that the secondary minimum is
about to disappear, the saddle point approaches the secondary minimum, the bar-
rier between them becomes very low, and the upward curvature at the secondary
minimum is going to zero. Intuitively, this represents the kind of flat energy surface
that can provide a large piezoelectric response.

Next, we show that a simple model that takes into account the macroscopic
strain can illustrate quantitatively the behavior of the piezoelectric response within
a range of 0 corresponding to the physical structures. The total energy can be
expanded in the ferroelectric soft-mode variable up to fourth order as



E = Ey + Eyu + Eyu® + Eyu! (2)

where the coefficients FE,, are functions of 9§, and the zero of u has been chosen to
make the d3E/du® term vanish. The leading J-dependence of the E; coefficient
is as az0®, while By and E, have a d-dependence like ag + a90?. This behavior
follows from the symmetry, which allows simultaneous exchange of u < (—u) and
d < (—0) without changing the total energy.

We write the free energy in terms of a single mode of the polarization P that
couples to the macroscopic strain e,

F(P,6,¢) = ep(8) + e1(8) P + ez(8) P + e4(8) P* + ceP?. (3)

The equilibrium polarization Py(9) is given by 0F /0P = 0, so that for e — 0, the
piezoelectric constant is

OPy(6) 2¢ Py (5)

BT 06 T 2e0(0) + 12e4(0)B2(0) )

The interesting range of ¢ is when Py(d) is real. Within this range, we substitute
the numerically computed coefficients e;(d), e2(d), and e4(d) into Eq. (4) and plot
in Fig. 2 (smooth curve) the analytically fitted es3 versus ¢ for both the stable and
the metastable minimum. We scale the constant ¢ in Eq. (4) so that the fitted and
the calculated e33 are equal at 6 = 0. Evidently, the two curves exhibit the same
behavior. The data and the fit agree well within the ¢ range of 40.25. Discrepancies
in e33, however, become more pronounced in the vicinity of the peak that appears
at  ~ 0.4 in the calculations and 6 = 0.4 in the fit. The fitted peak is 20% higher
than the calculated one.

We also use the above model in order to investigate what has caused the piezo-
electric response to peak at § = 0.4. We calculate the curvature of the free-energy
surface 92F/9*P at the three stationary points (two minima and saddle point)
and plot them in Fig. 3. At § = 0, the two minima have identical positive curva-
ture. For the case of the metastable minimum, the curvature drops continuously
as 0 increases and vanishes at 6 = —0.34, which is consistent with the divergent
piezoelectric response we find at this point. On the positive side of the plot, the
curvature drops, forming a valley at 6 = 0.4, and then increases again. This result
suggests that the behavior of the piezoelectric response can be explained by the na-
ture of the d-dependence of the curvature. Intuitively, one can say that increasing
d has two effects: a §? tendency that makes e, less negative, and a 6 symmetry
breaking. The first tendency makes both wells more shallow and soft, thus causing
es3 to increase, as 6 first deviates from zero with either sign. But then the §° ten-
dency establishes one of the wells as the principle well, and the ez3 of this well is
eventually suppressed as the growing positive e; term causes the remaining single
well to deepen and harden with increasing 6.
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FIGURE 3. Second derivatives of the free-energy surface evaluated at the stationary points
(minima or saddle points, as indicated by the sketches) according to the model of Eq. (3). (For
|6] > 0.34 the secondary minimum and saddle point have disappeared.)

B Broken symmetry in the (A4;,A],)(B12B] /)03 system

There are many possible layer sequences that can break the inversion symmetry
along the growth direction of a mixed cubic perovskite. Here, we consider a layer
sequence that accomplishes this with the minimum repeat period, only 10 atoms
per primitive cell. Specifically, we study the (A, A} /2)(B1 /2B /2)03 system shown
in Fig. 1, in which there are simultaneous alternating substitutions on both A and
B sites.

It has been demonstrated in the case of the triple-cell system that heterova-
lent substitutions along the order-parameter direction have a much stronger effect
on breaking the symmetry than isovalent substitutions. Hence, we first consider
an “A-iso-B-hetero” system (Baj/5Sry/2)(Sci/2Nby/2)O3 in which the heterovalent
perturbation occurs on the B site only. However, for this case we find that the
symmetry breaking is already strong enough that there is only a single ferroelec-
tric minimum, similar to what was found for the Ba(Scy/3Ti1/3Nby/3)O3 triple-cell
system [6]. Therefore, in order to understand how the system evolves from the un-
perturbed to the strongly-perturbed regime, we turn to the system (Ba,Sr)(Ti+d,
Ti-0)O3 where virtual atoms of type Titd have been substituted on the B-sites,
and increase 0 gradually from 0 to 1.

The equilibrium volume is frozen to equal the sum of the volumes of BaTiO3
and SrTiO3 in their cubic structures [9]. We use ¢/a = 1.012, the same as for the
BaTiOj3 5-atom tetragonal cell. The previously-developed search strategy is applied
to find the principal and secondary ferroelectric ground states for a series of broken-
symmetry systems with ¢ increasing from system to system. The total energy as
a function of the soft mode amplitude u is computed along the line direction that
connects the two energy minima as shown in Fig. 4. When § exceeds 0.3 the second
minimum has already vanished, indicating a stronger symmetry breaking compared
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FIGURE 4. Total energy vs. soft-mode amplitude for different ¢ in the (Ba,Sr)(Ti+0d, Ti-§)O3
system.

to the triple cell system. Hence, only the energy profiles concluding with § = 0.25
have been plotted.

Once again we analyze the results for the total energy as a function of the soft
mode variable u via the polynomial expansion of Eq. (2). The d-dependent coeffi-
cients F1, Fy and E, are plotted as functions of ¢ in Fig. 5. For comparison, we have
also plotted the corresponding coefficients for the Ba(Ti-0,Ti,Ti+d)O3 system in
the same figure. The linear coefficient, which is a primary measure of the symmetry
breaking (we name it the “symmetry breaking force”), clearly shows the leading
dependence on § to be linear in the double-cell system while it is as 63 in the triple-
cell system. Indeed, a much stronger symmetry-breaking effect has been observed
at very small ¢ in the present system. However, it is also indicated that further
enhancement of the symmetry breaking with increasing ¢ will be much milder in
this system than in the triple-cell system. The E5 and Fj coefficients show similar
dependence on ¢ in the form of a; + a»0? as in the triple-cell system. However,
the intercept Ey(0) = 0 gives 6 = 0.37 and the critical value for the existence of a
second energy minimum is only ¢ < 0.28.

To compare the differences between the symmetry-breaking behavior in the two
systems, it is instructive to consider the forces on the atoms while they sit at their
ideal positions. We call this pattern of forces the “cubic force vector” j?; In general,
fz can be expanded in powers of 9,

fo=f0 4 f5 4 ;282 4 FO§B 4 ... (5)

where fc(o) is the force vector at 6 = 0. Note that ji(o) is nonzero in this system, so
that the unit vector f. = f./|f.| can be expanded as

=0 40, f @5+ asf®6 4 ... (6)
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FIGURE 5. Total energy expansion coefficients in Eq. (2) as functions of § for both the
(Ba,Sr)(Ti+d, Ti-0)O3 system (solid squares) and Ba(Ti-6,Ti,Ti+d)O3 system (empty circles).

In Ref. [6], we identified the C5, symmetry group with the Ba(Ti-9,Ti,Ti+d)O3
system. Note that C, is not the point-group symmetry; instead, it refers to the 6-
element symmetry group of the §=0 system, generated by 2-fold mirror reflections
along z and 3-fold translations along z. In this C3, group, the ferroelectric mode
unit vector ¢ transforms according to irrep As, while the perturbation pattern
associated with ¢ belongs to irrep E. Thus, the coupling of the ferroelectric mode
and the cubic force vector f fc can only have f fe F®)52 as the leading term because
fc(?’) is associated with the product of E x E'x E that contains the A, representation.

In contrast, the double cell system at 6 = 0 does not have symmetry with respect
to a primitive translation, and so obeys the S, symmetry group generated by just
the 2-fold mirror reflection along z. Both the ferroelectric mode vector and the
perturbation of § are odd in terms of the mirror operation, so that they both
belong to the same irrep A,. Therefore, a coupling of the form & - (2§ is still
prohibited, but E . fc(l) does not have to vanish. Hence, the coupling between the
ferroelectric mode and the symmetry-breaking cubic-force vector in the double-cell
system is governed by both the terms in & - (f() + a3 f(36?).

To illustrate the above analysis, we show in Fig. 6 the coupling between E and fc
The angles are directly calculated from cos™ (¢ f,). In the bottom panel, the angle
is shown for the Ba(Ti-0,Ti,Ti4+0)O3 system. We observe that the angle decreases
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FIGURE 6. Angle between the ferroelectric mode vector E and the cubic force vector fc as a
function of ¢ for the (Ba,Sr)(Ti+d, Ti-0)O3 (top panel) and Ba(Ti-d,Ti,Ti+d)O3 (bottom panel)

systems.

quadratically with increasing § and intersects 6 = 0 at exactly 90°, in agreement
with the predicted & - {362 dependence. In the double-cell system shown in the
upper panel, the angle has a similar quadratic dependence on ¢, but the intercept
is not at 90° but at 98.2°, illustrating that the ¢ - f() term does not vanish in the
present system.

CONCLUSIONS

In summary, we studied the evolution of the piezoelectric response in the model
ferroelectric system Ba(Ti-d,Ti,Ti+d)O3 with compositionally broken inversion
symmetry. A divergence in the response is observed for the metastable energy
minimum at the critical § value where this secondary minimum is about to disap-
pear. For the energetically favored minimum, the piezoelectric response is mod-
erately enhanced and peaks in the vicinity of 6 ~ 0.4. A simple model based on
a free-energy expansion in the zero macroscopic strain limit is used to describe
the behavior of these responses. We also extended our studies to the double-cell
system (Ba,Sr)(Ti+§,Ti-0)O3. We find that the strength of the symmetry break-
ing depends linearly on ¢, providing a different picture from that of the triple-cell
system studied previously.
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