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The relaxations and vibrational properties of dihydride steps on the Si(111):H surface are stud-
ied from first principles. Besides the expected large relaxation of the SiH2 unit on the step edge,
long-range relaxations are found along a zigzag chain deep into the bulk. Three vibrational modes
are found with frequencies 10.9, 22.5, and 56.0 cm™' higher than the Si-H stretching frequency
on the terrace. A scissors mode is identified with frequency 262 cm™' higher than the Si-H wag-
ging frequency. These frequency differences and mode assignments are in good agreement with

experiment.

I. INTRODUCTION

The successful synthesis of nearly defect-free Si(111):H
surfaces! has recently led to numerous studies of the un-
usual properties of this ideal semiconducting surface.2™*
It is an even richer subject for experiment and theory
when steps are introduced by miscutting. By studying
the Si-H stretching vibrations using polarized infrared
absorption techniques, Jakob and Chabal® showed that
for proper preparation conditions, the steps are atomi-
cally straight, and the structure near the steps was also
determined. Morin et al.5” measured the vibrational en-
ergy flow of the Si-H stretching modes and concluded
that the steps act like sinks for the vibrational energy to
transfer into the Si bulk. The distribution of the terrace
sizes was determined by Jakob et al.® by investigating
the inhomogeneous broadening of the infrared spectra.

When the Si(111):H surface is miscut in the (112) di-
rection by 9°, atomically straight dihydride steps are ob-
tained. The structure deduced for these steps® is shown
in Fig. 1. All the Si atoms remain fourfold coordinated.
The dihydride unit, comprising H(1) and H(2) bonded to
Si(1), is determined to lie within the (110) plane.® Si(2)
has four Si neighbors. All the dangling bonds are sat-
urated, the distribution of terrace widths is centered at
around six rows, the kink density is low, and the struc-
ture is remarkably stable.

We have theoretically studied the Si(111):H surface
with dihydride steps, employing first-principles pseu-
dopotentials within the framework of density functional
theory and the local density approximation. This paper
reports the detailed structural and vibrational properties
of this surface from our calculations. Section II provides
the computational details, including the information on
the supercell, the initial atomic positions, and the pseu-
dopotentials we used. Section III describes the relaxed
structure, and Sec. IV gives the vibrational properties,
focusing on the modes localized at the steps. Section V
presents our conclusions.

II. COMPUTATIONAL DETAILS
The structure of the step is taken from Jakob et al.,’
and the step is assumed to be atomically straight from
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—o00 to +00 in the (110) direction. This is a good approx-
imation as the kink density is reported® to be only a few
percent. Therefore, in the (110) direction, the periodicity
is the same as that of the underlying lattice.

The experiments of Jakob et al.® indicate that the ter-
races between two neighboring steps do not have exactly
the same size. For surfaces miscut by 9°, the terrace sizes
have a broad distribution peaked at six rows. To study
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FIG. 1. Supercell used in the calculation. (a) Top view: H
atoms are not shown, larger circles stand for higher positions
(larger z coordinates). The dashed lines show the would-be
supercell if n were 4. (b) Side view: larger circles are Si atoms
and smaller circles are H atoms. All the numbered atoms are

within the supercell.
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the effects of this terrace size distribution from first prin-
ciples is beyond our current capacity. We thus assume
a constant terrace size, and argue that this assumption
does not appreciably affect the relaxation and the dynam-
ical properties that we are interested in as long as the ter-
race size is large enough. This argument is valid because
the relaxation within the surface plane is well localized
near the step, as we will see later. This assumption gives
us periodicity in the surface direction perpendicular to
the steps. Finally, we construct a slab geometry consist-
ing of four double layers of Si (with appropriate number
of H atoms to saturate all the dangling bonds) and a two-
double-layer-thick vacuum. We thus arrive at a supercell
structure that is periodic in all three dimensions.

The miscut angle § and the number of rows on the
terrace n are related by

tanf = 2v/2/(3n—1), (1)

and the number of Si atoms and H atoms in the supercell
are 2(4n+1) and 2(n+1), respectively. When n=6, 6=
9.45°, which is the closest to the experimental condition,
0 = 9°. However, when n is even, the supercell symmetry
is body-centered monoclinic, as shown in Fig. 1(a); this
further complicates the calculations, especially the choice
of k points. We thus compromise on the miscut angle,
and choose n =25, that is, five rows on the terrace. The
corresponding miscut angle is 11.42°, the total number of
atoms in the supercell is 54, among them 12 are H atoms,
and the symmetry is monoclinic (Cyp). The supercell is
shown in Fig. 1. The directions (112), (110), and (111)
are chosen to be the z, y, and z axes, respectively. The
lattice vectors are, in units of the lattice constant a of
crystalline Si,

a1 7V6/6 0 —/3/3
az | = 0 v2/2 0 . (2)
as 0 0 2v/3

Two special k& points, (0,%,0) and (0,%,0) in units of
27 /a9, are used, corresponding to a total of four k points
in the whole first Brillouin zone. Use of a single k point
in the a; and a3 directions is adequate because the cor-
responding supercell dimensions are large.

To make the calculations tractable, we use first-
principles ultrasoft pseudopotentialsl® to represent the
electron-nuclei interactions. The pseudopotential for hy-
drogen is generated in the neutral ground state; only the
s channel is included, with one reference energy at the
eigenvalue, and the cutoff radii for the valence wave func-
tion and for the local potential are 0.8 and 0.7 a.u., re-
spectively. For Si, the pseudopotential includes s, p, and
d channels. To make the d channel bound, a +1 charge
state is used, and the occupation numbers are 1.0, 1.75,
and 0.25 for the three channels, respectively. The cutoff
radius is 1.7 a.u. for all the valence electronic wave func-
tions and 1.2 a.u. for the local potential. Two reference
energies are used for each channel, one at the eigenvalue
and the other 0.5 — 1 Ry above the eigenvalue. The charge
augmentation functions have cutoff radius 0.6 a.u. for
hydrogen and 1.0 a.u. for silicon. Both the charge aug-
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mentations and the pseudo wave functions are generated
with optimum smoothness using a procedure similar to
that of Rappe et al.!! (When the reference energy is not
an eigenvalue, so that the atomic wave function diverges
at large radius, we have found the following ad hoc pre-
scription to work quite well. We first replace the diverg-
ing tail by an arbitrarily chosen smooth tail which van-
ishes at large radius and which matches in value and first
through third derivatives at the cutoff radius r.. We then
apply the Rappe-like procedure to optimize the smooth-
ness inside 7., and finally we reattach the correct tail out-
side r..) Wave functions are expanded in a plane-wave
basis set with an energy cutoff of 20 Ry, which is very
well converged for both Si and H. A conjugate gradient
method!? is used to diagonalize the Hamiltonian.

Using the above described pseudopotential and energy
cutoff with ten special k points, the structural properties
of diamond-structure bulk Si are calculated. The lattice
constant, bulk modulus, and pressure derivative of the
bulk modulus are found to be 5.378 A, 0.97 Mbar, and
3.68, respectively, in good agreement with other pseu-
dopotential calculations. The theoretical lattice constant
is used in the step calculations.

ITII. RELAXATION

All the atoms are allowed to relax fully. The C5;, sym-
metry is automatically preserved, and the relaxation in
the y direction is always zero because of mirror symme-
try.

The Si-H bond lengths are shown in Table I. On a
flat surface, this bond length is 1.506 A, if all the other
computational conditions are left unchanged. The bond
lengths of the atoms H(4), H(5), and H(6) are almost un-
affected by the steps, showing that the effect of the steps
in the direction parallel to the surface is highly localized.
The bond lengths of the three H atoms on the step change
more, especially for H(2) and H(3). These two bonds are
shortened by almost 0.01 A. Raghavachari et al.'® argued
that the relaxations are caused by the strong interaction
between H(2) and H(3); our calculations clearly tend to
confirm this picture.

On a flat surface, the bond lengths between the first-
and second-layer Si atoms are 2.329 A. As shown in Ta-
ble II, they are only modestly modified by the existence
of the step, except for the bond between Si(4) and Si(1)
which has the largest relaxation of 0.023 A. Further in-
side the bulk, the bond length variations are all small ex-
cept along the zigzag chain of atoms Si(4), Si(10), Si(15),
and Si(20). This relaxation pattern presumably has its
origin in the interaction between H(2) and H(3), because
this strong repulsion is approximately pointed at the di-

TABLE I. Calculated Si-H bond lengths. On a perfect sur-
face without steps, the calculated Si-H bond length is 1.506 A.

H atom 1 2 3 4 5 6
Bond length (A) 1.502 1.497 1.498 1.505 1.506 1.508
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TABLE II. Calculated Si-Si bond lengths. Primes denote
atoms translated by a primitive lattice vector. The calculated
bulk bond length is 2.329 A.

Bond Bond length (A) Bond Bond length (A)
1-2 2.319 2-3 2.337
3-8 2.336 3-9 2.330
4-9 2.323 4-10 2.306
5-10 2.320 5-11 2.315
6-11 2.320 6-12 2.317
7-12 2.320 7-2 2.319
8-13 2.340 9-14 2.325
10-15 2.312 11-16 2.329
12-17 2.328 13-18 2.328
14-18 2.329 14-19 2.328
15-19 2.329 15-20 2.321
16-20 2.330 16-21 2.327
17-21 2.330 17-8' 2.330
20-24 2.319 21-25 2.327

rection of this chain. A less significant expansion along
the zigzag chain of atoms Si(2), Si(3), Si(8), and Si(13) is
also predicted. It appears to be caused by the combina-
tion of the upward force on H(2) and the compressive re-
laxation along the 4-10-15-20 Si chain. The fact that the
large relaxations are along the zigzag chains is consistent
with the work of Kane,'* which revealed the importance
of the interactions along these chains.

The absolute relaxations of all the Si atoms are listed
in Table III. Again, sizable relaxations are only observed
along the two zigzag chains, apart from Si(1). The bond
length between Si(1) and Si(2) stays the same as on a flat
surface, and this large relaxation is due to a 3° rotation
of the bond away from the step.

The four Si-H bonds corresponding to atoms H(1)
through H(4) all rotate. The Si(1)-H(1) bond rotates
away from the step [toward the left in Fig. 1(b)] by 3.5°
relative to its ideal (vertical) orientation, or 0.5° rela-
tive to the Si(1)-Si(2) bond. The Si(1)-H(2) bond bends
upward by 5.5° relative to its ideal orientation, or 2.5°
relative to the Si(1)-Si(2) bond. The Si(4)-H(3) bond
bends away from the step [toward the right in Fig. 1(b)]
by 4.2°, and the Si(5)-H(4) bond bends toward the step
[toward the left in Fig. 1(b)] by 0.9°, both relative to the
vertical direction.

TABLE III. Absolute relaxations of Si atoms relative to
the bulk.

Atom Relaxation (A) Atom Relaxation (A)

1 0.15 2 0.04
3 0.04 4 0.12
5 0.04 6 0.01
7 0.01 8 0.02
9 0.01 10 0.07
11 0.01 12 0.01
13 0.01 14 0.01
15 0.05 16 0.01
17 0.02 18 0.01
19 0.01 20 0.03
21 0.01
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The relaxations are mainly caused by the strong re-
pulsive interaction between atoms H(2) and H(3). In
the ideal (unrelaxed) configuration, the distance between
these two H atoms would be 1.39 A. Since the open shells
of both H atoms are saturated, this distance is too small,
and the resulting repulsion gives rise to the relaxations
described above. After the relaxation, the separation be-
tween these two H atoms becomes 1.78 A.

This picture agrees qualitatively with the Hartree-Fock
cluster calculations by Raghavachari, Jakob, and Chabal
(RJC),! but quantitatively, the agreement is poor. RJC
reported a 20° rotation of the Si(1)-H(1) and Si(1)-H(2)
bonds away from the step, although the displacement of
Si(1) is 0.15 A, the same as our result. Also, because of
the limitation of their cluster size, RJC were not able to
observe the long-range relaxation along the zigzag chains.
The discrepancy regarding the Si-H bond rotations might
arise from the fact that atom Si(10) is held fixed in the
calculation of RJC, so that Si(4) and H(3) cannot re-
lax sufficiently and H(2) has therefore to rotate more to
compensate.

Hines et al.® determined the Si(1)-H(1) bond rotation
angle from angle-resolved Raman scattering, and found
it to be 28+4°, which is considerably larger than our
finding of 3.5°, and very close to RJC’s results. Unfor-
tunately the source of this discrepancy is unknown. One
possible contributing factor may be that the interpreta-
tion of Ref. 9 was based on measurements of mode C;
under the assumption that C; is completely localized on
H(1). This assumption is a reasonably good approxima-
tion, but not in perfect accord with our theoretical find-
ings (see next section). In any case, our results suggest
that the interpretation of the Raman experiments might
be reexamined with a view to determining whether al-
ternative explanations consistent with a smaller rotation
angle might be permissible.

IV. VIBRATIONS

Infrared absorption spectra taken by Jakob and
Chabal® on the stepped surface showed three sharp peaks
at frequencies above the Si-H stretching frequency on a
flat surface. Following the notation of Jakob and Chabal,
we denote the Si-H stretching mode on a flat surface (at
the I" point) by A, and the three higher frequency modes
on the stepped surface by Cy, C3, and C3 in the order
of ascending frequencies. It is straightforward to study
these modes in our first-principles calculation.

After the structure of the stepped surface is fully re-
laxed, we construct the dynamic matrix at the I point of
the Brillouin zone by the frozen-phonon method. Since
there are so many atoms in the supercell, it would be too
time consuming to construct the full dynamic matrix.
We therefore assume that the Si atoms are stationary, or
equivalently that the mass of the Si atoms is infinite. This
simplification introduces a known error of about —1%.
Each of the H atoms is displaced in the (112) (z) and
(111) (z) directions by a small amount, and the forces on
all the other atoms are calculated. The motion of the H
atoms in the (110) (y) direction need not be considered,
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TABLE IV. Frequency differences compared with experiment and other calculations, in cm™".

The “scissors mode” corresponds to atoms H(1) and H(2) attached to Si(1) moving against each
other, and the “low-energy mode” corresponds to the same two H atoms moving in phase with
each other (see text). “Cs — C2” means the frequency of Cs minus the frequency of C2, and
“Scissors—Wagging” means the frequency of the “scissors mode” minus the frequency of the wagging

mode on a flat surface.

Previous theory® Present theory Expt.
Cs — C, 30 33.5 33.5P
C. - Cy 16 11.6 7.5°
Ci—A 10.9 10.3°
Scissors—Wagging 262 273°
Low energy—Wagging —158

®Reference 13.
bReference 5.
“Reference 16.

because a mirror symmetry prevents these modes from
coupling to modes polarized in the z-z plane. The frozen-
phonon displacements are taken to be only 5.4x1073 A,
but the anharmonicity is still not negligible, especially
in the bond-stretching direction. This anharmonicity is
corrected by subtracting the anharmonic component of
the potential established in our previous work.* The er-
rors caused by the approximations described here (fixed
Si atoms and correction of anharmonicity by a poten-
tial derived on a flat surface) are all very small, and the
total error in the vibrational frequencies is expected to
be less than 2%. Moreover, we are mainly interested in
frequency differences, in which case these errors tend to
cancel further.

From our calculations, the high-energy modes Cy, C5,
and C5 are mainly the Si-H stretching vibrations cor-
responding to H(1), H(3), and H(2), respectively. The
coupling between these stretching vibrations is small, and
some weight is also carried on H(4). C; has about 81%
of its weight on H(1), 6% on H(3), and 12% on H(4); C;
has about 11% on H(1), 12% on H(2), 62% on Hs, and
14% on H(4); C3 has about 2% on H(1), 85% on H(2),
and 12% on H(3). The small coupling between stretching
vibrations is in qualitative agreement with experiment.!®
Quantitatively, however, the coupling is larger than the
estimate of 2% extracted from the interpretation of the
experiment. The frequency differences among modes A,
Ci, C,, and Cj are listed in Table IV, and the agreement
with experiment is better than expected.

Each H atom has two wagging modes, of which we
only calculate one. Fortunately the wagging modes we
calculate are by far the more interesting ones. Rowe et
al.1® observed a sharp peak at 910 cm ™!, 273 cm ! higher
than the frequency of the wagging mode on a flat surface,
in their electron energy-loss experiment, and assigned it
as the “scissors mode” corresponding to the two atoms
H(1) and H(2) attached to Si(1) moving against each
other. This mode also comes out of our calculation, and
the frequency difference between it and the wagging mode
on a flat surface is 262 cm ™!, in good agreement with the

experimental result. We further predict that one more
wagging mode is localized near the step which is yet to be
observed. It is a low-energy mode corresponding to the
atoms H(1) and H(2) moving in phase with each other,
with a frequency about 160 cm™! lower than the wagging
frequency on a flat surface.

V. CONCLUSIONS

We have studied the relaxation and dynamical prop-
erties of steps on the Si(111):H surface from first princi-
ples. A supercell of 42 Si atoms and 12 H atoms plus two
double layers of vacuum is used, and the computational
effort is sizable. The use of ultrasoft pseudopotentials is
important for describing the hard H atoms.

As pointed out by Raghavachari, Jakob, and Chabal,
the interesting relaxations can all be ascribed to the
strong repulsive interaction between two H atoms at the
step. The SiH, unit on the edge of the step and the H
atom on the lower terrace near the step all rotate away
from the step, and the relaxation of the Si atoms goes
deep into the bulk along a zigzag chain.

Three high-frequency phonon modes are found to be
localized at the step, with frequency differences in excel-
lent agreement with experiment. A “scissors mode” is
found, in good agreement with experiment, and another
low-frequency wagging mode is predicted which is also
localized at the step.
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