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The Si(111):H surface is studied within the framework of density-functional theory using the local-
density approximation. In particular, the Si-H stretch mode is investigated in detail. The phonon-
phonon interaction strength is found to be 2I'=—76.6 cm ~! and the phonon bandwidth to be 7.2 cm ~".

Two-phonon bound states are found to exist with a binding energy of 86.4 cm ~

with the recent experimental result of 90 cm ~'.

PACS numbers: 68.35.Ja, 63.20.Hp, 68.35.Wn

The Si(111):H surface, in which all of the silicon dan-
gling bonds are saturated by a single monolayer of hydro-
gen atoms, is undoubtedly one of the most ideal semicon-
ductor surfaces obtainable. It has been extensively stud-
ied both experimentally [1,2] and theoretically [3-9] in
the past. Since the flat, stable Si(111):H surface was
synthesized recently using wet chemical methods [10,11],
interest in this surface has been renewed [12-14]. Re-
cently, Guyot-Sionnest [14] reported that for the hydro-
gen vibration, the experimentally measured frequency
shift between the vg.; and the v ., transitions is 90 cm ~ ',
indicating very strong phonon-phonon interactions and
the existence of two-phonon bound states.

Two-phonon bound states were first discussed by
Cohen and Ruvalds [15] and later explored by many au-
thors [16,17]. The Si(111):H surface is probably the best
system in which to look for two-phonon bound states for
several reasons. The system is so simple that other com-
plications will not enter the problem; it is a two-di-
mensional system, so that two-phonon bound states are
more likely to exist; and the vibrational amplitude of the
hydrogen atom is large and therefore the anharmonicity
is strong. Of course, Guyot-Sionnest’s experimental work
is also a strong motivation. We studied the Si(111):H
surface using density-functional theory within the local-
density approximation (LDA), focusing on frozen-phonon
calculations of the hydrogen vibrations. It is found that
two-phonon bound states do exist. The energy of a two-
phonon bound state is lower than the energy of two free
phonons by 86.4 cm ~', in excellent agreement with the
experimental result of Guyot-Sionnest.

The surface is modeled by a slab consisting of eight
layers of silicon atoms and four layers of vacuum. The
dangling bonds on each surface of the slab are saturated
by a layer of hydrogen atoms. Norm-conserving pseudo-
potentials [18] are employed to eliminate the core elec-
trons of silicon and to soften the potential of hydrogen.
The exchange-correlation energy used is the Ceperley-
Alder form [19] parametrized by Perdew and Zunger
[20]. The wave functions are expanded in a plane-wave
basis with a kinetic-energy cutoff of 20 Ry. Six
Monkhorst-Pack [21] special k points in the irreducible
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! in excellent agreement

surface Brillouin zone are used to carry out the integra-
tion in k space. The size of the slab, the plane-wave ener-
gy cutoff, and the number of k points are all very well
converged. An iterative algorithm [22] is used to obtain
eigenvectors.

The positions of all the atoms are allowed to relax.
The relaxation is very small as expected because of the
lack of dangling bonds. The Si-H bond length is found to
be 1.524 A, slightly longer than the ideal bond length,
1.480 A, in a SiH4 molecule. The first-to-second layer
spacing of Si atoms contracts by 0.025 A, while all the Si
atoms deeper inside the bulk hardly relax at all. These
results are in reasonably good agreement with those of
Kaxiras and Joannopoulos [7].

Following the method of Meade and Vanderbilt [23],
we found the surface stress of the Si(111):H surface to be
0.21 eV/(1x1 cell). As expected, this stress is very small
compared to the stresses calculated for other Si surfaces,
e.g.,2.6eV/(1x1cell) for Si(111)7x7 or —1.1 eV/(1x1
cell) for Si(111):Ge [23]. This result suggests that
Si(111):H may be a useful fiducial surface for experi-
mental surface stress measurements [24,25], which are
only sensitive to stress differences on opposite sides of a
wafer. Moreover, it suggests that surface stress is unlike-
ly to have a major influence on the frequency of Si-H vi-
brations in the vicinity of surface steps [26].

Since silicon is much heavier than hydrogen, the hydro-
gen stretching and wagging modes are almost completely
localized on the hydrogen atom. In fact, our test calcula-
tions show that the vibrational amplitude of the first-layer
silicon atom is only about 2% of that of the hydrogen
atom for both the Si-H stretching and wagging vibra-
tions. Therefore, all the silicon atoms are kept fixed in
the frozen-phonon calculations reported below. This
simplification introduces a well-defined error of about
—1% to the phonon frequencies. This error also exists in
other first-principles calculations [7,9].

In the harmonic approximation, the frequencies of the
Si-H stretching and wagging vibrations are found to be
Wstretch =250.8 meV (2023.2 cm ~') and wwag =69.4 meV
(559.3 cm "), in satisfactory agreement with the LDA
calculations of Ref. [7] (@giretch =245 and wu., =71
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meV) and Ref. [9] (@greich =246 and @u, =79 meV).
The differences are probably because of the differences in
the energy cutoff and the k-point sampling. The band-
width of the Si-H stretching mode is also calculated. It is
very small, only 7.2 cm ™! or 0.9 meV, in reasonable
agreement with the experimental estimation [14] of 11
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Azimuthal symmetry is assumed, which is expected to be
a good approximation for small vibrations, and indeed
our calculations show that the error due to this approxi-
mation is less than 1%. A typical example of our frozen-
phonon calculations is shown in Fig. 1, where the hydro-
gen atoms are displaced in the = direction (x =) =0),
and the three coefficients w-, a3, and a4 are determined.
Both the energies and the forces are used in the least-
squares fit, and the largest displacement is about 0.15 A.
All the coefficients in Eq. (1) as determined by our
frozen-phonon calculations are listed in Table I.

The truncation of the polynomial causes a problem, in
that the potential in Eq. (1) is not bounded from below.
In fact. when z° tends to infinity while keeping
0.071 <z2/(x?4?) <1.126, the potential tends to
minus infinity. Higher-order terms in the polynomial,
which would correct this problem, are difficult to obtain
with reasonable accuracy. Fortunately, we can get useful
information out of the potential in spite of this problem.
We diagonalize the one-particle Schrodinger equation
with the potential in Eq. (1) by expanding the wave func-
tions in a basis of a three-dimensional anisotropic har-

Energy (eV)
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FIG. 1. An example of frozen-phonon calculations corre-
sponding to displacing the hydrogen atoms in the - direction
(x=y=0). (a) Energy and (b) force vs displacement. The
lines are the result of a least-squares fit.
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In order to study the anharmonic effects of the hydro-
gen vibration, we have done a large number of frozen-
phonon calculations to map out the energy surface for the
hydrogen atom. The polynomial expansion of the poten-
tial felt by a hydrogen atom is truncated after the

fourth-order term, and has the form

(1)

monic oscillator with frequencies o, and w-. We first re-
strict the basis set such that no excitations in the x and y
directions are included, and increase the number of exci-
tations (basis functions) in the z direction until the lowest
few eigenstates converge. (In this subspace, the potential
is stable.) Then we repeat the above procedure while sys-
tematically increasing the number of excitations in the x
and v directions included in the basis set. It turns out
that the lowest few eigenstates converge quite precisely
before the instability sets in.

The results for the phonon energies of the hydrogen
stretching and wagging modes are listed and compared
with experimental results [27,28] in Table II. It is in-
teresting to note that the anharmonicity decreases the
frequency of the Si-H stretching mode while increasing
that of the wagging mode. The effective phonon-phonon
coupling strength I' is defined as 2I'=(E,—E,) — (E,
—Ey), where Eq, £, and E; are the lowest three eigen-
values of the Si-H stretching phonon mode. 2I" is found
to be —76.6 cm~'. We find that the coupling to the
wagging mode is as important as the anharmonicity in
the stretching mode; the contribution to 2I' from the
latter alone (by=bs=c4=0) is only 39.9 cm ~".

To study the two-phonon bound state. we use a
Hubbard-type model Hamiltonian.

H =6()Za,-fa,<+l“Za,-+a,~+a,-a,-+t (2)

Z a,ﬂta‘,- .

Gj)

to describe the coupling of the Si-H stretching excitations
at the surface; here {ij) denotes nearest neighbors on the
triangular lattice. Equation (2) is to be regarded as an
effective Hamiltonian; that is. a; is the quasiparticle
creation operator which raises the system of Eq. (1) on
site i from its ground to first excited state. Thus,
e0o=E,—Ey and T are just the quantities introduced

TABLE [. Parameters in the potential felt by a hydrogen
atom, as defined in Eq. (1).
w: (meV) 250.84
0y (meV) 69.35
as (eV/A?®) —11.13
bs (eV/A?) 4.00
as (eV/AY) 9.94
ba (eV/AY) —11.66
ca (eV/AY) 0.78
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TABLE II. The frequencies of the Si-H stretching and wag-
ging phonon modes, the bandwidth, the phonon-phonon cou-
pling strength, and the binding energy of the two-phonon bound
state of the Si-H stretching mode, compared with experiments.

All are at the T point, and in units of cm ~'.

Present
theory Experiment

2083.7%
637"

Si-H stretching frequency 1957.8
Si-H wagging frequency 573.9
Bandwidth ¢ 7.2
Phonon-phonon coupling strength 2I' —=76.6
Binding energy of two-phonon bound state ~ 86.4 90°¢

aRef. [27]. ‘Ref. [14].
bRef. [28].

above, and implicitly include the renormalization due to
coupling with wagging modes and three- and four-phonon
interactions considered there. The last term in Eq. (2)
represents the nearest-neighbor harmonic hopping; be-
cause ! is already the smallest energy in Eq. (2), it is
reasonable to use the unrenormalized coupling obtained
from the harmonic bandwidth calculation. For a triangu-
lar lattice (the first Brillouin zone of which is shown in
the inset of Fig. 2), o(F)—w(M)=8:. From our
frozen-phonon calculations, we find that (") —w (M)

<CE%§1
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w, (em™
-15-10-5 0

(b)

C (c)
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FIG. 2. Phonon dispersion curves along some high-symmetry
lines, for the model of Eq. (2). Inset: The surface first Bril-
louin zone. (a) One-phonon dispersion. (b) Two-phonon con-

tinuum corresponding to two free phonons. (c) Dispersion of
two-phonon bound state.

w, (em™)
-86.4 —86.3 —86.2

=6.40 cm ', and therefore 1 =0.80 cm ~'. The disper-

sion curves along some high-symmetry lines are plotted in
Fig. 2(a), where €y has been artificially shifted to
€0 = — 61 so that the phonon bands are relative to o (T").

We then solve the model Hamiltonian in Eq. (2) with
two phonons in the system. Equation (2) is rewritten in k
space as

H=Zwl(k)a|’{ak+£ Y afak-vavak-v, (3)
K N Kkk

where (k) is the one-phonon energy at lattice momen-
tum k, as plotted in Fig. 2(a). Notice that K, the total
lattice momentum of two phonons, is a good quantum
number. Following Cooper [29], we find that for a given
K, the exact condition for a solution is

I I _ 1
Wg oK)+ 0 (K—k) —0(K) @

r’

where w,(K) is the total energy of two phonons. The
solutions of Eq. (4), which consist of a continuum and a
two-phonon bound state band, are found numerically and
plotted in Figs. 2(b) and 2(c). Notice that the bandwidth
of the continuum is 14.4 cm ~', twice the bandwidth of
the one-phonon band, as expected. The bandwidth of the
two-phonon bound state, however, is only 0.14 cm ™', i.e.,
much smaller than that of the one-phonon band. This is
expected because two one-phonon states are averaged
over in Eq. (4). In Guyot-Sionnest’s two-color sum-
frequency generation experiment [14], the frequency shift
measured is at the T" point, since both the pump and the
probe beams are in the infrared. From our calculation,
the binding energy of the two-phonon bound state at the
T point is 86.4 cm ~!, in good agreement with Guyot-
Sionnest’s experimental result [14], 90 cm ™.
Two-phonon bound states are known to exist in molec-
ular solids and liquids [30]. However, to our knowledge,
Si(111):H is the first covalently bonded system in which
the existence of a two-phonon bound state has been
confirmed both experimentally and theoretically. The
two-phonon bound state arises in this system from the
fact that the Si-H bond is very similar to a tightly bonded
molecule in the sense that the Si-H stretch frequency is
much higher than all other vibrational frequencies, and
the coupling between neighboring oscillators is weak.
Our results suggest that two-phonon bound states are
likely to exist on other surfaces covered with light atoms
or molecules. The Si(111):H surface, although simple,
exhibits many interesting properties, including the long
lifetime of the Si-H stretching phonon mode [12] and an
electron energy-loss peak [31] at 795 cm ~' which is yet
to be accounted for. In the future, we will try to under-
stand these properties from first-principles calculations,
as well as to study steps on the Si(111):H surface and
their effects on the electronic and vibrational properties.
In conclusion, we have studied the Si(111):H surface
from first principles. The stress on this surface is found
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to be very small. The structure and the hydrogen vibra-
tional frequencies agree with other LDA calculations.
The emphasis of the study is on the anharmonic effects
associated with the Si-H stretching mode. A very strong
phonon-phonon coupling is found, and a narrow band of
two-phonon bound states is found to exist with a binding
energy of 86.4 cm ~!, in excellent agreement with the re-
cent experimental result of 90 cm ~'.
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