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We present a perturbative method for calculating phonon properties of an insulator in the presence of a finite
electric field. The starting point is a variational total-energy functional with a field-coupling term that repre-
sents the effect of the electric field. This total-energy functional is expanded in small atomic displacements
within the framework of density-functional perturbation theory. The linear response of field-polarized Bloch
functions to atomic displacements is obtained by minimizing the second-order derivatives of the total-energy
functional. In the general case of nonzero phonon wave vector, there is a subtle interplay between the couplings
between neighboring k points introduced by the presence of the electric field in the reference state and
farther-neighbor k point couplings determined by the wave vector of the phonon perturbation. As a result,
terms arise in the perturbation expansion that take the form of four-sided loops in k space. We implement the
method in the ABINIT code and perform illustrative calculations of the field-dependent phonon frequencies for
III-V semiconductors.
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I. INTRODUCTION

The understanding of ferroelectric and piezoelectric ma-
terials, whose physics is dominated by soft phonon modes,
has benefited greatly from the availability of first-principles
methods for calculating phonon properties. In general, these
methods can be classified into two main types: the direct or
frozen-phonon approach1,2 and the linear-response
approach.3,4 In the former approach, the properties of
phonons at commensurate wave vectors are obtained from
supercell calculations of forces or total-energy changes be-
tween equilibrium and distorted structures. In the latter ap-
proach, based on density-functional perturbation theory
�DFPT�, expressions are derived for the second derivatives
of the total energy with respect to atomic displacements and
these are calculated by solving a Sternheimer equation3 or by
using minimization methods.4,5 Compared to the direct ap-
proach, the linear-response approach has important advan-
tages in that time-consuming supercell calculations are
avoided and phonons of arbitrary wave vector can be treated
with a cost that is independent of wave vector. However,
existing linear-response methods work only at zero electric
field.

The development of first-principles methods for treating
the effect of an electric field E in a periodic system has been
impeded by the presence of the electrostatic potential E ·r in
the Hamiltonian. This potential is linear in real space and
unbounded from below, and thus is incompatible with peri-
odic boundary conditions. The electronic band structure be-
comes ill defined after application of a potential of this kind.
Many attempts have been made to overcome this difficulty.
For example, linear-response approaches have been used to
treat the electric field as a perturbation.5,6 It is possible to
formulate these approaches so that only the off-diagonal el-
ements of the position operator, which remain well defined,
are needed, thus allowing for the calculation of Born effec-
tive charges, dielectric constants, etc. Since it is a perturba-
tive approach, a finite electric field cannot be introduced.

Recently, a total-energy method for treating insulators in
nonzero electric fields has been proposed.7,8 In this approach,
an electric enthalpy functional is defined as a sum of the
usual Kohn-Sham energy and an E ·P term expressing the
linear coupling of the electric field to the polarization P. The
enthalpy functional is minimized with respect to field-
polarized Bloch states, and the information on the response
to the electric field is contained in these optimized Bloch
states. Using this approach, it is possible to carry out calcu-
lations of dynamical effective charges, dielectric susceptibili-
ties, piezoelectric constants, etc., using finite-difference
methods.7,8 It would also be possible to use it to study pho-
non properties in a finite electric field, but with the afore-
mentioned limitations �large supercells, commensurate wave
vectors� of the direct approach.

In this work, we build upon these recent developments by
showing how to extend the linear-response methods so that
they can be applied to the finite-field case. That is, we for-
mulate DFPT for the case in which the unperturbed system is
an insulator in a finite electric field. Focusing on the case of
phonon perturbations, we derive a tractable computational
scheme and demonstrate its effectiveness by carrying out cal-
culations of phonon properties of polar semiconductors in
finite electric fields.

This paper is organized as follows. In Sec. II we review
the total-energy functional appropriate for describing an in-
sulator in an electric field and discuss the effect of the elec-
tric field on the phonon frequencies both for our exact theory
and for a previous approximate theory. The second-order ex-
pansion of the total-energy functional is derived in Sec. III,
and expressions for the force-constant matrix are given, first
for phonons at the Brillouin zone center and then for arbi-
trary phonons. In Sec. IV we report some test calculations of
field-induced changes of phonon frequencies in the III-V
semiconductors GaAs and AlAs. Section V contains a brief
summary and conclusion.
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II. BACKGROUND AND DEFINITIONS

A. Electrical enthalpy functional

We start from the electric enthalpy functional7

F�R;�;E� = EKS�R;�� − �E · Pmac��� , �1�

where EKS has the same form as the usual Kohn-Sham en-
ergy functional in the absence of an electric field. Here � is
the cell volume, Pmac is the macroscopic polarization, E is
the homogeneous electric field, R are the atomic positions,
and � are the field-polarized Bloch functions. Note that Pmac
has both ionic and electronic contributions. The former is an
explicit function of R, while the latter is an implicit function
of R through the Bloch functions, which also depend on the
atomic positions. When an electric field is present, a local
minimum of this functional describes a long-lived metastable
state of the system rather than a true ground state �indeed, a
true ground state does not exist in a finite electric field�.7

According to the modern theory of polarization,9 the elec-
tronic contribution to the macroscopic polarization is given
by

Pmac =
ief

�2��3 �
n=1

M �
BZ

dk�ukn��k�ukn	 , �2�

where e is the charge of an electron �e�0�, f�2 for spin
degeneracy, M is the number of occupied bands, ukn are the
cell-periodic Bloch functions, and the integral is over the
Brillouin zone �BZ�. Making the transition to a discretized
k-point mesh, this can be written in a form

Pmac =
ef

2��
�
i=1

3
ai

N�
�i��

l=1

N�
�i�

Im ln 

j=1

Ni

det Sklj,kl,j+1
, �3�

which is amenable to practical calculations. In this expres-
sion, for each lattice direction i associated with primitive
lattice vector ai, the BZ is sampled by N

�

�i� strings of k points,
each with Ni points spanning along the reciprocal lattice vec-
tor conjugate to ai, and

�Skk��mn = �umk�unk�	 �4�

are the overlap matrices between cell-periodic Bloch vectors
at neighboring locations along the string. Because Eqs. �2�
and �3� can be expressed in terms of Berry phases, this is
sometimes referred to as the “Berry-phase theory” of polar-
ization.

B. Effect of electric field on phonon frequencies

1. Exact theory

We work in the framework of a classical zero-temperature
theory of lattice dynamics, so that quantum zero-point and
thermal anharmonic effects are neglected. In this context, the
phonon frequencies of a crystalline insulator depend upon an
applied electric field in three ways: �i� via the variation of the
equilibrium lattice vectors �i.e., strain� with applied field; �ii�
via the changes in the equilibrium atomic coordinates, even
at fixed strain; and �iii� via the changes in the electronic

wave functions, even at fixed atomic coordinates and strain.
Effects of type �i� �essentially, piezoelectric and electrostric-
tive effects� are beyond the scope of the present work, but
are relatively easy to include if needed. This can be done by
computing the relaxed strain state as a function of electric
field using the approach of Ref. 7 and then computing the
phonon frequencies in a finite electric field for these relaxed
structures using the methods given here. Therefore, in the
remainder of the paper, the lattice vectors are assumed to be
independent of electric field unless otherwise stated and we
will focus on effects of type �ii� �“lattice effects”� and type
�iii� �“electronic effects”�.

In order to separate these two types of effects, we first
write the change in phonon frequency resulting from the ap-
plication of the electric field as

���q;E� = ��q;RE,E� − ��q;R0,0� , �5�

where ��q ;R ,E� is the phonon frequency extracted from the
second derivative of the total energy of Eq. �1� with respect
to the phonon amplitude of the mode of wave vector q,
evaluated at displaced coordinated R and with electrons ex-
periencing electric field E. Also, RE are the relaxed atomic
coordinates at electric field E, while R0 are the relaxed
atomic coordinates at zero electric field. Then Eq. �5� can be
decomposed as

���q;E� = ��el�q;E� + ��ion�q;E� , �6�

where the electronic part of the response is defined to be

��el�q;E� = ��q;R0,E� − ��q;R0,0� �7�

and the lattice �or “ionic”� part of the response is defined to
be

��ion�q;E� = ��q;RE,E� − ��q;R0,E� . �8�

In other words, the electronic contribution reflects the influ-
ence of the electric field on the wave functions and thereby
on the force-constant matrix, but evaluated at the zero-field
equilibrium coordinates. By contrast, the ionic contribution
reflects the additional frequency shift that results from the
field-induced ionic displacements.

The finite-electric-field approach of Refs. 7 and 8 pro-
vides the methodology needed to compute the relaxed coor-
dinates RE and the electronic states at finite electric field E.
The remainder of this work is devoted to developing and
testing the techniques for computing ��q ;R ,E� for given q,
R, and E, needed for the evaluation of Eq. �5�. We shall also
use these methods to calculate the various quantities needed
to perform the decomposition of Eqs. �6�–�8�, so that we can
also present results for ��el and ��ion separately in Sec. IV.

2. Approximate theory

Our approach above is essentially an exact one, in which
Eq. �5� is evaluated by computing all needed quantities at
finite electric field. However, we will also compare our ap-
proach with an approximate scheme that has been developed
in the literature over the last few years,10–13 in which the
electronic contribution is neglected and the lattice contribu-
tion is approximated in such a way that the finite-electric-
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field approach of Refs. 7 and 8 is not needed.
This approximate theory can be formulated by starting

with the approximate electric enthalpy functional10

F�R;E� = EKS
�0��R� − �E · Pmac

�0� �R� , �9�

where EKS
�0��R� is the zero-field ground-state Kohn-Sham en-

ergy at coordinates R and Pmac
�0� is the corresponding zero-

field electronic polarization. In the presence of an applied
electric field E, the equilibrium coordinates that minimize
Eq. �9� satisfy the force-balance equation

−
dEKS

�0�

dR
+ Z�0� · E = 0, �10�

where Z�0�=�dPmac
�0� /dR is the zero-field dynamical effective

charge tensor. That is, the sole effect of the electric field is to
make an extra contribution to the atomic forces that deter-
mine the relaxed displacements; the electrons themselves do
not “feel” the electric field except indirectly through these
displacements. In Ref. 10, it was shown that this theory
amounts to treating the coupling of the electric field to the
electronic degrees of freedom in linear order only, while
treating the coupling to the lattice degrees of freedom to all
orders. Such a theory has been shown to give good accuracy
in cases where the polarization is dominated by soft polar
phonon modes, but not in systems in which the electronic
and lattice polarizations are comparable.10–14

In this approximate theory, the effect of the electric field
on the lattice dielectric properties13 and phonon frequencies12

comes about through the field-induced atomic displacements.
Thus, in the notation of Eqs. �5�–�8�, the frequency shift
�relative to zero field� is

��ion� �q;E� = ��q;RE�,0� − ��q;R0,0� �11�

in this approximation, where RE� is the equilibrium position
according to Eq. �10�. We will make comparisons between
the exact RE and the approximate RE�, and the corresponding
frequency shifts ��ion�q ,E� and ��ion� �q ,E�, later in Sec. IV.

III. PERTURBATION EXPANSION OF THE ELECTRIC
ENTHALPY FUNCTIONAL

We consider an expansion of the properties of the system
in terms of small displacements � of the atoms away from
their equilibrium positions, resulting in changes in the charge
density, wave functions, total energy, etc. We will be more
precise about the definition of � shortly. We adopt a notation
in which the perturbed physical quantities are expanded in
powers of � as

Q��� = Q�0� + �Q�1� + �2Q�2� + �3Q�3� + ¯ , �12�

where Q�n�= �1/n ! �dnQ /d�n. The immediate dependence
upon atomic coordinates is through the external potential
vext���, which has no electric-field dependence and thus de-
pends upon coordinates and pseudopotentials in the same
way as in the zero-field case. The changes in electronic wave
functions, charge density, etc., can then be regarded as being
induced by the changes in vext.

A. Zero-q-wave-vector case

The nuclear positions can be expressed as

Rn	 = tn + d	 + bn	, �13�

where tn is a lattice vector, d	 is a basis vector within the unit
cell, and bn	 is the instantaneous displacement of atom 	 in
cell n. We consider in this section a phonon of wave vector
q=0, so that the perturbation does not change the periodicity
of the crystal and the perturbed wave functions satisfy the
same periodic boundary condition as the unperturbed ones.
To be more precise, we choose one sublattice 	 and one
Cartesian direction 
 and let bn	
=� �independent of n�, so
that we are effectively moving one sublattice in one direction
while freezing all other sublattice displacements. Since the
electric enthalpy functional of Eq. �1� is variational with re-
spect to the field-polarized Bloch functions under the con-
straints of orthonormality, a constrained variational principle
exists for the second-order derivative of this functional with
respect to atomic displacements.15 In particular, the correct
first-order perturbed wave functions �mk

�1� can be obtained by
minimizing the second-order expansion of the total energy
with respect to atomic displacements,

F�2���mk
�0� ;E� = min

��1�
�EKS��mk

�0� ;�mk
�1�� − �Pmac��mk

�0� ;�mk
�1�� · E��2�,

�14�

subject to the constraints

��mk
�0� ��nk

�1�	 = 0 �15�

�where m and n run over occupied states�. The fact that only
zeroth-order and first-order wave functions appear in Eq.
�14� is a consequence of the “2n+1 theorem.”15

Recalling that ��nk
�1�	 is the first-order wave function re-

sponse to a small real displacement � of basis atom 	 along
Cartesian direction 
, we can expand the external potential
as

vext�r� = vext
�0��r� + vext,	


�1� �r�� + vext,	

�2� �r��2 + ¯ , �16�

where

vext,	

�1� �r� = �

n

�vext�r�
�Rn	


, �17�

vext,	

�2� �r� = �

n

�2vext�r�
�Rn	


2 , �18�

etc. From this we shall construct the second-order energy
F�2� of Eq. �14�, which has to be minimized in order to find
��nk

�1�	. The minimized value of F�2� gives, as a by-product,
the diagonal element of the force-constant matrix associated
with displacement 	
. Once the ��nk

�1�	 have been computed
for all 	
, the off-diagonal elements of the force-constant
matrix can be calculated using a version of the 2n+1 theo-
rem as will be described in Sec. III A 3.

1. Discretized k mesh

In practice, we always work on a discretized mesh of k
points, and we have to take into account the orthogonality
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constraints among wave functions at a given k point on the
mesh. Here, we are following the “perturbation expansion
after discretization” �PEAD� approach introduced in Ref. 16.
That is, we write down the energy functional in its dis-
cretized form and then consistently derive perturbation
theory from this energy functional. Introducing the Lagrange
multipliers �k,mn to enforce the orthonormality constraints

��mk��nk	 = �mn, �19�

where �nk are the Bloch wave functions, and letting N be the
number of k points, the effective total-energy functional of
Eq. �1� can be written as

F = FKS + FBP + FLM, �20�

where FKS=EKS, FBP=−�Pmac·E, and FLM are the Kohn-
Sham, Berry-phase, and Lagrange-multiplier terms, respec-
tively. The first and last of these are given by

FKS =
f

N
�
kn

occ

��nk�T + vext��nk	 + EHxc�n� �21�

and

FLM = −
f

N
�

k,mn

occ

�k,mn���mk��nk	 − �mn� , �22�

where N is the number of k points in the BZ. As for the
Berry-phase term, we modify the notation of Eq. �3� slightly
to write this as

FBP = −
ef

2�
�
i=1

3 E · ai

N�
�i� �

k
Dk,k+gi

, �23�

where

Dkk� = Im ln det Skk� �24�

and gi is the reciprocal lattice mesh vector in lattice direction
i. �That is, k and k+gi are neighboring k points in one of the
N

�

�i� strings of k points running in the reciprocal lattice direc-
tion conjugate to ai.� Recall that the matrix of Bloch overlaps
was defined in Eq. �4�.

We now expand all quantities in orders of the
perturbation—e.g., ����=��0�+���1�+�2��2�+¯, etc.
Similarly, we expand Skk����=Skk�

�0� +�Skk�
�1� +�2Skk�

�2� +¯
where

Skk�,mn
�1� = �umk

�0� �unk�
�1� 	 + �umk

�1� �unk�
�0� 	 , �25�

Skk�,mn
�2� = �umk

�0� �unk�
�2� 	 + �umk

�1� �unk�
�1� 	 + �umk

�2� �unk�
�0� 	 , �26�

and we also define

Qk�k = �Skk�
�0� �−1 �27�

to be the inverse of the zeroth-order S matrix. Applying the
2n+1 theorem to Eq. �20�, the variational second-order de-
rivative of the total-energy functional is

F�2� = FKS
�2� + FBP

�2� + FLM
�2� , �28�

where

FKS
�2� =

1

N
�
k,m

occ

���mk
�1� �T�0� + vext

�0���mk
�1�	 + ��mk

�0� �vext
�1���mk

�1�	

+ ��mk
�1� �vext

�1���mk
�0�	� + EHxc

�2� �n� , �29�

FBP
�2� = −

ef

4�
�
i=1

3 E · ai

N�
�i� �

k
Dk,k+gi

�2� , �30�

FLM
�2� =

1

N
− �

k,mn

��k,mn
�1� ���mk

�1� ��nk
�0�	 + ��mk

�0� ��nk
�1�	�

+ �k,mn
�0� ��mk

�1� ��nk
�1�	� . �31�

In the Berry-phase term, Eq. �30�, we use the approach of
Ref. 16 to obtain the expansion of ln det Skk� with respect to
the perturbation. It then follows that

Dkk�
�2� = Im Tr�2Skk�

�2� Qk�k − Skk�
�1� Qk�kSkk�

�1� Qk�k� , �32�

where S�2�, S�1�, and Q are regarded as LL matrices �L is
the number of occupied bands�, matrix products are implied,
and Tr is a matrix trace running over the occupied bands.
Finally, in the Lagrange-multiplier term, Eq. �31�, a contri-
bution �k,mn

�2� ���mk
�0� ��nk

�0�	−�mn� has been dropped from Eq.
�31� because the zeroth-order wave functions, which have
been calculated in advance, always satisfy the orthonormal-
ity constraints ��mk

�0� ��nk
�0�	=�mn. Moreover, the zeroth-order

Lagrange multipliers are made diagonal by a rotation among
zeroth-order wave functions at each k point, and the first-
order wave functions are made orthogonal to the zeroth-order
ones at each iterative step, so that Eq. �31� simplifies further
to become just

FLM
�2� = − �mk��mk

�1� ��mk
�1�	 . �33�

Here, we have restored the notation �mk=�k,mm
�0� for the diag-

onal zeroth-order Lagrange multipliers.

2. Conjugate-gradient minimization

The second-order expansion of the electric enthalpy func-
tional in Eq. �28� is minimized with respect to the first-order
wave functions using a “band-by-band” conjugate-gradient
algorithm.5,17 For a given point k and band m, the steepest-
descent direction at iteration j is ��mk,j	=�F�2� /��umk

�1� �, where
F�2� is given by Eqs. �29�, �30�, and �33�. The derivatives of
FKS

�2� and FLM
�2� are straightforward; the new element in the

presence of an electric field is the term

�EBP
�2�

��umk
�1� �

= −
ief

4�
�
i=1

3 E · ai

N�
�i� ��Dmk,k+gi

	 − �Dmk,k−gi
	� , �34�

where

Dmkk� = ��uk�
�1�	Qk�k − �uk�

�0�	Qk�kSkk�
�1� Qk�k�m. �35�

In this equation, �uk�
�1�	 and �uk�

�0�	 are regarded as vectors of

length L �e.g., �u
mk�
�1� 	, m=1,L�, and vector-matrix and matrix-

matrix products of dimension L are implied inside the paren-
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theses. The standard procedure translates the steepest-
descent directions ��mk,j	 into preconditioned conjugate-
gradient search directions ��mk,j	. An improved wave
function for iteration j+1 is then obtained by letting

�umk,j+1
�1� 	 = �umk,j

�1� 	 + ���mk,j	 , �36�

where � is a real number to be determined. Since the � de-
pendence of F�2���� is quadratic, the minimum of F�2� along
the conjugate-gradient direction is easily determined to be

�min = − �1

2

dF�2�

d�
�

�=0
��d2F�2�

d�2 �
�=0

−1

. �37�

3. Construction of the force-constant matrix

To calculate phonon frequencies, we have to construct the
force-constant matrix

�	
,�� =
�2F

�R	
 � R��

. �38�

Each diagonal element ���,�� has already been obtained by
minimizing the F�2� in Eq. �28� for the corresponding pertur-
bation ��. The off-diagonal elements �	
,�� can also be
determined using only the first-order wave functions umk,��

�1�

using the �nonvariational� expression

�	
,�� =
2�

�2��3�
BZ

�
m

occ

��umk
�0� �vext,	


�1� + vHxc,	

�1� �umk,��

�1� 	

+ �umk
�0� �vext,	
,��

�2� �umk
�0�	�dk +

1

2
EHxc,	
,��

�2� , �39�

where vext,	

�1� =�vext /�R	
 etc.

B. Nonzero-wave vector case

In the case of a phonon of arbitrary wave vector q, the
displacements of the atoms are essentially of the form bn	


=� exp�iq · tn�, where � is a complex number. However, a
perturbation of this form does not lead by itself to a Hermit-
ian perturbation of the Hamiltonian. This is unacceptable,
because we want the second-order energy to remain real, so
that it can be straightforwardly minimized. Thus, we follow
the approach of Ref. 5 and take the displacements to be

bn	
 = �eiq·tn + �*e−iq·tn, �40�

leading to

vext�r� = vext
�0��r� + �vext,	
,q

�1� �r� + �*vext,	
,−q
�1� �r�

+ �2vext,	
,q,q
�2� �r� + �*2vext,	
,−q,−q

�2� �r�

+ ��*vext,	
,q,−q
�2� �r� + �*�vext,	
,−q,q

�2� �r� + ¯ ,

�41�

where

vext,	
,±q
�1� �r� = �

n

�vext�r�
�Rn	


e±iq·tn, �42�

vext,	
,±q,±q
�2� �r� = �

nm

�2vext�r�
�Rn	
 � Rm	


e±iq·tne±iq·tm, �43�

etc. Similarly, the field-dependent Bloch wave functions �
and enthalpy functional F can also be expanded in terms of �
and its Hermitian conjugate as

�mk�r� = �mk
�0��r� + ��mk,q

�1� �r� + �*�mk,−q
�1� �r� + ¯ �44�

and

F�E� = �F�0��E� + Fq
�1��E� + �*F−q

�1��E� + �2Fq,q
�2� �E�

+ 2��*Fq,−q
�2� �E� + �*2F−q,−q

�2� �E� + ¯ . �45�

The first-order wave functions in response to a perturba-
tion with wave vector q have translational properties

�mk,q
�1� �r + R� = ei�k+q�·r�mk,q

�1� �r� �46�

that differ from those of the zeroth-order wave functions

�mk
�0��r + R� = eik·r�mk

�0��r� . �47�

As a result, we cannot simply work in terms of perturbed
Bloch functions or use the usual Berry-phase expression in
terms of strings of Bloch functions. Also, in contrast to the
q=0 case, in which only one set of first-order wave functions
was needed, we now need to solve for two sets �mk,±q

�1� cor-
responding to the non-Hermitian perturbation at wave vector
q and its Hermitian conjugate at wave vector −q.5

We now proceed to write out the second-order energy
functional F�2���mk

�0� ;�mk,±q
�1� ;E�, corresponding to the sum of

the quadratic terms in Eq. �45�, and minimize it simulta-
neously with respect to �mk,q

�1� and �mk,−q
�1� .

First, making the same decomposition as in Eq. �28�, we
find that the Kohn-Sham part is

FKS
�2� = Eq,−q

�2� ��mk
�0� ;�mk,−q

�1� � + E−q,q
�2� ��mk

�0� ;�mk,q
�1� � , �48�

where

E−q,q
�2� =

2�

�2��3�
BZ

�
m

occ

��umk,q
�1� �vext,k+q,k+q

�0� �umk,q
�1� 	

+ �umk,q
�1� �vHxc,k+q,k+q

�0� �umk,q
�1� 	 + �umk,q

�1� �vext,k+q,k
�1�

+ vHxc,k+q,k
�1� �umk

�0�	 + �umk
�0� �vext,k,k+q

�1� + vHxc,k,k+q
�1� �umk,q

�1� 	

+ �umk
�0� �vext,k,k

�2� �umk
�0�	�dk +

1

2
EHxc

�2� . �49�

Note that terms Eq,q
�2� and E−q,−q

�2� vanish, essentially because
such terms transform like perturbations of wave vector ±2q
which, except when 2q equals a reciprocal lattice vector, are
inconsistent with crystal periodicity and thus cannot appear
in the energy expression. �If 2q is equal to a reciprocal lattice
vector, Eq,q

�2� and E−q,−q
�2� still vanish, as can be shown using

time-reversal symmetry.�
Second, we consider the Berry-phase coupling term. The

treatment of this term is rather subtle because, as mentioned
above, the perturbed wave functions are now admixtures of
parts with periodicity as in Eq. �46� and as in Eq. �47�, so
that the usual Berry-phase formula for the polarization9 can-
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not be used. A different approach is needed now in order to
express the polarization in terms of the perturbed wavefunc-
tions. For this purpose, we consider a virtual supercell in
which the wave vectors k and q would be commensurate and
make use of the definition introduced by Resta18 specialized
to the noninteracting case. The details of this treatment are
deferred to the Appendix , but the results can be written in
the relatively simple form

FBP
�2� = −

ef

2�
�
i=1

3 E · ai

N�
�i� �

k
Dk

�2��gi� , �50�

where

Dk
�2��g� = Tr�Sk,k+g

�1,1� Qk+g,k − Sk,k+g−q
�1,0�

 Qk+g−q,k−qSk−q,k+g
�0,1� Qk+g,k� , �51�

with Qk�k given by Eq. �27� and the superscript notation
S�s,t�=�s+tS /���*�s��t. From Eqs. �4� and �46�, we can write
these explicitly as

Skk�,mn
�1,0� = ��mk

�0� �e−ig·r��nk�,q
�1� 	 + ��mk,−q

�1� �e−ig·r��nk�
�0� 	 , �52�

Skk�,mn
�0,1� = ��mk

�0� �e−ig·r��nk�,−q
�1� 	 + ��mk,q

�1� �e−ig·r��nk�
�0� 	 , �53�

Skk�,mn
�1,1� = ��mk,q

�1� �e−ig·r��nk�,q
�1� 	 + ��mk,−q

�1� �e−ig·r��nk�,−q
�1� 	 .

�54�

Third, the treatment of the Lagrange-multiplier term is
straightforward; in analogy with Eq. �33�, we obtain

FLM
�2� = − �mk���mk,q

�1� ��mk,q
�1� 	 + ��mk,−q

�1� ��mk,−q
�1� 	� . �55�

If we look closely at Eq. �51�, we see that the second term
involves not simply pairs of k points separated by the mesh
vector g, but quartets of k points, as illustrated in Fig. 1.
Reading from left to right in the second term of Eq. �51�, the
k-point labels are k, then k+g−q, then k−q, then k+g, and
finally back to k. This is the loop illustrated in Fig. 1. Each
dark arrow represents a matrix element of S�1,0�, S�0,1�, or Q;
the gray arrow indicates the phonon q vector. These loops
arise because there are two kinds of coupling between k
points entering into the present theory. First, even in the ab-
sence of the phonon perturbation, wave vectors at neighbor-
ing k points separated by mesh vector g are coupled by the

E ·P term in the energy functional. Second, the phonon intro-
duces a perturbation at wave vector q. It is the interplay
between these two types of inter-k-point coupling that is
responsible for the appearance of these four-point loops in
the expression for FBP

�2�.
The implementation of the conjugate-gradient minimiza-

tion algorithm proceeds in a manner very similar to that out-
lined in Sec. III A 2. Naively, one would have to work simul-
taneously with the two search-direction vectors

��mk,q	 = �F�2�/��umk,q
�1� � ,

��mk,−q	 = �F�2�/��umk,−q
�1� � , �56�

where umk,±q
�1� are the periodic parts of �mk,±q

�1� . However, mini-
mizing the second-order energy F�2� with respect to two sets
of first-order wave functions unk,±q would double the com-
putational cost and would involve substantial restructuring of
existing computer codes. We can avoid this by using the fact
that the second-order energy is invariant under time reversal
to eliminate one set of first-order wave functions �nk,−q

�1� in
favor of the other set �nk,q

�1� following the approach given in
Ref. 5. Specifically, the two sets of first-order wave functions
are related by

�nk
�0��r� = ei�nk�n−k

�0�*�r� , �57�

�nk,q
�1� r = ei�nk�n−k,−q

�1�* �r� , �58�

where �nk is an arbitrary phase independent of r. The arbi-
trary phase �nk cancels out in the expression of F�2� since
every term in F�2� is independent of the phase of the first-
order wave functions. Thus, we choose �nk=1 for simplicity
and write the second-order energy functional in terms of
wave functions �nk,q only.

The minimization procedure now proceeds in a manner
similar to the zero-wave-vector case, except that the calcula-
tion of the Berry-phase part involves some vector-matrix-
matrix products as in Eq. �35�, but circulating around three
of the sides of the loop in Fig. 1. Since F�2� remains in a
quadratic form, the minimum of F�2� is again easily searched
along the conjugate-gradient direction. Wave functions are
updated over k points one after another, and the first-order
wave functions are updated. This procedure continues until
the self-consistent potential is converged. Once the first-
order responses of wave functions are obtained, the diagonal
elements of the dynamical matrix are obtained by evaluating
F�2� and the off-diagonal elements are obtained from a
straightforward generalization of Eq. �39�,

�	
,�� =
2�

�2��3�
BZ

�
m

occ

��umk
�0� �vext,	
,k,k+q

�1� �umk,��,q
�1� 	

+ �umk
�0� �vHxc,	
,k,k+q

�1� �umk,��,q
�1� 	

+ �umk
�0� �vext,	
,��

�2� �umk
�0�	�dk +

1

2
EHxc,	
,��

�2� . �59�

(a)

k

k+g

(b)

k

k+g-q

k-q

k+g

q

FIG. 1. Pattern of couplings between k points arising in �a� the
first term and �b� the second term of Eq. �51�. The reciprocal vector
q is the phonon wave vector, while g is a primitive vector of the
k-point mesh �indicated by thin horizontal and vertical lines�.
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IV. TEST CALCULATIONS FOR III-V SEMICONDUCTORS

In order to test our method, we have carried out calcula-
tions of the frequency shifts induced by electric fields in two
III-V semiconductors AlAs and GaAs. We have chosen these
two materials because they are well-studied systems both
experimentally and theoretically and because the symmetry
allows some phonon mode frequencies to shift linearly with
electric field while others shift quadratically. Since our main
purpose is to check the internal consistency of our theoretical
approach, we focus on making comparisons between the
shifts calculated using our linear-response method and those
calculated using standard finite-difference methods. More-
over, as mentioned at the start of Sec. II B 1, we have chosen
to neglect changes in phonon frequencies that enter through
the electric-field-induced strains �piezoelectric and electros-
trictive effects�, and we do this consistently in both the
linear-response and finite-difference calculations. For this
reason, our results are not immediately suitable for compari-
son with experimental measurements.

Our calculations are carried out using a plane-wave
pseudopotential approach to density-functional theory. We
use the ABINIT code package,19 which incorporates the finite-
electric-field method of Souza et al.7 for the ground-state and
frozen-phonon calculations in a finite electric field. We then
carried out the linear-response calculations with a version of
the code that we have modified to implement the linear-
response formulas of the previous section.

The details of the calculations are as follows. We use
Troullier-Martins norm-conserving pseudopotentials,20 the
Teter-Pade parametrization21 of the local-density approxima-
tion, and a plane-wave cutoff of 16 hartrees. A 101010
Monkhorst-Pack22 k-point sampling was used, and we chose
lattice constants of 10.62 Å and 10.30 Å for AlAs and GaAs,
respectively. The crystals are oriented so that the vector
�a /2��1,1 ,1� points from a Ga or Al atom to an As atom.

Table I shows the changes in phonon frequencies resulting
from an electric field applied along a Cartesian direction at
several high-symmetry q points in GaAs and AlAs. Both the
electronic and ionic contributions, Eqs. �7� and �8�, are in-
cluded. We first relaxed the atomic coordinates in the finite
electric field until the maximum force on any atom was less
than 10−6 hartree/bohr. We then carried out the linear-
response calculation, and in addition, to check the internal
consistency of our linear-response method, we carried out a
corresponding calculation using a finite-difference frozen-
phonon approach. For the latter, the atoms were displaced
according to the normal modes obtained from our linear-
response calculation, with the largest displacement being
0.0025 bohr. �Because the electric field lowers the symmetry,
the symmetry-reduced set of k points is not the same as in
the absence of the electric field.� The agreement between the
finite-difference approach and our linear-response implemen-
tation can be seen to be excellent, with the small differences
visible for some modes being attributable to truncation in the
finite-difference formula and the finite density of the k-point
mesh.

In Table II, we decompose the frequency shifts into the
ionic contribution ��ion�q ;E� and the electronic contribution
��el�q ;E� defined by Eqs. �8� and �7�, respectively, calcu-

lated using the linear-response approach. It is clear that the
largest contributions are ionic in origin. For example, the
large, roughly equal and opposite shifts of the O�1� and O�3�
modes at � arise from the ionic terms. However, there are
special cases �e.g., O�2� at � and LO at X� for which the
ionic contribution happens to be small, so that the electronic
contribution is comparable in magnitude.

The pattern of ionic splittings appearing at � can be un-
derstood as follows. Because the nonanalytic long-range
Coulomb contribution is not included, the three optical
modes at � are initially degenerate with frequency �0 in the
unperturbed lattice. A first-order electric field along x induces
a first-order relative displacement ux of the two sublattices,
also along x. By symmetry considerations, the perturbed dy-
namical matrix is given, up to quadratic order in ux, as

TABLE I. Calculated frequency shifts, in cm−1, induced by an
electric field of 5.14108 V/m applied along x in GaAs and AlAs.
“FD” are the results of finite-difference �frozen-phonon� calcula-
tions in which atoms are displaced by hand and restoring forces are
calculated, while “LR” refers to the use of the linear-response de-
veloped here. The L and X points are at �2� /a��1,1 ,1� and
�2� /a��1,0 ,0�, respectively.

GaAs AlAs

Mode FD LR FD LR

� O�1�a −3.856 −3.856 −5.941 −5.941

� O�2�a −0.282 −0.281 −0.300 −0.299

� O�3�a 3.548 3.548 5.647 5.647

L LO 2.701 2.703 4.282 4.282

L TO�1� −3.749 −3.749 −5.663 −5.663

L TO�2� 0.567 0.564 0.952 0.952

X LO 0.050 0.050 −0.243 −0.243

X TO�1� −3.953 −3.953 −6.083 −6.083

X TO�2� 3.753 3.753 5.919 5.919

aThe nonanalytic long-range Coulomb contributions are excluded
for the � modes.

TABLE II. Same as in Table I, but with the frequency shifts
decomposed into ionic and electronic contributions as defined in
Eqs. �8� and �7�, respectively.

GaAs AlAs

Ion Elec. Ion Elec.

� O�1�a −3.659 −0.198 −5.684 −0.257

� O�2�a −0.146 −0.135 −0.123 −0.177

� O�3�a 3.655 −0.107 5.589 0.058

L LO 2.341 0.362 3.633 0.649

L TO�1� −3.486 −0.262 −5.628 −0.034

L TO�2� 1.181 −0.617 1.658 −0.707

X LO 0.122 −0.073 −0.033 −0.209

X TO�1� −3.411 −0.543 −5.658 −0.424

X TO�2� 3.388 0.365 5.609 0.310

aThe nonanalytic long-range Coulomb contributions are excluded
for the � modes.
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D��� = �0
2�1 + �ux

2 0 0

0 1 + 	ux
2 �ux

0 �ux 1 + 	ux
2� . �60�

The off-diagonal � term arises from the Exyz coupling in the
expansion of the total energy in displacements; this is the
only third-order term allowed by symmetry. The � and 	
terms arise from fourth-order couplings of the form Exxxx and
Exxyy, respectively. The eigenvalues of this matrix are propor-
tional to 1+�ux

2 and 1±�ux+	ux
2. Thus, two of the modes

should be perturbed at first order in the field-induced dis-
placements with a pattern of equal and opposite frequency
shifts, while all three modes should have smaller shifts aris-
ing from the quadratic terms. This is just what is observed in
the pattern of frequency shifts shown in Table II. �The sym-
metry of the pattern of electronic splittings is the same, but it
turns out that the linear shift is much smaller in this case, so
that for the chosen electric field, the linear and quadratic
contributions to the electronic frequency shift have similar
magnitudes.� A similar analysis can be used to understand
the patterns of frequency shifts at the L and X points.

We have also plotted, in Fig. 2, the calculated total fre-
quency shift ��el�q�+��ion�q� and its electronic contribu-
tion ��el�q� along the line from � to L for the case of AlAs.
�The “LO” and “TO” symmetry labels are not strictly appro-
priate here because the electric field along x mixes the mode
eigenvectors; the notation indicates the mode that would be
arrived at by turning off the field.� In contrast to the results
presented in Tables I and II, the frequencies at � in Fig. 2
were computed by including the long-range nonanalytic
Coulomb contribution for q̂ � �111� in order to extend the
curves to q=0. �Because the direct linear-response calcula-
tion of the dynamical effective charge and dielectric suscep-
tibility tensors are not yet developed and implemented in the
presence of a finite electric field, the needed tensor elements
were computed by finite differences.� It is clearly evident
that the electronic terms remain much smaller than the ionic

ones for all three optical modes over the entire branch in q
space.

Returning now to the comparison between our exact
theory of Sec. II B 1 and the approximate theory of Sec.
II B 2, we compare the equilibrium positions and phonon
frequencies predicted by these theories in Table III. Recall
that RE is calculated in the approximate theory by using Eq.
�10�. Using this force, the ion coordinates were again relaxed
to a tolerance of 10−6 �hartree/bohr� on the forces. It can be
seen that RE is predicted quite well by the approximate
theory, with errors of only �2%, confirming that the dis-
placements can be calculated to good accuracy using a lin-
earized theory for this magnitude of electric field. The
changes in the phonon frequencies resulting from these dis-
placements �evaluated at zero and nonzero field for the ap-
proximate and exact theories respectively� are listed in the
remaining columns of Table III. The discrepancies in the
phonon frequencies are now somewhat larger, approaching
15% in some cases. This indicates that the approximate
theory is able to give a moderately good description of the
phonon frequency shifts of GaAs in this field range, but the
exact theory is needed for accurate predictions. �Also, recall
that the approximate theory does not provide any estimate
for the electronic contributions, which are not included in
Table III.�

Finally, we illustrate our ability to calculate the nonlinear
field dependence of the phonon frequencies by presenting the
calculated optical L-point phonon frequencies of AlAs in
Fig. 3 as a function of electric field along x. These are again
the results of our exact theory, obtained by including both
ionic and electronic contributions. The two TO modes are
degenerate at zero field, as they should be. All three modes
show a linear component that dominates their behavior in
this range of fields. However, a quadratic component is also
clearly evident, illustrating the ability of the present ap-
proach to describe such nonlinear behavior.

V. SUMMARY AND DISCUSSION

We have developed a method for computing the phonon
frequencies of an insulator in the presence of a homoge-
neous, static electric field. The extension of density-
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FIG. 2. Frequency shifts induced by an electric field of 5.14
108 V/m along x in AlAs, plotted along � to L. Solid and open
symbols indicate the total shift ��el+��ion and the electronic con-
tribution ��el, respectively.

TABLE III. Comparison of ionic displacements and frequency
shifts at the L point in GaAs as computed by the approximate and
exact approaches of Sec. II B 2 and II B 1, respectively, again for an
electric field of 5.14108 V/m along x. RE is the induced displace-
ment of the cation sublattice along x, and the ��ion are ionic con-
tributions to the frequency shifts as defined in Eq. �8�.

RE ��ion�L� �cm−1�
�10−3 Å� LO TO�1� TO�2�

GaAs Approx. 5.07 2.63 −3.89 1.37

Exact 4.95 2.34 −3.49 1.18

AlAs Approx. 5.69 3.75 −5.66 1.65

Exact 5.62 3.63 −5.63 1.66
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functional perturbation theory to this case has been accom-
plished by carrying out a careful expansion of the field-
dependent energy functional EKS+�E ·P, where P is the
Berry-phase polarization, with respect to phonon modes both
at q=0 and at arbitrary q. In the general case of nonzero q,
there is a subtle interplay between the couplings between
neighboring k points introduced by the electric field and the
farther-neighbor couplings introduced by the q vector, so that
terms arise that require the evaluation of four-sided loops in
k space. However, with the judicious use of time-reversal
symmetry, the needed evaluations can be reduced to a form
that is not difficult to implement in an existing DFPT code.

We have carried out test calculations on two III-V semi-
conductors AlAs and GaAs in order to test the correctness of
our implementation. A comparison of the results of linear-
response and finite-difference calculations shows excellent
agreement, thus validating our approach. We also decompose
the frequency shifts into “lattice” and “electronic” contribu-
tions and quantify these, and we find that the lattice contri-
butions �i.e., those resulting from induced displacements in
the reference equilibrium structure� are usually, but not al-
ways, dominant. We also evaluated the accuracy of an ap-
proximate method for computing the lattice contribution, in
which only zero-field inputs are needed. We found that this
approximate approach gives a good rough description, but
that the full method is needed for an accurate calculation.

Our linear-response method has the same advantages,
relative to the finite-difference approach, as in zero electric
field. Even for a phonon at �, our approach is more direct
and simplifies the calculation of the phonon frequencies.
However, its real advantage is realized for phonons at arbi-
trary q, because the frequency can still be obtained effi-
ciently from a calculation on a single unit cell without the
need for imposing commensurability of the q vector and
computing the mode frequencies for the corresponding su-
percell. We also emphasize that the method is not limited to
infinitesimal electric fields. We thus expect the method will
prove broadly useful for the study of linear and nonlinear
effects of electric bias on the lattice vibrational properties of
insulating materials.
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APPENDIX

The formula for the electric polarization given in the
original work of King-Smith and Vanderbilt9 is not a suitable
starting point for the phonon perturbation analysis that we
wish to derive here, because a perturbation of nonzero wave
vector q acting on a Bloch function generates a wave func-
tion that is no longer of Bloch form. That is, while the
zeroth-order wave function �mk

�0� transforms as eik·R under a
translation by R, the first-order wave function �mk,q

�1� trans-
forms as ei�k+q�·R.

To solve this problem, we first restrict ourselves to the
case of a regular mesh of N=N1N2N3 k points in the
Brillouin zone. As is well known, one can regard the Bloch
functions at these k points as being the solutions at a single
k point of the downfolded Brillouin zone of an N1N2
N3 supercell. Then, as long as the wave vector q is a re-
ciprocal lattice vector of the supercell, or q=m1b1 /N1
+m2b2 /N2+m3b3 /N3, the phonon perturbation will be com-
mensurate with the supercell and the perturbed wave func-
tion will continue to be a zone-center Bloch function of the
supercell. We thus restrict our analysis to this case.

A formula for the Berry-phase polarization for single-
k-point sampling of a supercell has been provided by
Resta.18 Starting from a general many-body formulation in
terms of a definition of the position operator suitable for
periodic boundary conditions and then specializing to the
case of a single-particle Hamiltonian, Resta’s derivation
leads to

P =
ef

2��
�



�
a
, �A1�

where the Berry phase in lattice direction 
 is given by

�
 = − Im ln det M
. �A2�

Here

M
,ss� = ��s�e−ig
·r��s�	 , �A3�

where g
=b
 /N
 is the primitive reciprocal mesh vector in
lattice direction 
 and s runs over all of the occupied states
of the supercell. Expanding the matrix M
 in powers of �
and �*,

M
��,�*� = M

�0,0� + �M


�1,0� + �*M

�0,1� + �2M


�2,0� + ���2M

�1,1�

+ �*2M

�0,2� + ¯ , �A4�

the expansion of ln det M
�� ,�*� takes the form 16

ln det M
 = ln det M

�0,0� + �Tr�M


�1,0�Q
� + �*Tr�M

�0,1�Q
�

+ �2Tr�2M

�2,0�Q
 − M


�1,0�Q
M

�1,0�Q
�

+ �*2Tr�2M

�0,2�Q
 − M


�0,1�Q
M

�0,1�Q
�
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FIG. 3. Frequencies of LO and TO modes at L in AlAs as a
function of electric field �where 10−3 a .u . =5.14108 V/m� ap-
plied along x. The symbols have the same interpretation as in Fig. 2.

FIRST-PRINCIPLES PERTURBATIVE COMPUTATION¼ PHYSICAL REVIEW B 74, 054304 �2006�

054304-9



+ ���2Tr�2M

�1,1�Q
 − M


�1,0�Q
M

�0,1�Q


− M

�0,1�Q
M


�1,0�Q
� + higher-order terms,

�A5�

where Q
= �M

�0,0��−1.

From the physical point of view, the terms proportional to
�, �*, �2, and �*2 should vanish as a result of translational
symmetry. For example, a term linear in � should transform
like eiq·R under translation by a lattice vector R, but such a
form is inappropriate in an expression for the energy, which
must be an invariant under translation. We have confirmed
this by explicitly carrying out the matrix multiplications for
these terms and checking that the traces are zero. Using the
cyclic property of the trace to combine the last two terms, we
find that the overall second-order change in ln det M
 is

�ln det M
��2� = 2���2Tr�M

�1,1�Q
 − M


�1,0�Q
M

�0,1�Q
� .

�A6�

In our case, the orbitals �s appearing in Eq. �A3� are the
perturbed wavefunctions originating from the unperturbed
states labeled by band m and k point k of the primitive cell,
so that we can let �s→�mk and

M
,mk,m�k� = ��mk�e−ig
·r��m�k�	 . �A7�

Substituting Eq. �44� into Eq. �A7�, we find

M
,mk,m�k�
�1,0� = ��mk

�0� �e−ig
·r��m�k�,q
�1� 	 + ��mk,−q

�1� �e−ig
·r��m�k�
�0� 	 ,

�A8�

M
,mk,m�k�
�0,1� = ��mk

�0� �e−ig
·r��m�k�,−q
�1� 	 + ��mk,q

�1� �e−ig
·r��m�k�
�0� 	 ,

�A9�

M
,mk,m�k�
�1,1� = ��mk,q

�1� �e−ig
·r��m�k�,q
�1� 	 + ��mk,−q

�1� �e−ig
·r��m�k�,−q
�1� 	 ,

�A10�

and Q
= �M

�0,0��−1, where

M
,mk,m�k�
�0,0� = ��mk

�0� �e−ig
·r��m�k�
�0� 	 . �A11�

The transformation properties of the zeroth- and first-
order wave functions under translations, given by Eqs. �47�
and �46�, impose sharp constraints upon which of the terms
in Eqs. �A8�–�A11� can be nonzero. For example, for M


�1,0�

in Eq. �A8�, the term ��mk
�0� �e−ig
·r ��

m�k�,q
�1� 	 is only nonzero if

k=k�+q−g
. Similarly, Q
,mk,m�k� is only nonzero if k=k�

+g
. In practice, we define primitive-cell-periodic functions

umk
�0��r� = e−ik·r�mk

�0��r� �A12�

and

umk,q
�1� �r� = e−i�k+q�·r�mk,q

�1� �r� , �A13�

so that

M
,mk,m�k�
�1,0� = Skk�,mm�

�1,0� �k,k�+q−g

,

M
,mk,m�k�
�0,1� = Skk�,mm�

�0,1� �k,k�−q−g

,

M
,mk,m�k�
�1,1� = Skk�,mm�

�1,1� �k,k�−g

,

M
,mk,m�k�
�0,0� = Skk�,mm�

�0,0� �k,k�−g

, �A14�

where

Skk�,mm�
�1,0� = �umk

�0� �um�k�,q
�1� 	 + �umk,−q

�1� �um�k�
�0� 	 ,

Skk�,mm�
�0,1� = �umk

�0� �um�k�,−q
�1� 	 + �umk,q

�1� �um�k�
�0� 	 ,

Skk�,mm�
�1,1� = �umk,q

�1� �um�k�,q
�1� 	 + �umk,−q

�1� �um�k�,−q
�1� 	 ,

Skk�,mm�
�0,0� = �umk

�0� �um�k�,q
�0� 	 �A15�

�subscript 
 is now implicit�. Defining Qk�k= �Skk�
�0,0��−1 and

taking into account the constraints on k points embodied in
the � functions in Eq. �A14�, the two terms in Eq. �A6�
become

Tr�M

�1,1�Q
� = �

k
Tr�Sk,k+g

�1,1� Qk+g,k� �A16�

and

Tr�M

�1,0�Q
M


�0,1�Q
� = �
k

Tr�Sk,k+g−q
�1,0�

 Qk+g−q,k−qSk−q,k+g
�0,1� Qk+g,k� .

�A17�

In these equations, the trace on the left-hand side is over all
occupied states of the supercell, while on the right-hand side
it is over bands of the primitive cell. These are the terms that
appear in Eq. �51� in the main text and that determine the
pattern of k-point loops illustrated in Fig. 1.
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