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We introduce an alternative approach to the first-principles calculation of NMR shielding tensors.
These are obtained from the derivative of the orbital magnetization with respect to the application
of a microscopic, localized magnetic dipole. The approach is simple, general, and can be applied to
either isolated or periodic systems. Calculated results for simple hydrocarbons, crystalline diamond,
and liquid water show very good agreement with established methods and experimental results.
© 2009 American Institute of Physics. �doi:10.1063/1.3216028�

Nuclear magnetic resonance �NMR� measures the tran-
sition frequencies for the reorientation of nuclear magnetic
moments in an applied magnetic field. Since the local mag-
netic field differs from the external one as a result of elec-
tronic screening, NMR spectroscopy1 has been recognized
since 1938 �Ref. 2� to be a powerful experimental probe of
local chemical environments, including structural and func-
tional information on molecules, liquids, and increasingly, on
solid-state systems and interfaces.3

First-principles calculations of NMR spectra were first
developed in the quantum chemistry community4 and applied
to molecules and clusters, but applications to extended crys-
talline systems were hindered by the difficulty of including
macroscopic magnetic fields, which require a nonperiodic
vector potential that is not compatible with Bloch symmetry.
In 1996 Mauri et al.5 developed a linear-response approach
for calculating NMR shieldings in periodic crystals based on
the long-wavelength limit of a periodic modulation of the
applied magnetic field. In 2001 Sebastiani and Parrinello
used a localized Wannier representation6 to derive an alter-
native linear-response approach based on the application of
an infinitesimal uniform magnetic field.7 More recently, at-
tention has focused on the development of these approaches
in the context of pseudopotentials,8,9 leading to a growing
use of these methods in combination with modern plane-
wave pseudopotential codes.10,11 Despite these advances, ex-
isting methods for computing NMR shifts in crystalline sys-
tems remain complex, in that they require a linear-response
implementation with significant extra coding.

We reformulate the problem of computing NMR shield-
ing tensors so that the need for a linear-response framework
is circumvented. For clarity, the previous formulations shall
be referred to as direct approaches, in that a magnetic field is
applied and the local field at the nucleus is computed. Our

alternative, converse approach obtains the NMR shifts in-
stead from the macroscopic magnetization induced by mag-
netic point dipoles placed at the nuclear sites of interest. This
approach is made possible by the recent developments
that have led to the Berry-phase modern theory of
magnetization,12–15 which provides an explicit quantum-
mechanical expression for the orbital magnetization of peri-
odic systems. Our new method is simple and general and
provides a straightforward alternative avenue to the compu-
tation of NMR shifts, which is suited for large-scale simula-
tions and situations where a linear-response formulation is
cumbersome or unfeasible.

Let us start by considering a sample to which a constant
external magnetic field Bext is applied. The field induces a
current that, in turn, induces a magnetic field Bind�r� such
that the total magnetic field is B�r�=Bext+Bind�r�. In NMR
experiments the applied fields are small compared to the
typical electronic scales; the absolute chemical shielding ten-
sor �J is then defined via the linear relationship

Bs
ind = − �Js · Bext, �s,�� = −

�Bs,�
ind

�B�
ext . �1�

The index s indicates that the corresponding quantity is to be
taken at position rs, i.e., the site of nucleus s. NMR experi-
ments usually report the isotropic shielding �s= 1

3Tr��Js� via a
chemical shift that is defined by convention as �s=�ref−�s,
where �ref is the isotropic shielding of a reference com-
pound.

As mentioned above, direct approaches5,7–9 calculate the
chemical shielding from the current response of the system
to an external magnetic field applied using perturbation
theory and taking the long-wavelength limit. The approach
we propose is fundamentally different: Instead of determin-
ing the current response to a magnetic field, we derive
chemical shifts from the orbital magnetization induced by a
magnetic dipole. This can be shown using a thermo-
dynamic relationship between mixed partial deriva-
tives16 as follows. Using Bs,�=B�

ext+Bs,�
ind, Eq. �1� becomes
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���−�s,��=�Bs,� /�B�
ext. For the moment, we assume that

Bext can be replaced by the total macroscopic B-field in the
denominator of this equation, thus neglecting the macro-
scopic induced field �this restriction will be relaxed shortly�.
The numerator may be written as Bs,�=−�E /�ms,�, where E
can be interpreted either as the energy of a virtual magnetic
dipole ms at one nuclear center rs in the field B for a finite
system, or as the energy per cell of a periodic lattice of such
dipoles; we adopt the latter view. Then, writing the macro-
scopic magnetization as M�=−�−1�E /�B� �where � is the
cell volume�, we obtain

��� − �s,�� = −
�

�B�

�E

�ms,�
= −

�

�ms,�

�E

�B�

= �
�M�

�ms,�
. �2�

Thus, �Js accounts for the shielding contribution to the mac-
roscopic magnetization induced by a magnetic point dipole
ms sitting at nucleus rs and all of its periodic replicas. In
other words, instead of applying a constant �or long-
wavelength� field Bext to an infinite periodic system and cal-
culating the induced field at all equivalent nuclei s, we apply
an infinite array of magnetic dipoles to all equivalent sites s
and calculate the change in orbital magnetization.12–15 Since
the perturbation is now periodic, it can easily be computed
using finite differences of ground-state calculations.
This is our principal result. Note that M=ms /�+Mind,
where the first term is present merely because we have in-
cluded magnetic dipoles by hand. It follows that the shield-
ing is related to the true induced magnetization via
�s,��=−��M�

ind /�ms,�.
It is useful to pause here and consider the analogy with

the Born17 effective charge tensor Zs,��
� , which may be re-

garded as �i� the component of the force Fs in direction � on
site rs by a unit macroscopic electric field E in direction �
�at zero nuclear displacement�, or, alternatively, as �ii� the
�-component of the macroscopic electric polarization P lin-
early induced by a unit displacement of nucleus s and its
periodic replicas in direction � in a vanishing macroscopic
electric field. Since the force on nucleus s is given by
Fs,�=−�E /�rs,�, �i� and �ii� are related by

Zs,��
� = −

�

�E�

�E

�rs,�
= −

�

�rs,�

�E

�E�

= �
�P�

�rs,�
�3�

in close analogy with Eq. �2�. Note that in order to comply
with the Born definition, one must choose the lattice-
periodical solution of Poisson’s equation, corresponding to
vanishing macroscopic electric field. By comparing Eq. �3�
to Eq. �2� we notice that the genuine analog to ZJs

� is 1−�Js

�and not �Js�, as indeed the names “effective” versus “shield-
ing” imply.

As in the electrical case,18 the choice of magnetic bound-
ary conditions implies a choice for the shape of the macro-
scopic finite sample. Following Ref. 19, shape effects can be
embedded in the depolarization coefficients n� �with
��n�=1�, whose special cases are the sphere
�nx=ny =nz=1 /3�, the cylinder along z �nx=ny =1 /2, nz=0�,
and the slab normal to z �nx=ny =0, nz=1�. The main rela-
tionship for the macroscopic fields in Gaussian units may be
written as B�=B�

ext+4��1−n��M�. It can be seen that for the

slab geometry the normal component of B coincides with the
one of Bext. Hence our computed �s,zz are suitable for direct
comparison with measurements of the normal component
performed on a slab-shaped sample. Assuming nonmagnetic
media with small, isotropic susceptibility �, it can be shown
that the shielding for a general shape is related to our
calculated one by �s,��

shape��s,��−���4���1−n��.
For the special case of a spherical sample we have
�s,��

sphere��s,��− �8� /3�����.
In order to calculate the shielding tensor of nucleus s

using Eq. �2�, it is necessary to calculate the induced orbital
magnetization due to the presence of an array of point mag-
netic dipoles ms at all equivalent sites rs. The vector poten-
tial of a single dipole in Gaussian units is given by20

As�r� =
ms � �r − rs�

�r − rs�3
. �4�

For an array of magnetic dipoles A�r�=�RAs�r−R�, where
R is a lattice vector. Since A is periodic, the average of its
magnetic field ��A over the unit cell vanishes; thus, the
eigenstates of the Hamiltonian remain Bloch representable.

In the Fourier representation A�r�=�G�0Ã�G�eiG·r with

Ã�G� = −
4�i

�

ms � G

G2 e−iG·rs, �5�

where the reciprocal lattice vector G=0 may be excluded
from the sum with no loss of generality. Note that we have
implicitly chosen the transverse gauge � ·A=0, which is ap-
parent from G · �ms�G�=0. The periodic vector potential
A�r� can now be included in the Hamiltonian with the usual
substitution for the momentum operator p→p− �e /c�A. As a
result, the kinetic energy operator becomes

p2

2me
→

p2

2me
−

e

mec
A · p +

e2

2mec
2A2, �6�

where me is the electronic mass and c is the speed of light.
Due to our choice of gauge, p and A commute. We can now
calculate the shielding according to Eq. �2� by solving for the
ground state with the additional terms of Eq. �6� included in
the Hamiltonian, and then calculating the resulting change in
orbital magnetization.

The converse method can be implemented directly in
any all-electron electronic-structure code. However, many
popular density-functional theory �DFT� codes use pseudo-
potentials to increase computational efficiency. In order to
calculate NMR shifts in the presence of pseudopotentials, a
PAW reconstruction needs to be performed, as shown by
Pickard and Mauri.8 We have developed this reconstruction
methodology for the converse method; the rather involved
mathematical formalism will be presented elsewhere.21 We
implemented our converse approach, including this recon-
struction and the calculation of orbital magnetization,12–15

into the PWSCF package of the QUANTUM-ESPRESSO

distribution.22 We use the PBE exchange-correlation
functional23 and Troullier–Martins24 pseudopotentials with
convergence of the NMR shifts for a kinetic-energy cutoff of
80 Ry. The dipole perturbation �ms� used is 1	B, although we
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find identical results for any value in the broad range from
10−6 to 103	B.

As an initial test, we applied our converse approach to
the calculation of hydrogen NMR chemical shieldings for
small molecules using a supercell geometry �although here
the magnetization can be obtained by integrating the orbital
currents, the results presented here were in fact obtained us-
ing the Berry-phase modern theory of magnetization�. For
purposes of comparison, we also calculated these shieldings
with the direct method, also implemented by some of us in
PWSCF, largely eliminating discrepancies due to any techni-
cality. The results for these two approaches are shown in
Table I together with the experimental values. It is immedi-
ately obvious that the direct and converse methods give al-
most identical results, validating our approach, and also very
good agreement with experiment. We suspect that the slight
deviations between the two calculations are due to the long-
wavelength approximation of the direct method.

Next, we applied our method to crystalline diamond. For
our calculations we used an eight-atom cubic cell with a
lattice constant of 3.498 Å. The NMR shielding converged to
within 0.1 ppm for a k-point mesh of 8�8�8. For the 13C
shielding we find 131.20 ppm in perfect agreement with the
direct method. To estimate the effect of the spurious interac-
tions of the localized dipole with its images in neighboring
supercells, we repeated the calculation for a 64-atom cubic
cell, finding an almost identical shielding of 131.24 ppm.
The fast convergence with respect to supercell size is due to
the fast decay �1 /r2� of the vector potential in real space.

Finally, we applied the converse approach to compute
the hydrogen chemical shifts in a supercell simulation of
liquid water. Our supercell contained 64 water molecules,
twice the size of the largest supercell used in previous NMR
calculations on liquid water using the direct method.27,28 We
obtained the atomic trajectories from a molecular-dynamics
simulation using TIP4P �Ref. 29� potentials under standard
conditions. For five snapshots separated by 200 ps, we took
the atomic positions and thermalized the hydrogen atoms
alone for 2 ps using ab initio Car–Parrinello molecular dy-
namics. This procedure is aimed at obtaining a more realistic
description of the detailed structure of the water molecules
while retaining the accuracy of the oxygen-oxygen pair cor-
relation function. We calculated the shift in liquid water with
reference to the gas-phase shift, i.e., �liquid=�gas−�liquid, thus
reporting the experimental measurable change for the gas-
liquid transition. For the gas-phase shift the converse method

gives 31.0 ppm. For the susceptibility correction of periodic
water we used the experimental value for �water=−7.2
�10−7 emu under standard conditions.30 Our distribution for
the hydrogen shifts, shown in Fig. 1, can be directly com-
pared to results obtained using the direct method reported in
Fig. 4 of Ref. 27 and in Ref. 28. We find an average shift of
5.94 ppm from our distribution, in excellent agreement with
5.83 and 5.15 ppm from Refs. 27 and 28, respectively. Fur-
thermore, the spread of our distribution as measured by the
standard deviation is 2.4 ppm, again in precise agreement
with the value of 2.4 ppm obtained from the direct method.28

At first sight it might appear that the converse method is
computationally more demanding than the direct method,
since we need to perform 3N calculations to obtain the
shielding tensor for N atoms. Often, though, only a few se-
lected shifts are needed, and even in the worst-case scenario
�such as the water calculation shown before� it should be
stressed that reminimizing the electronic wave functions in
the presence of the perturbation is very fast, usually requir-
ing a single self-consistent iteration. This enables the calcu-
lation of NMR shielding tensors for systems with several
hundred atoms. However, the main advantage of the con-
verse method is the simplicity of its implementation, in that
it works via finite differences of ground-state calculations
and does not require a linear-response implementation. This
is likely to be a significant advantage for future applications
in conjunction with more complex forms of exchange-
correlation functionals such as DFT+U, exact exchange, hy-
brid functionals, or beyond-DFT correlated-electron meth-
ods.

In conclusion, we have derived an alternative first-
principles method for calculating NMR chemical shielding
tensors. In a solid-state context—where plane waves are
commonly used—the new approach is considerably simpler
than existing techniques, avoiding difficulties related to the
choice of a gauge origin and the need for a linear-response
implementation. We have demonstrated the correctness and
viability of our approach by calculating chemical shieldings
in isolated and periodic systems, finding excellent agreement
with previous theoretical and experimental results.

TABLE I. Hydrogen NMR chemical shielding � in ppm for several differ-
ent molecules. Structural parameters were taken from footnote 22 of Ref. 5.

Experiment Direct Converse

H2 26.26a 26.2 26.2
HF 28.51a 28.4 28.5
CH4 30.61a 30.8 31.0
C2H2 29.26b 28.8 28.9
C2H4 25.43b 24.7 24.8
C2H6 29.86b 30.2 30.4

aReference 25.
bReference 26.

-202468101214
hydrogen shift [ppm]

0

10

20

30

40

hy
dr

og
en

co
un

t

FIG. 1. Distribution of hydrogen NMR shifts in liquid water relative to the
gas-phase shift. The distribution was obtained from five snapshots of the
64-molecule system �640 hydrogen atoms�. The dashed line is a polynomial
fit and it serves as a guide to the eye. The vertical arrow and horizontal line
indicate the position of the average and the range of the standard deviation,
respectively.
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