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We present a generalization of the Li, Nunes, and Vanderbilt density-matrix method to the case
of a nonorthogonal set of basis functions. A representation of the real-space density matrix is chosen
in such a way that only the overlap matrix, and not its inverse, appears in the energy functional.
The generalized energy functional is shown to be variational with respect to the elements of the
density matrix, which typically remains well localized.

Recently, the search for so-called order-N methods (for
which the computational effort scales only linearly with
system size N) has led to the development of a number
of real-space approaches to the solution of the electronic
structure problem.!™ These are based either on the use
of a localized, Wannier-like representation of the occu-
pied subspace,?* or on the locality of the real-space den-
sity matrix.»? In the latter case, an energy functional
is defined such that the variational degrees of freedom
are the matrix elements of the density matrix in a real-
space-localized set of orthonormal orbitals. However, in
many situations it is more convenient to work with a
nonorthogonal basis (e.g., linear combination of atomic
orbitals calculations using Gaussian orbitals). For that
reason, it becomes desirable to extend the density-matrix
based approaches to those cases.

In this paper, we show how the approach proposed by
Li, Nunes, and Vanderbilt (LNV) (Ref. 1) can be ex-
tended to a nonorthogonal basis. This is done by intro-
ducing a quantity p = S~1pS~! (where S is the overlap
matrix S;; = (¢; | ¢;), and p = (¢; | p | ¢;) is the
density matrix) as an alternative representation for the
density operator, which is shown to have similar local-
ization properties as p. Using p, we write a generalized
expression for the total energy in which the inverse over-
lap matrix S~! does not appear explicitly; moreover, the
generalized-density-matrix (GDM) functional is shown to
be variational with respect to p.

First, we briefly review the LNV approach as applied
to an orthonormal basis.! For simplicity we consider a
tight-binding description of a system formed by replicat-
ing a unit (super)cell containing N atoms with M basis
orbitals per site. For the moment we assume that the ba-
sis orbitals {¢;} are orthonormal, i.e., (¢; | ¢;) = &;;. For
the eigenstates of the Hamiltonian, H | ¢,,) = ¢, | ¥n),
we write

| %n) = cni| i) - (1)

2
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The density matrix is defined as

pij = Zc:i Cnj » (2)

n

where i and j run over all tight-binding basis orbitals in
the system and n runs over the occupied eigenstates of
H. Recall that p is a projection onto the subspace of
occupied states, and therefore it obeys the idempotency
requirement p? = p.

As discussed in Ref. 1, both the standard k-space diag-
onalization of H and the minimization of the grand po-
tential Q = tr [p (H — p)] (p is a chemical potential used
to eliminate the particle number constraint N, = tr [p])
with respect to p amount to an O(N?3) operation. In the
latter case this a result of the idempotency constraint.

In order to achieve an O(N) solution to the problem,
LNV use the following strategy. First, they take advan-
tage of the fact that the density matrix is local in real
space> 7 (in the sense that p;; — 0 as R;; — oo, where
R;; is the distance between basis orbitals ¢; and ¢;),
and introduce a trial density matrix X which is set to
zero for R;; > R. (R. is chosen large enough to get a
good approximation to the true density matrix). Sec-
ond, no idempotency constraint is explicitly imposed;
rather, they make use of the purification transformation
proposed by McWeeny:®

p=3X%-2X3. (3)

This transformation is such that a matrix which is nearly
idempotent (Ax = 1+ 6 or 4, |§| <« 1, where Ax is an
eigenvalue of X) transforms into a matrix which is more
nearly idempotent [A, = 1—0(42) or +0O(62)]. Then, pis
treated as a physical density matrix (i.e., tr[pA] gives the
physical expectation value of operator A) and X as a trial
density matrix whose elements constitute the variational
degrees of freedom to be determined by minimization of
the grand potential,
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Q=trlp(H—p)] =tr [(3X*-2X%)(H-p)], 4

with respect to X. As shown in Ref. 1, Q in Eq. (4)
has a variational local minimum (i.e., € > Qexact) at
which p is idempotent to second order. Since the number
of degrees of freedom per atom is fixed by R. and no
diagonalization or orthonormalization step is performed,
the above procedure amounts to an O(NN) solution to the
problem.

We now extend the LNV energy functional to a
nonorthogonal basis {¢;}, with the overlap matrix given
by Si; = (¢i | ¢;). In what follows, we use X;; =
(¢i | p| ¢;) for the trial density matrix in the nonorthog-
onal basis, to be consistent with the notation introduced
above. The eigenstates of H are given by Eq. (1) and the
coefficients {c,;} are determined by solving the secular
equation,

> (Hy

J

where H;; = (¢: | H | ¢;).

Let C be the matrix defined by C;, = cy; (i.e., C has
the eigenvectors {1, } as its columns); it then follows that
C defines a congruence transformation that diagonalizes
H, S and X simultaneously:

—€,Sij)cn; =0, (5)

CtHC = A,
ctsc =1,
cixc =Xy, (6)

where I is the identity matrix, and A,., = €,0,,» and
(XH)mn = 0(1t — €n)dmn are, respectively, the matrices
of H and p in the basis {¢,} of the eigenvectors of H
[0(z) is the theta function]. From Eq. (6), we have

s'=cct. (7)

Using Egs. (6) and (7), and py = 3X% —2X}; following
Eq. (3), we can now generalize Eq. (4) as follows:

Q = trlpg (A — )]

= tr[(3S71XSTIX ST - 287X STIXSTIX ST H

(8)
where H' = H — uS.
As a matter of convenience, we would like to eliminate

S~! from the energy expression in favor of §. This can
be accomplished by defining the two quantities,

X=81'x8"
p=3XSX -2XSXSX, (9)

as alternative representations® for the trial and physi-
cal density matrices, respectively. We observe that X
is a more natural representation of the density opera-
tor, in the sense that Eq. (2) still holds, ie., X;; =
Zn cntcn]7 whereas X‘J 2 Ekl zkcnkcnlslj Fur-
thermore, the expectation value of any operator is given

by (A) = tr [X A], where A;; = (¢; | A | ¢;).

In terms of X and p the particle number becomes
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Ne =tr[pS] = tr [(3XSX —2XSXSX)S] , (10)

and the energy functional is written

Q=tr[pH'] =tr [(3XSX —2XSXSX)H'] . (11)

To show that Eq. (11) is variational with respect to X,
we note the following. At the solution, the density matrix
must obey the idempotency constraint X% = X, which
in the new representation is expressed as

XSX =X; (12)

furthermore, it must also commute with the Hamiltonian,
i.e, XgA = AXy. In terms of X, we have

SXH=HXS . (13)

Equations (12) and (13) can easily be obtained by ap-
plying the transformation generated by C to the more
familiar expressions in the basis {¢}, and then using
X = SXS. From Egs. (12) and (13), it follows immedi-
ately that the variational gradient

N _ 5 (sXH + H'XS)

X
—2(SXSXH' + SXH'XS+ H'XSXS) (14)

vanishes at the solution, thus showing that 2 is varia-
tional with respect to X.

We consider now a derivative of the grand potential
Q (at fixed p) with respect to a parameter A (e.g., an
atomic coordinate):

N dH 0QdS

dQ 90 dX 0QdH  9QdS
8H dx ~ 85dx

/= 2 15

d\ 98X dX (15)
The first term vanishes at the solution, due to the varia-
tional nature of €2, so that this force is given by

ds

3\ (16)

d _ [ dH’
dx [ d\

] +tr [XH’X (3-45%) %

Equations (10), (11), (14), and (16) constitute the cen-
tral results of this work. Note that the standard LNV
scheme is recovered from these equations upon substi-
tuting Si]' = éij.

Before proceeding further, let us comment on the real-
space-localization properties of S and S~!. We are in-
terested in the case where the basis orbitals are localized
in real space, and therefore S is also localized. It can
be shown that $~! is then exponentially localized,!% 1!
with a decay length that depends on the spread of the
eigenvalues of S. If S is an ill-conditioned matrix, i.e.,
max(Ag)/ min(As) > 1 [max(As) and min(As) are, re-
spectively, the maximum and minimum eigenvalues of
S], then S~ has a long decay length.

The advantage of using Eq. (11) is that it eliminates
the need to compute S~!. A possible concern, in mak-
ing use of the current approach, may be that the ma-
trix X may decay more slowly with distance than would
the density matrix expressed in terms of orthogonal ba-
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FIG. 1. X, X, and Xortho, as functions of the distance R;;
between two basis orbitals, for the tight-binding model of the
text.

sis orbitals. This may happen when S is ill-conditioned,
such that $~! has a longer exponential decay than X .12
When this is the case, it becomes necessary to increase
the cutoff radius R, to obtain the same level of accuracy.
However, as we discuss below, our numerical evidence
suggests that X and X will, in general, have very sim-
ilar decay as each other, and very similar to that of X
for an orthogonal basis, and therefore the transformation
leading from Eq. (4) to Eq. (11) typically preserves the
localization properties of §2. Note also that the presence
of S in Eq. (11) [as compared to Eq. (4)] does not affect
the linear scaling of the method, since S is as localized
as H in a local basis.

Next, we present some numerical tests for a three-
dimensional tight-binding (TB) model for silicon, to illus-
trate the localization properties of X and X. We use the
universal TB model proposed by Harrison in its extension
to a nonorthogonal basis.!® The matrix elements of S in a
minimal sp? basis are given by Sy, = 2kVipn (61 + €)1,
where [ and I’ run over s and p orbitals and n indicates the
type (o or 7) of interaction. The Vjpr,,’s are the universal
TB parameters introduced by Harrison,!3 ¢; are atomic
on-site energies and k is an adjustable parameter. For the
Hamiltonian matrix we have Hyp, = (1 + k — S2)Viprp,
where S, is the overlap between two sp3 hybrids S, =
(Sss0 —2v3Ssps —3Spps) /4. Both H and S are restricted
to first neighbors only. For simplicity, we set & = 1 which
is very close to the value 1.042 commonly used for silicon.

In Fig. 1, we show the behavior of X and X as func-
tions of the distance R;;, between two orbitals ¢; and
¢;. Plotted is the norm ||X%|| = [¥, |X%%|"/N]¥/2
where o and § run over {s,p,,py,p.} and N = 4 is the
block dimension. Also shown is the behavior of X 41, for
orthogonal orbitals, which is obtained by setting k = 0
in the TB model. It can be seen that within a distance
R;; = 8.00 A, both X and X as well as Xortho decay to
~ 2.0% of their values at the origin.

We have also calculated X and X for a basis with an ill
conditioned (almost singular) S, by setting k =1.35 (this
implies a large overlap between neighboring orbitals).
The results are shown in Fig. 2. Also shown is the long
range behavior of =1 [$~! has been normalized to its
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FIG. 2. Same as before for ill-conditioned S (k = 1.35);
long range behavior of S™! is also shown.

value at the origin, $~1(0) = 3.96]. Although S~! has
a very long decay length in this case, X and X still de-
cay very similarly as Xortho. The point here is to show
that, provided that the basis is sufficiently localized, X
can be as localized as Xor¢ho for an orthonormal basis,
even when S™! is ill conditioned. In any case, by using
Eq. (11), the convergence of both quantities, p and S -1,
is built into a single quantity X, and is controlled by a
single parameter R..

Because of the fact that S is of the same range as H
(ie., Rg = Ry), the GDM scheme preserves the O(N)
scaling of the original method. Nevertheless, the presence
of S in Eq. (11) implies an increase in the scaling prefac-
tor. In the orthonormal case, the time-dominant step in-
volves the calculation of a product Xz (X H)g; of two ma-
trices of range R, and R.+ Ry, out to a radius R;; < R..
In the nonorthonormal case, the corresponding dominant
operation involves two matrices (SX);x(SX H)x; of range
R.+ Ry and R, + 2Ry, calculated also up to the radius
R, [see Eq. (14)]. In order to estimate the slowdown fac-
tor, we determined the ratio of the number of terms that
contribute in each case, which was found to be 3.6 using
the R; and Ry of Ref. 1.

In summary, we have presented a generalization of the
LNV density-matrix approach to the case of a nonorthog-
onal basis. An alternative real-space representation of
the density operator is introduced, which is argued to
have similar localization properties as the conventional
density matrix, as suggested by the numerical evidence
presented. In this generalized energy functional, only
the overlap matrix S appears explicitly (as opposed to
S~1). The new functional is shown to retain its varia-
tional property and its linear scaling with system size.

We recently became aware of an alternative deriva-
tion of the GDM functional proposed by P. Ordején and
collaborators.*
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