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1. Introduction

In light of growing recent interest in issues of charge and spin
transport in magnetic materials and nanostructures, it is an
anomaly that there is no accepted expression for the orbital
magnetization of an insulator with broken time-reversal sym-
metry. The analogous problem for the electrical polarization
was solved about a decade ago by the modern theory of po-
larization, based on a Berry phase.[1,2] A similar theory for the
case of orbital magnetization is still lacking and is sorely
needed. We present here the first step towards such a theory.

The magnetization M of a condensed, macroscopically ho-
mogeneous, sample is an intensive quantity formally defined
as the magnetic dipole m per unit volume. Phenomenological-
ly, this is expected to be a bulk property. In this work, we focus
on the term in m due to purely orbital currents ; for a finite
sample it is defined as Equation (1):

m ¼ 1
2c

Z
dr r� jðrÞ ð1Þ

However, due to the presence of the position operator r in
Equation (1), a current circulating on the boundary of the
sample affects the value of m in an extensive way, thus caus-
ing the bulk magnetization M to apparently depend on sur-
face, as opposed to bulk, properties of the sample.

So far, there have been basically two approaches to address-
ing the magnetization of a condensed sample: 1) linear re-
sponse theory, and 2) decomposition of j(r) into local ring cur-
rents. In case 1, one addresses by definition only the magneti-
zation linearly induced by a given source. It has been shown in
1996 that such magnetization can be expressed in a boundary-
insensitive form, implementable in electronic–structure calcula-
tions under periodic boundary conditions.[3] This was achieved
in a reciprocal-space framework, where the r-operator draw-
back is circumvented by performing a long-wavelength limit.
More recently, Sebastiani and Parrinello[4] proposed a different

linear-response approach, formulated in real space, and where
the r operator is tamed by using localized Wannier orbitals.
This second flavor of linear response is aimed at (and imple-
mented for) large supercells, where well-separated localized or-
bitals can be constructed. Both approaches have been used
successfully to address several magnetization-related proper-
ties of bulk materials.[5, 6]

In case 2, the aim is to address and compute M as a ground-
state bulk property of the condensed material (whenever a
nonzero value is allowed by the symmetry of the Hamiltonian),
with no reference to any kind of perturbation. In the existing
literature[7,8] this is achieved at the price of introducing an arbi-
trary atomiclike (or cellular) decomposition of the microscopic
current j(r) into localized ring currents. Unfortunately, different
decompositions may well lead to very different computed M
values, similarly to what is very well known to happen for the
analogous electrical case.

The theory we present here concerns a contribution M0 to
the magnetization that can be defined as a ground-state bulk
property of a crystalline insulator in vanishing macroscopic
magnetic field by means of a very different kind of decomposi-
tion, based on Wannier functions (WFs). Eventually, the formu-
lation is equivalently recast as a Brillouin zone (BZ) integral.
There are two main differences with respect to previous work
which are worth emphasizing. First, despite the fact that a WF
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While the orbital magnetic dipole moment of any finite sample is
well-defined, it becomes ill-defined in the thermodynamic limit as
a result of the unboundedness of the position operator. Effects
due to surface currents and to bulk magnetization are not easily
disentangled. The corresponding electrical problem, where sur-
face charges and bulk polarization appear as entangled, was
solved about a decade ago by the modern theory of polarization,
based on a Berry phase. We follow a similar path here, making
progress toward a bulk expression for the orbital magnetization
in an insulator represented by a lattice-periodic Hamiltonian with
broken time-reversal symmetry. We therefore limit ourselves to

the case where the macroscopic (i.e. cell-averaged) magnetic
field vanishes. We derive an expression for the contribution to
the magnetization arising from the circulating currents internal
to the bulk Wannier functions, and then transform to obtain a
Brillouin zone integral involving the occupied Bloch orbitals. A
version suitable for practical implementation in discretized recip-
rocal space is also derived, and the gauge invariance of both ver-
sions is explicitly shown. However, tests on a tight-binding model
indicate the presence of additional edge currents, and it remains
to be determined whether these can be related to the bulk band
structure.
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decomposition suffers from a large arbitrariness, the resulting
value of M0 is unambiguous. Second, our M0 value is obtained
from a decomposition of the one-particle density matrix 1 and
not of the current j(r) itself. In fact, a knowledge of the bulk j(r)
is insufficient in principle to determine M0, just as a knowledge
of the bulk charge density n(r) is insufficient in principle to de-
termine the polarization. Thus, both features have a close anal-
ogy with the corresponding electrical case.[1,2]

The restrictions to the case of insulators in zero macroscopic
magnetic field are significant ones. While the restriction to in-
sulators is essential for the theory of electric polarization, we
suspect that it is inessential for the case of orbital magnetiza-
tion, and that future generalizations to metals may not be diffi-
cult. On the other hand, the restriction to vanishing macro-
scopic magnetic field is required in order for the Bloch wave
vectors to be good quantum numbers, and the lifting of this
restriction may be more difficult. Nevertheless, we regard our
work as a first step in the direction of a more general theory.
Even with these restrictions, it is important, as a matter of prin-
ciple, to understand whether the Berry phase theory of electric
polarization has analogues in the theory of magnetization. Fur-
thermore, the magnetization properties are closely connected
to the theory of linear response to a small applied magnetic
field. For example, the magnetization is itself trivially related to
the derivative of the total energy with respect to applied field.
Furthermore, a theory of orbital magnetization in zero field
would immediately provide an alternative route to the calcula-
tion of NMR shielding tensors, which can be defined in terms
of the local field at nuclear site Rs linearly induced by the local
macroscopic magnetic field.[9] However, by a thermodynamic
relation (i.e. equality of mixed partials), they can alternatively
be defined in terms of the macroscopic magnetization M line-
arly induced by the perturbation generated by a classical
pointlike magnetic dipole ms at nuclear site Rs (and its lattice-
periodic replicas). This periodic field averages to zero over the
cell and its macroscopic value therefore vanishes. (The entire
situation is analogous to the difficulty of computing the Born
dynamical charge tensor in terms of the force appearing on an
atom in a first-order applied electric field; this difficulty can be
overcome by computing it alternatively as the derivative of the
induced polarization P with respect to a sublattice displace-
ment in zero macroscopic electric field.) Once a robust formu-
lation is in hand for computing the orbital magnetization, the
latter approach should allow for straightforward computations
of the chemical shielding tensors by finite-difference methods.
Thus, we believe there are ample motivations for developing
such a formulation.

In Section 2, we define the problem and introduce our for-
malism. In Section 3, we derive our reciprocal-space expression
for the bulk magnetization of a crystalline insulator, Equa-
tion (14), which is the principal result of this work. In Section 4,
we show how Equation (14) can be implemented in practical
calculations by discretizing it in a numerically gauge-invariant
way over a reciprocal-space grid. Section 5 presents some tests
in the context of a tight-binding model, confirming the expres-
sion for the part of the magnetization related to the circulation
of a bulk WF, but indicating the presence of additional edge

currents whose nature remains to be full clarified. Finally, in
Section 6 we draw some brief conclusions.

2. Generalities

We work at the Kohn–Sham (KS) level, implicitly using density-
only functionals[10] while disregarding subtle issues related to
current–density functionals.[11] We assume a lattice-periodical,
though time-reversal breaking, KS Hamiltonian H. In principle,
such breaking could be due to the presence of a staggered
magnetic field that averages to zero over the unit cell, so that
the vector potential A(r) can be chosen as lattice-periodic, or
to the presence of a large magnetic field that introduces an in-
tegral number of flux quanta per unit cell. Neither of these sit-
uations arises practically.

However, it can also arise, for example, from the spin–orbit
coupling of the electrons of interest (say, itinerant sd electrons)
to a background of ordered spins (say, on rare-earth ions) in
certain classes of crystals.[12–16] In any case, we limit ourselves
to addressing the macroscopic magnetization in a vanishing
macroscopic magnetic field. The context of the present theory
is therefore completely analogous to that of the modern
theory of polarization which, in its standard formulation, ad-
dresses the dielectric polarization of a crystalline sample in a
vanishing macroscopic electric field.[1, 2]

We treat here one isolated spin channel; the case of degen-
erate spins is trivially obtained by inserting factors of two,
while the case of general mixed spins under spin–orbit interac-
tion must be treated with somewhat more care. We use
atomic units throughout. The translational invariance of H im-
plies the usual Bloch form for the KS orbitals. For the sake of
simplicity, the magnetic gauge, hence the Hamiltonian, is kept
fixed, although relaxing this condition is not difficult. The re-
maining gauge freedom, discussed in the following, only con-
cerns the phases of the Bloch orbitals [Eq. (2)]:

yn,qðrÞ ¼ eiq�run,qðrÞ ð2Þ

at different wavevectors q.

We also exclude from our considerations the case of so-
called crystalline Hall insulators.[12,13] These are insulators that
display a nonzero dissipationless transverse conductivity sxy in
a fashion completely analogous to the behavior of a filled
Landau level in the quantum Hall effect. Such insulators are
characterized by an integer topological invariant known as the
Chern number (see discussion following Equation (16) in Sec-
tion 3); indeed, sxy is just �e2/h times the Chern number.[17] Be-
cause it is not possible to choose a smooth periodic gauge
[Eq. (3)]:

yn,qþGðrÞ ¼ yn,qðrÞ ð3Þ

(where G is any reciprocal lattice vector) for such systems,[12] it
is not clear that a Wannier representation is possible. Thus, we
exclude this case, and treat only conventional insulators for
which the periodic gauge condition, Equation (3), is satisfied.
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The Schrçdinger equation for the orbitals u is Equation (4),

HðqÞjun,qi ¼ eðqÞjun,qi ð4Þ

where H(q) is given by Equation (5):

HðqÞ ¼ e�iq�rHeiq�r ð5Þ

The velocity operator is defined via Equation (6):

v ¼ i½H,r� ð6Þ

Note that v is generally different from the canonical momen-
tum p ; for example, if H=

1
2(p+

1
cA)

2+V(r), then v=p+
1
cA and

H(q)= 1
2(v+q)2+V(r). In the case of tight-binding models, one

normally does not bother to define p ; one just uses v defined
by Equation (6).

For an insulating system with nb bands, the single-particle
density matrix is Equation (7),

1ðr,r0Þ ¼ W

ð2pÞ3
Xnb
n¼1

Z

BZ

dqyn,qðrÞy*
n,qðr0Þ ð7Þ

where BZ is the Brillouin zone and the Bloch functions are nor-
malized to the unit cell of volume W. For any finite system, the
magnetic dipole moment is easily expressed in terms of 1.
However, the expression involves the operator rJv, and there-
fore becomes ill-defined when we try to apply the same ex-
pression to an extended system using Equation (7). The analo-
gous problem for the electric dipole can be solved by express-
ing 1 in terms of WFs; we are going to follow a similar path
here.

3. Formalism in Terms of Wannier Functions

The WFs are defined via Equation (8):

wnðrÞ ¼
W

ð2pÞ3
Z

BZ

dqeiq�run,qðrÞ, ð8Þ

and the density matrix 1 is identically rewritten as Equation (9),

1ðr,r0Þ
Xnb
n¼1

X
l

wnðr�RlÞw*
n ðr0�RlÞ, ð9Þ

where Rl are lattice vectors.
While the individual WFs are gauge-dependent, the density

matrix is a gauge-invariant and lattice-periodical operator. Writ-
ten in the form of Equation (9), 1 projects over a set of well lo-
calized orbitals (the WFs) having, for example, a finite second
spherical moment.[18] The rJv operator then becomes harm-
less, and the magnetic dipole moment corresponding to each
term in the sums in Equation (9) can be evaluated in the usual
way. Intuitively, each WF carries in general an electronic current
which circulates in a limited region of space. In view of the
translational symmetry, we define a contribution M0 to the
macroscopic magnetization of the crystalline sample as the

sum of the magnetic dipole moments of the WFs in a cell di-
vided by the cell volume W [Eq. (10)]:

M0 ¼ �
1

2cW

Xnb
n¼1
hwnjr� vjwni ð10Þ

Since the macroscopic current carried by each band vanishes,
it follows that hwn jv jwni=0, so that the choice of origin in
Equation (10) is irrelevant. We thus expect hwn j rJv jwni to be
a fully gauge-invariant quantity. In this respect we are making
an even stronger statement than in the electrical analogy.
There, the origin independence of the polarization is restored
only when the ionic contribution is added to the electronic
one, and even then hwn j r jwni is only gauge-invariant modulo
a lattice constant (the “quantum of polarization”). In contrast,
there is no corresponding “quantum of magnetization” to
worry about here.

We manipulate Equation (10) so that it is expressed in terms
of BZ integrals of the Bloch orbitals, and prove its gauge invari-
ance, as follows. First, we can write Equation (10) as Equa-
tion (11),

M0,a ¼ �
eabg

2cW

Xnb
n¼1
hwnjrbvgjwni

¼ � ieabg

2cW

Xnb
n¼1
hwnjrb½H,rg�jwni

¼ �
ieabg

2cW

Xnb
n¼1
hwnjrbHrgjwni

ð11Þ

since eabgrbrg =0. Next, a straightforward manipulation[19] of
Equation (8) gives Equation (12):

rgjwni ¼
iW
ð2pÞ3

Z

BZ

dqeiq�rj @un,q

@qg

i ð12Þ

Substituting this into Equation (11) yields Equation (13):

M0,a ¼ �
ieabgW

2cð2pÞ6
X

n

Z

BZ

dq

Z

BZ

dq0h@un,q0

@q0b
je�iq0 �rHeiq�rj @un,q

@qg

i

ð13Þ

Finally, this can be reduced, using Equation (5) and the ortho-
gonality relation

P
R

ei(q’�q)·R= (2p)3d(q’�q)/W, to obtain the de-

sired expression for the macroscopic magnetization [Eq. (14)]:

M0,a ¼ �
ieabg

2cð2pÞ3
X

n

Z

BZ

dqh@un,q

@qb

jHðqÞj @un,q

@qg

i ð14Þ

This is our principal result. An identical expression can be ob-
tained by working in the crystal-momentum representation,
without any reference to the WFs. We also notice that the inte-
grand in Equation (14) is similar, though not identical, to the
orbital magnetization of a wavepacket, as obtained by Sundar-
am and Niu[20] within the semiclassical approximation.
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This equation may be rewritten in a manifestly gauge-invari-
ant form as Equation (15),

M0,a ¼ �
ieabg

2cð2pÞ3
X

n

Z

BZ

dqh@un,q

@qb

jQn,qHðqÞQn,qj
@un,q

@qg

i ð15Þ

where Qn,q=1�jun,qihun,q j . Here, we have made use of the an-
tisymmetrization in Equation (14) and the fact that the quantity
hun,q j@/@qa jun,qi is pure imaginary. Now, Qn,q(@/@qa) jun,qi is
manifestly gauge-covariant, in the sense that Qn,q(@/@qa)[e

ib(q) j
un,qi]=eib(q)[Qn,q(@/@qa) jun,qi] for arbitrary phase twist b(q), as is
easily checked. (Indeed, Qn,q(@/@qa) is often referred to as the
“covariant derivative” for this reason[21]). Thus, Equation (15) is
gauge-invariant in a strong sense: not only the integral, but
even the integrand, is gauge-invariant. (Actually, this is also
true of Equation (14), though less obviously so.)

Note that Equation (15) is invariant with respect to a change
of zero of the Hamiltonian. Such a shift gives rise to a contribu-
tion proportional to the integral of Equation (16):

Wab ¼ i
X

n

h@un,q

@qb

jQn,qj
@un,q

@qg

i ð16Þ

over the BZ. The quantity in Equation (16) is known as the
“Berry curvature,” and its BZ integral is just the Chern
number.[12,13] Since we restricted ourselves to the case of con-
ventional insulators having zero Chern number (see Section 2),
this integral vanishes. Also, note that while Equation (14) and
(15) remain well defined and gauge invariant even for a metal,
their use in the metallic case is not justified according to the
approach followed here.

4. Discretization

We discretize Equation (15) on a simple cubic mesh in recipro-
cal space, whose grid unit vectors are ka =Dea, where ea are
unit vectors along the Cartesian axes. On this grid, the cova-
riant derivative can be approximated as Equation (17),[22]

Qn,qj
@un,q

@qa

i ¼ 1
2D
ðj~un,qþka

i�j~un,q�ka
iÞ ð17Þ

where Equation (18) is valid,

j~un,qþka
i ¼ jun,qþka

i
hun,qjun,qþka

i ð18Þ

since the inner product of hun,q j with the right-hand side of
Equation (17) then vanishes exactly as it should. The z compo-
nent of the magnetization can then be written as Equa-
tion (19),

M0,z ¼
�D

32p3c

X
n,q

½CðþþÞn,q þ Cð�þÞn,q þ Cðþ�Þn,q þ Cð��Þn,q � ð19Þ

where the CACHTUNGTRENNUNGðmnÞ
n,q are defined in Equations (20)–(23):

CðþþÞn,q ¼ Imh~un,qþky jHðqÞj~un,qþkx i ð20Þ

Cð�þÞn,q ¼ Imh~un,q�kx jHðqÞj~un,qþky i ð21Þ

Cð��Þn,q ¼ Imh~un,q�ky jHðqÞj~un,q�kx i ð22Þ

Cðþ�Þn,q ¼ Imh~un,qþkx jHðqÞj~un,q�ky i ð23Þ

Intuitively, for each qz of the grid, the (qx,qy) plane is tessel-
lated into triangular plaquettes, each giving a contribution
CðmnÞ

n,q as given in Equation (20–23). (Actually, the tessellation
covers the (qx,qy) plane twice, since there are overlapping trian-
gles arising from neighboring k-points.) Expressions for M0,x

and M0,y are obtained by an obvious correspondence.
It is straightforward to check that Equation (19) is invariant

with respect to a shift of H by a constant energy E0. The extra
contribution at q is proportional to the sum over four terms
like Imhũn,q+ky j ũn,q+kxi. Since each of these is of the form
Im[1+o(D2)] it is permissible, to o(D2), to replace Imhũn,q+ky j
ũn,q+kxi by Imlnhũn,q+ky j ũn,q+kxi. Then, the sum of these four
terms becomes precisely the Berry phase around the diamond-
shaped plaquette surrounding point q. Summing over all q,
we get a contribution that is proportional to the total Berry
phase obtained by circulating around the boundaries of the
entire 2D BZ, which vanishes in a periodic gauge.

5. Numerical Tests

We have checked the correctness of our analytic formula,
Equation (15), by numerical calculations on the 2D Haldane
model.[12] This model is comprised of a honeycomb lattice with
two tight-binding sites per cell with site energies �E0, real
first-neighbor hoppings t1, and complex second-neighbor hop-
pings t2e

� if as in Figure 1 of ref. [12] . This is a model in which
there is no macroscopic magnetic field, although it can be re-
garded as having been constructed by threading flux tubes of
opposite signs through different portions of the unit cell. For
our tests, we have chosen E0=2, t1=1 and t2=1/3 and al-
lowed f to vary. (With this choice, states of nonzero Chern
number are avoided.[12]) We treat the lower band as occupied
and the upper band as empty.

We have computed several quantities and compared them
as shown in Table 1. The second column shows the result of a
bulk calculation in which we computed the Bloch functions on
a 300J300 k-space mesh and computed M0 using the ap-
proach of Equation (19).[23] The remaining columns show re-
sults drawn from calculations on large but finite rhombus-
shaped samples of size NJN (that is, containing N2 sites of
energy �E0 and +E0 each). The N2 occupied WFs were ob-
tained by acting with the band projector on a set of N2 trial
functions (here, just delta functions on the �E0 sites) and ap-
plying a subsequent symmetric orthonormalization. The quan-
tity Mcentral in the third column of Table 1 represents the circula-
tion calculated for a single bulklike WF selected from the
center of the finite sample. It can be seen that M0 and Mcentral

are essentially identical, thus validating the formal derivations
given in the earlier sections.
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We then computed the total circulation of the entire NJN
finite sample and divided by the area to get the macroscopic
average quantity reported as Mmacro in the fourth column. (The
results shown are extrapolated to N!1 from calculations for
N=10, 20, and 30). Clearly Mmacro should correspond to the
physical orbital magnetization, but the result is not identical to
the ones in the previous columns.

In tracing the source of this discrepancy, we found that,
while the WFs in the center of the finite sample carry no net
current, the WFs at the edge of the sample do generally carry
nonzero current (i.e. hwj jv jwji¼6 0). Summing the tangential
components of the net currents associated with the last five
WFs at the right edge of the sample gives the values reported
as Medge. As shown in the last column of Table 1, it is clear that
M0+Medge=Mmacro to the precision of the calculation. (The anti-
symmetry of Mmacro about f= p/2 can be traced to a particle–
hole symmetry of the Haldane model.[24])

Thus, it appears that we have identified all of the contribu-
tions that need to be included in a theory of the orbital mag-
netization. However, it remains unclear whether Medge is a bulk
property, and if so, how to compute it from a knowledge of
the bulk Bloch functions alone.

6. Summary and Conclusions

We have presented a formalism for the calculation of an im-
portant contribution to the orbital magnetization in extended
systems with broken time-reversal symmetry. We have restrict-
ed ourselves to insulators in vanishing macroscopic magnetic
fields, and have considered only the case of isolated bands of
zero Chern number.[25] Our approach utilizes WFs to resolve
the ill-defined character of the circulation operator in periodic
systems, although an identical result can be derived using the
crystal-momentum representation to work directly with Bloch
orbitals. These considerations lead to an expression for a mag-
netization contribution M0 which involves a BZ integral over
the Hamiltonian sandwiched between covariant derivatives,
Equation (14). This expression is manifestly gauge-invariant
and can easily be calculated using the discretization in recipro-
cal space given in Equation (19).

Our numerical tests confirm that Equation (19) is correct, but
they also indicate that M0 is not the only contribution to the
full orbital magnetization M. Evidently it is also necessary to in-
clude a second contribution that manifests itself, in the Wanni-
er representation, in terms of extra net currents flowing on
WFs near the surface. Our work leaves open the question

whether this extra contribution can also be expressed as a
bulk property, computable from a knowledge of the bulk
Bloch functions. This is clearly an important direction for future
research.
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number when a large, “commensurate” macroscopic magnetic field is
present (i.e. when there is an integer number of flux quanta per cell).
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Table 1. Numerical calculations of various contributions to the orbital
magnetization for several values of the flux parameter f in the Haldane
model.

f M0 Mcentral Mmacro Medge M0+Medge

p/4 0.01741 0.01741 0.00512 �0.01229 0.00512
p/2 0.02835 0.02835 0.00000 �0.02835 0.00000
3p/4 0.01229 0.01229 �0.00512 �0.01741 �0.00512
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A reciprocal-space expression for the
bulk magnetization of a crystalline insu-
lator is obtained, and a version suitable
for practical implementation in discre-
tized reciprocal space is also derived.
Tests on a tight-binding model indicate
the presence of additional edge cur-
rents. These calculations might be the
first step in the direction of a more gen-
eral theory.
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