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We discuss a method for determining the optimally localized set of generalized Wannier functions associ-
ated with a set of Bloch bands in a crystalline solid. By “generalized Wannier functions” we mean a set of
localized orthonormal orbitals spanning the same space as the specified set of Bloch bands. Although we
minimize a functional that represents the total sprea¢t %), —(r)?2 of the Wannier functions in real space, our
method proceeds directly from the Bloch functions as represented on a mkgboufts, and carries out the
minimization in a space of unitary matricéé,ﬁ,)1 describing the rotation among the Bloch bands at égobint.

The method is thus suitable for use in connection with conventional electronic-structure codes. The procedure
also returns the total electric polarization as well as the location of each Wannier center. Sample results for Si,
GaAs, molecular GH 4, and LiCl will be presented.S0163-182607)02944-5

I. INTRODUCTION that correspond more closely to the chemitawis) view of
molecular bond orbitals. It seems not to be widely appreci-
The study of periodic crystalline solids leads naturally toated that these are the exact analogues, for finite systems, of
a representation for the electronic ground state in terms ahe Wannier functions defined for infinite periodic systems.
extended Bloch orbitalg,(r), labeled via their band and  Various criteria have been introduced for defining the local-
crystal-momentunk quantum numbers. An alternative rep- ized molecular orbitalé!~2*two of the most popular being
resentation can be derived in terms of localized orbitals othe maximization of the Coulomid or quadratié* self-
Wannier functionsv,(r —R), that are formally defined via a interactions of the molecular orbitals. One of the motivations
unitary transformation of the Bloch orbitals, and are labelecfor such approaches is the notion that the localized molecular
in real space according to the bameénd the lattice vector of orhitals may form the basis for an efficient representation of
the unit cellR to which they .belond.“‘ _ _electronic correlations in many-body approaches, and indeed
_The Wannier representation of the electronic problem ispjs ought to be equally true in the extended, solid-state case.
widely known for its usefulness as a start|r_lg p0|_nt for vari- One major reason why the Wannier functions have seen
ous formal developments, such as the semiclassical theory g hractical use to date in solid-state applications is un-

eleptron dynamics or the theory .Of magnetic interactions irHoubtedly their nonuniqueness. Even in the case of a single
solids. But until recently, theractical importance of Wan- isolated band, it is well known that the Wannier functions

nier functions in computational electronic structure theory . . (k)
has been fairly minimal. However, this situation is now be-W“(r) are not unique, due to a phase indetermineicy™ in

ginning to change, in view of two recent developments. First,thef Bloch Orb'.taIS’/’”k(r)' For .thls case, 'Fhe conditions re-
there is a vigorous effort underway on the part of manqured_ to obtam_a set of maximally Iocz;\llzed, exponentially
groups to develop so-called “ord&* or “linear-scaling” decaying Wannier functions are knowA’ —
methods, i.e., methods for which the computational time for In the present work we d|scus§ the determination of the
solving for the electronic ground state scales only as the ﬁrépaglmally localized Wannier fu_nct|ons f_or the.case of com-
power of system siz&jnstead of the third power typical of posite bands. Now a st_ronger mt_delf)ermmacy IS presen_t, rep-
conventional methods based on solving for Bloch stated€Sentable by a free unitary matii¥y) among the occupied
Many of these methods are based on solving directly fo,BIoch_orbltaIs at evkery Wave_vector. We require the choice of
localized Wannier or Wannier-like orbitals that span the oc- Particular set obl ) according to the criterion that the sum
cupied subspac&*and thus rely on the localization prop- {2 of the second moments of the corresponding Wannier
erties of the Wannier functions. Second, a modern theory ofunctions be minimized(This is the exact analogue of the
electric polarization of crystalline insulators has just recentlycriteria of Boys* for the molecular-orbital caseWe show
emerged®2°it can be formulated in terms of a geometric that{) can be decomposed into a sum of two contributions.
phase in the Bloch representation, or equivalently, in termdhe first is invariant with respect to the{) and reflects the
of the locations of the Wannier centers. k-space dispersion of the band projection operator, while the
The linear-scaling and polarization developments are asecond reflects the extent to which the Wannier functions fail
the heart of the motivation for the present work. However,to be eigenfunctions of the band-projected position opera-
there is another motivation that goes back to a theme that hasrs. We show how this formulation reduces to previous ones
recurred frequently in the chemistry literature over the lasin the case of a single isolated band, or in one dimension, or
40 years, namely, the study of “localized molecular for centrosymmetric crystals.
orbitals.”?'~?° The idea is to carry out, for a given molecule ~ We also describe a numerical algorithm for computing the
or cluster, a unitary transformation from the occupied one-optimally localized Wannier functions on lkaspace mesh.
particle Hamiltonian eigenstates to a set of localized orbitald'he algorithm is designed to operate in a post-processing
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mode after a conventional band-structure calculation, takingomposite grouif they are connected among themselves by
as its input the Bloch functions computed on a mestk of degeneracies, but are isolated from all lower or higher bands.
points. (Thus, it isnot a linear-scaling methodWe present For example, in Si the four valence bands form a composite
sample results for the optimally localized Wannier functionsgroup, while in GaAs the lowest valence band is isolated and
in Si, GaAs, molecular gH,, and LiCl. It should be empha- the higher three form a composite group.
sized that this procedure generates incidentally a set of In the case of isolated bands, it is natural to define Wan-
Wannier-center positions; these by themselves can someier functions individually for each band. That is, the Wan-
times be very useful for analyzing the bonding properties andier function for banch (together with its periodic imaggs
the electronic polarization of disordered or distorted insulatspans the same space as does the isolated Bloch band. In the
ing materials. case of composite bands, however, it is more natural to con-
In this work, we have not considered any further genersider a set of] “generalized Wannier functions” thafto-
alizations of the problem, although several interesting possigether with their periodic imaggspan the same space as the
bilities come to mind. For example, one could relax the concomposite set ofl Bloch bands. That is, the “generalized
straint that the Wannier functions should be orthonormal tdBloch functions” i, that are connected with theh gener-
each other(in this case they should probably not be calledalized Wannier function will not necessarily be eigenstates
“Wannier functions”). Such functions would correspond to of the Hamiltonian at thik, but will be related to them by a
the “localized orbitals” or “support functions” appearing in  JX J unitary transformation.
certain linear-scaling methad®¥'3 and in the chemical- The formulation that follows is designed to apply equally
pseudopotential approaéh.®® Alternatively, one could re- to the isolated and composite cases. For the isolated case,
tain the orthonormality requirement, but ask to find a largerJ=1, and sums oven can be ignored. For the composite
set of functions spanning a space containing the desiredase, the terms “Bloch function” and “Wannier function”
bands as a subspace. For example, in Si one could ask forshould be understood to be meant in the generalized sense
maximally localized set of four Wannier-like functions per discussed above.
atom spanning a space twice as large as, but containing, the It may sometimes be convenient to consider a group of
space of the four occupied valence bafidsAgain, this is  bands as composite even when some of the members are
very similar to what is done in certain linear-scaling actually isolated. For example, one may wish to consider all
methods:®213These interesting generalizations deserve in-of the occupied valence bands of an insulator as a composite
vestigation, but have not been pursued here. group. This is rather natural in connection with linear-scaling
The manuscript is organized as follows. The problem isalgorithms and the theory of electronic polarization. Thus,
introduced in Sec. Il. Expressions for the spread functionalfor GaAs, one may choose to regard all four valence bands as
and for its decomposition into gauge-invariant and gaugea composite group. In this case the Wannier functions will
dependent parts, are developed first in real space in Sec. Ilesembles-bonded pairs osp°> hybrids, arguably the most
Section IV then formulates the corresponding expressions inatural choice. Moreover, the GaAs Wannier functions de-
discretek space(that is, on a mesh of wave vectar$pecial  fined in this way turn out to be considerably more localized
features that arise in one dimension, or for a single isolatethan those of the top three or bottom valence bands sepa-
band, or for a crystal with inversion symmetry, are also distately. Again, the formulation below should be taken to ap-
cussed there, as is the steepest-descent minimization algply equally to this case, with running over thel adjacent
rithm that we use. Some discussion and speculation about theands that are being considered as a composite group.
asymptotic localization properties, and the real versus com- Finally, the formalism applies equally to any isolated
plex nature of the Wannier functions, appear in Sec. V. Irband or composite group that may exist in a metal or insu-
Sec. VI we present test results for Si, GaAsHG, and LiCl  lator, regardless of occupation. However, because the expec-
systems. Finally, in Sec. VII, we discuss the significance otation values of physical operators only depend upon occu-
the work, emphasizing possible applications of our approactpied states, one is usually interested in the case of occupied
Some details of the real-space, discietgpace, and continu- bands in insulators.
ous k-space formulations are deferred to Appendixes A, B,
and C, respectively. In particular, the relationship of the B. Definitions
present work to the theory of adiabatic quantum phases and

quantum distances is discussed in Appendix C. We denote byw,(r —R) or [Rn) the Wannier function in

cell R associated with band, given in terms of the Bloch

functions as
Il. PRELIMINARIES

A. Isolated and composite bands IRn)= (2\7/7)3f dke—ik~R|wnk>’ (1)

We confine ourselves here to the case of an independent-
particle HamiltonianH = p?/2m+V/(r) with a real periodic g that
potential V(r). We thus assume the absence of electric and
magnetic fields, and we suppress spin. The eigenfunctions of R
H are the Bloch functionsy,(r) labeled by banch and |¢nk>=; e™¥Rn). @
wave vectork.

A Bloch band is said to besolatedif it does not become HereV is the real-space primitive cell volume. It is easily
degenerate with any other band anywhere in the Brillouirshown that the Wannier functions form an orthonormal set.
zone(BZ). Conversely, a group of bands are said to form aAs usual, the periodic part of the Bloch function is defined as
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Unk(P) =€ K T (1), ©) Eqg. (10) that results when th& are chosen diagonal. The
transformation(10) does not preserve the individual Wannier
centers, but does preserve the sum of the Wannier centers,
modulo a lattice vectol> We shall frequently refer to this
v freedom as a “gauge freedom” and the transformatib)
(Rn|r|0m>=i—gf dke* R(un|ViJumd,  (4)  as a “gauge transformation.”
(2m) Our goal is to pick out, from among the many arbitrary
the converse relation being choices of Wannier functions, the particular set that is maxi-
mally localized according to some criterion. Our choice of
. ik criterion is introduced and justified in the following section.
(Ui Vil Umi) = _'; e "“’(Rn]r|0m). 4 of course, some arbitrariness will remaiii; there will al-
ways be an arbitrary overall phase of each of dh&/annier
In equations like these thE, is understood to act to the fynctions? (ii) there is a freedom to permute théNannier
right, i.e., only on the ket. The consistency of these twofynctions among themselves; afii) there is a freedom to
equations is easily checked; the latter can be derived by nofransiate any one of th@ Wannier functions by a lattice
ing that vector (that is, to decide which Wannier functions belong to
(Upu V=4 |e*‘b'r|z/; ) th_e_ “home”_ L_mit cell labeled byR=0). Aside from the_se
nk[™m,k-+b nk mk+b trivial remaining degrees of freedom, we expect to find a
" " unigue set of maximally localized Wannier functions.
= e R(Rnle™""|0m), We should mention that related approaches have been
R proposed in the literaturésee Refs. 31, 33—36, and prior
and then equating first orders n Similarly, equating sec- attempts in Refs. 37, 38 order to construct localized Wan-
ond orders irb leads to nier functions starting from first-principles Bloch orbitals. In
general, they have relied oseparate heuristic choices for
the U, in EQ. (10) and theg,, in Eq. (9). The former trans-
formation is used to remove the nonanalyticities at points of
— degeneracy in the Brillouin zone, and the latter gimethe
Introducing the notation r,=(On[r|On) and (r?,  spirit of Ref. 33 is applied separately to each resulting Wan-
=(0n|r?|on) for the diagonal elements in the cell at the nier function to make it more localized. Although such ap-

As shown by Blount matrix elements of the position opera-
tor between Wannier functions take the form

\% .
(Ralr2lom) =~ o5 [ ke Xun | VEumd. (@

origin, we have proaches can provide reasonably localized Wannier func-
tions in many cases, they do not provide the maximally

T =i v fdk(u |V Un) @ localized set according to a pre-defined criterion, nor can

n2wr)d nkl Tkl Hnk they easily be generalized to systems having low symmetry.

and
I1l. SPREAD FUNCTIONAL IN REAL SPACE

\
AN 2
(r >n_(2W)3f dk|[ Vi) |*. ® As a measure of the total delocalization or spread of the

. ) ) Wannier functions, we introduce the functional
This last follows from Eq(6) after an integration by parts.

C.:. Arbitrariness in deflnlltlon of V\{anmer functlons. 0= E [<r2>n_r—nz] (11)
As is well known, Wannier functions are not unique. For n
a single isolated band, the freedom in choice of the Wannier
functions corresponds to the freedom in the choice of th
phases of the Bloch orbitals as a function of wave vektor
Thus, given one set of Bloch orbitals and associated Wanni
functions, another equally good set is obtained from

QUecall rn={rn). Eq.(11) is to be minimized with respect to
the unitary transformationsl¥) . A functional of this form
ehas previously appeared as one possible defifftionthe
“localized molecular orbitals®'~?®discussed in the chemis-
U — €U, (9)  try literature. Other localization criteria, such as maximizing
the sum of Coulomb self-energies of the orbitalsr the the
where ¢, is a real function ok. Such a transformation pre- product of the separations of the centréfdsave also been
serves the Wannier center, modulo a lattice vectot!>®  suggested. We focus on the Wannier function obtained by

but of course it does not preserve the sprégd,—r2. minimizing Eq.(11) for the following reasons(i) The Wan-
For a composite set of bands, the corresponding freedofiier functions so determined correspond precisely to those
is considered by previous authors for the isolated-band case in

one dimensior{1D) Refs. 2, 3 and 39 and 3%Xii) In the 1D
® multiband case, the optimally localized Wannier functions
|Unk>—>2 Ul Ui, (10 defined by minimizing Eq(11) turn out to be identical to the
" eigenfunctions of the projected position operatorP,>°*°as
whereU,,, is a unitary matrix that mixes the bands at wavewill be demonstrated shortlfHere P is the projection op-
vectork. Equation(9) can be regarded as a special case ofrator onto the group of bands under consideration,
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_ _ Clearly Q) vanishes, and sinc€, is gauge invariant, this

P_% |Rn><Rn|—% [t (el 12 minimizes Eg.(13). Thus in 1D the solution is essentially
trivial, even in the multiband case, afitl,,;,=(, at the so-

and Q=1—P is the projection operator onto all other lution.

bands). (iii) It is one of the functionals proposed in the  From this point of view, it can now be understood that the

chemistry* and physics literaturd3+331 (but where the essential difficulty in the three-dimensional case is that the

second term on the LHS of E@ll) is usually neglected operatorsPxP, PyP, andPzP do not commutegor, in the

(iv) It leads to a particularly elegant formalism, allowing, for language of Appendix A, that matrice§ Y, andZ do not

example, the decomposition into invariant, diagonal, and offcommute). For if they did, one could choose the Wannier

diagonal contributions as described below. functions to be simultaneous eigenfunctions of all three, and
We find it convenient to decompose the functiofel)  one could again mak@ vanish. But this is not generally the

into two terms, case, and the problem is to find a set of Wannier functions

that makes the best possible compromise in the attempt to

0=0,+0, (13)  diagonalize all three simultaneously. Indeed, it appears very

natural that the criterion should be simply to reduce, as far as

where possible, the mean-square average of all off-diagonal matrix

elements ofx, y, andz between Wannier functions; this is
precisely the criterion encoded infd. A procedure for car-

:En: <r2>n_gr:4q [(Rmr[On)|? (14 rying out this minimization directly in real space is sketched
in Appendix A. However, for crystalline solids with periodic
and boundary conditions, it is more straightforward to workkin

space as discussed in the following section.

. Finally, for later reference, it is useful to decompd3e
=> Rzo [(Rm(r|On)?. (15 into band-off-diagonal and band-diagonal pieces,
n m n

Clearly the second term is positive definite. While it is not Q=0Q0p+Qp, (18)
immediately obvious, the first term is also positive definite
and, moreover, it igauge invarianfi.e., independent of the
choice of unitary transformations among the band® see
this, we use the definitions & andQ in terms of the Wan- Qop= >, > [(Rm|r|on)]2. (19
nier functions to write m#n R

'where

and
Q IZE <On|raQra|0n>
" Qp=2 2 [(Rn[rjon)P. (20
n R#0
=2 trdPr,Qr,]
“ IV. SPREAD FUNCTIONAL IN k SPACE
_ 2 2 2
=[PxQz+[PyQlc+IPzQlE. (16) A. Transition to k space
Here tg, indicates the trace per unit cell, ajl]|Z=trfATA]. We now derive expressions fél, Q,, €, etc. in terms of

The last form makes it obvious thél, is positive definite.  a discretizek-space mesh. We begin by substituting expres-
Operators of the fornPrQ have been discussed extensively sions(7) and(8) into Eq.(11), and making use of

by Nenciu*! unlike r itself, PrQ commutes with lattice

translations, and its expectation value is well defined in any

(normalizablg extended state. Thus, it follows thét, is Wf dk— N; , (21
gauge invarianti.e., invariant with respect to the choice of

Wannier functions, or equalently to the choice of the uni- whereN is the number of real- -space cells in the system, or
tary mixing matricesJ ). This will become even clearer in equivalently, the number df-points in the Brillouin zone.
Sec. IV, where(), is expressed in a finite-differenéespace  Using the finite-difference expressions ff and V2 intro-

representation. duced in Appendix B, we have
It was stated earlier that in 1D the set of Wannier func-

tions that minimizes the spread functional, Etfl), turns out i

to be identical to the set of eigenfunctions of the projected rn:N;} Wbl {Unk|Un k+b) — 1] (22)
position operatoPxP. This can now be seen as follows. ‘

Choose the Wannier functiof®m) to be eigenfunctions of gng

PxP with associated eigenvalueg)m. Then

1
2y —
<Rn|x|0m>:<Rn|PXPlOm)ZX—Om(SRyo(Sm'n (17) <r >n Nkz’b Wb[2 2 unnklun,k+b>]- (23)
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Hereb are vectors connecting eakfpoint to its near neigh-  bjguity in the choice of branch when evaluatingvff;” . Of

bors andw, are associated weightsee Appendix B course, it is not invariant under an arbitrary gauge transfor-
Clearly, these expressions reduce to E@sand(8) inthe  mation, Eq.(10)].
limit of dense mesh spacing\(—<«, b—0). However, we Note that expressiofi32) for (r?), is not unique, even

should like to insist on a second desirable property as welkyhen insisting on the invariance conditid@4). For ex-
namely, that for a givelk mesh,r, and(r?), should trans- ample, replacing

form as expected when the definition|6h) is shifted by a
lattice vector.(This corresponds to changing the choice of 1—-|MKP12_, —2 Re IV (P (33
which Wannier functions belong to the “home” unit cell.
That is, when|uy)—|uy)e R, so that(uylu,eip)  results in an equally valid finite-difference formula for.

—{(Un|Un ks pye R, we should find However, use of the formi32) facilitates a connection with
o the decomposition ofl=Q,+ Qgp+ Qp into invariant, off-
M—ratR, diagonal, and diagonal components as in Ef3) and(18).

) ) L ) Following the lines of the formalism above, one finds that
(rn—=(ront2r,-R+R%, (249 Eq.(14) becomes

so thatQ) will be unchanged. Expressiorig2) and (23) do 1

not obey these requirements, but can be modified to do so. Q|=—2 Wb<J_2 |M(rrl1<ﬁb)|2)

As long as the modifications leave the summands unchanged N mn

to orderb andb? in Egs. (22) and (23), respectively, they

will still reduce to Eqs(7) and(8) in the continuum limit. = EE wytr PROQUk+b)] (34)
Let N%D ’
M) = (U U ) (25) vv_hereP(k)=Zn|unk><unk|, Q(k)_=1— P& and the band in-
~ dicesm,n run over 1, ..,J. Similarly, Egs.(19) and (20)
and, for a givem, k, andb, let become
M<"'b)=1+ixb+1 b2+ O(b?) (26) 1 (k,b)|2
nn 2y . QOD:N% Wbrgn |Mmh | (35)

By expanding(u,, x+p|Un k+b) =1 order by order irb, it is

easy to check that andy are real. Then, referring to Egs. and
(22) and (23), we have 1
_ = _ (kb) _ .72
MU —1=ixb+O(b?), 27 Qo= Yo (ZImIMET=b T (39
) Rdv'(nkn,b): —yb2+0(b3). (28) From these expre§§ions, i.t js again evident fiat Qqp,
and ) are all positive definite.
It is also easy to check that Equation(34) also now shows clearly thd®, is gauge-
) _ (k.b) 5 invariant [i.e., independent of the choice of the Wannier
ixb=i Im InM >+ O(b%), (29 functions, Eq.(10)]. Heuristically,Q, represents the degree
, kb2 ora , of dispersion of the band projection operalf’ through the
—yb*=1—[M”[+x*b*+ O(b"). (300 Brillouin zone. That is£}, is small insofar a®® is nearly

independent ok. (Note that tfP;Q,]=|P,— P,|%/2 repre-

Thus, in place of Eq(22) we write s !
P 422 sents the “spillage,” or degree of mismatch, between the

_ 1 spaces 1 and PSince(}, is invariant with respect to gauge
M=-— N;, wpblm InM %P, (31)  transformationg10), it can be evaluated once and for all in
’ the initial gaugdi.e., using the initiali,, ) before performing
and, in place of Eq(23), the minimization procedure outlined below.

It is amusing to note, following the ideas of Refs. 42—-44,
that one can define a “quantum distance” between two wave

vectorsk andk’ asdl?=tr[P®QX"], thus inducing a met-

] ) o ] . ric upon thek space. The invariant part of the spread func-
When inserted in Eq11), this gives our operational defini- tjonal (0, turns out to be nothing other than the Brillouin-
tion of the spread functiondb. zone average of the trace of this metric. We discuss the

It is easy to check that Eqe31) and(32) obey conditions  properties of this metric, and speculate about its utility, in
(24) exactly, while still reducing to Eq47) and (8) in the  Appendix C.

continuum limit. The expression for the Wannier center, Eq.
(31), is strongly reminiscent of the Berry-phase expression of
Refs. 15 and 16, and reduces to it for an isolated band in 1D.
[It is also exactly invariant, modulo a lattice vector, under We now consider the first-order change of the spread
any change of phases of the form of E§), provided that functional() arising from an infinitesimal gauge transforma-

the phases still vary smoothly enough withio prevent am-  tion, Eq.(10), given by

<r2>n=§§3 Wo{[ 1= M 2]+ [Im InMEP12) - (32)

B. Gradient of spread functional
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U= 6t dWK)

mn?

(37

where dW is an infinitesimal antiunitary matrix,

dW'=—dW, so that
|unk>_)|unk>+§ dwn|:31|umk>- (39

We seek an expression fd2/dW¥). We use the conven-
tion

(dF) _dF (39
dw/  dWp,
(note the reversal of indicgsso that

dtr[dWB]_B 40

Taw P o

d Re tf dWB] B n

—aw Bl (41

dImtr[dWB]_ B 49

—aw Bl (42)

whereA andS are the superoperator B]=(B—B")/2 and
S[B]=(B+B")/2i. As we shall see shortly, it is possible to
castd() into the form of the numerators of Eq&ll) and
(42).

For the present purpose it is convenient to write

0O=Q,0ptQp, whereQly is the diagonal part given by Eq.

(36), and the invariant and off-diagonal parts are combined

into

Q) 00=01+Q0p
SIS WS [ 1M,
Nk,b b = nn

From Eq.(39) it follows that

(43

dM{EP = —[dWOM KD M KD gwktoI]
(44)
Using MK = MK+b.=DT gnd dw=—dW', the second
term in Eqg. (44) can be transformed to become
—[dWkFBDI\(k+D.=b)* - Defining

RIS = MM s
we thus find
4
olQ.,OD:NkZb wyRe tfdWOR(P]. (46)
Similarly, defining
gP=1mIn MK +b. T, (47
and
(k,b)
R = ko (49

Eq. (36) gives for the diagonal part
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2 (k,b) K)yp(k,b
dQD=N% wp>, qiPIm[ —dwWWRKD
, n
+dWkHDREb=D) (49)

Substitutingg{** = — g, the two terms can be com-
bined, resulting in

4
dQp=— =, wplm tr[dWHTkD], (50)

N©D
where
T =Rinan®. (51)
We thus arrive at the desired expression for the gradient of
the spread functional,

Gk

Q
= = 42 W AR -S[TER). (52

We note, for completeness, that making the replacerf@at

has just the effect of replacir@ by R in the first term above.
The condition for having found a minimum is that the

above expression should vanish. We discuss the numerical

minimization of the spread functional by steepest descents,

using this gradient expression, in Sec. IV D.

C. Special cases
1. One dimension

As mentioned in Sec. Ill, in 1D it should be possible to
choose the Wannier functions to be eigenfunctions of the
band-projected position operatétxP, and thus to make

ﬁ=QOD+ Qp vanish. Unfortunately, on a finitk meshQ
cannot generally be made to vanish completely. At the mini-
mum, Q) does vanish, buf) 5, does not, leaving a remain-
der that is expected to approach zeroG?) with mesh
spacingb.

First, note that starting from any given gauge, it is
straightforward to adjust the phases of thgkj) in order to
makeQ =0 without affecting(} 5, whatsoever. For eaain,
let \y=5,/|s,| where s,=11"-¢M % (thus \, is the
“Berry phase” of bandn); then, starting from the first point
j=0, recursively set the phase dfln,kj+b> such that
M i ,+b):)\r11/N

o , for successivek points j. Then all the
v ki +)
nn

will have the same phase afith will vanish. This
operation has no effect whatsoever on the magnitudes of the
elements ofM{*®) "and so, by Eq(35), it leaves Qqp
unchanged. This argument demonstrates fig=0 and
thus )= Qqp at the minimum.

A good starting guess that will mak@ p rather small
(and keepQlp=0) can be constructed as follows. We first
establish a notion of “parallel transport” of the Bloch func-
tions. Starting with some arbitrary choi¢gom among all
possibleJx J unitary rotations of the |unko> at an initial k

pointky, we choose théun'kOJ,b) at the next poinky+b by

insisting thatM " *® should be Hermitian[This choice is

uniquely given by the singular value decomposition
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M=V3 W', whereV andW are unitary an® is a diagonal

matrix with nonnegative diagonal elements. Then GM=4i> wylm In M*P), (53
M= (VE=V")(VW"); and by appropriate unitary rotation, the b

VW' term can be eliminated, leavinl Hermitian] This At the solution, this expression must vanish. Starting from
procedure is repeated, progressing frenpoint to k point  some initial guess on the phases of thg) and making the
[and usingum,ﬁ,a(x):unﬂ,,a(x)ezmx’a when crossing the substitution of Eq.(9), it can be seen that E¢53) corre-
Brillouin-zone boundarjuntil the loop is completed, estab- sponds to a solution of the Laplace equation for the phase
lishing a new set of states k} that are related to the initial field ¢(k). This corresponds closely to the discussion in the
ones by a unitary transformatioh. (This matrix A is the  vicinity of Eq. (5.15 of Ref. 3.

generalization of the Berry phdSeo a non-Abelian multi- The quantity — =, wpbim InM&P) is a finite-difference
dimensional manifold®*®*§ Next, one diagonalizes representation of the vector fiek(k) =i(uy|V|uy); in the
A=VAV', and rotates the bands at evérpoint by the same  language of the theory of geometrical phagei) is known
unitary matrixV. Having done this, one finds that each stateas the “gauge potential” or “Berry connection?®*>*’The
|unk0> is carried onto itself by parallel transport around theaverage value oA(k) is gauge-invarianfmodulo a quan-
loop, except that it returns with an excess phegeFinally, ~ tum) and is set by the Berry phas&,'’ but A(k) is locally
defining y,=A;™ and modifying the phases as gauge-dependent. The minimization@fvia the solution of

Ui )= ¥4 Uni ), We arrive at the desired solutigparallel- the Laplace equation selects the gauge that matkesvan-
tranjsport gaugjje ish, but its curl,B=V XA, is generally nonzero. In facB,

. . (k+b) _ 1 (K) . o which is known as the “Berry curvature,” is a gauge-
At this solution, eactMy Kmnn With K Hermitian. invariant quantity; it can be regarded as an intrinsic property

It follows that the Im IM{;"™ are independent ok, the  of the pand®4®
Wannier centers, are determined by the,, and thus)p Since A(k) is periodic ink space, one can alternatively
of Eqg. (36) vanishes. From Eq35) it can be seen th@op  think in terms of the Fourier coefficients(R). These can be
does not generally vanish. Howevélop depends only on  divided into three contributions: theniform part, A(R=0);
the matricesk{), and these can be shown to scale asand, forR+0, the longitudinal and transverseparts A (R)
Smnt O(b?), so that|M&*P)|2 is expected to scale as and A((R), i.e., the components dk(R) parallel and per-
O(b%), andQep asO(b?). pendicular toR, respectively. The uniform part gives the
If a minimization of () is then carried out starting from Wannier center; the longitudinal part is the part that can be
this parallel-transport solution, one expeéds, to remain  made to vanish by appropriate choice of gauge; and the
zero andQop to be reduced slightly, the reduction again transverse part is gauge invaridittis related to the Berry
being expected to b®(b?). The Wannier centers will also curvatur¢ and determines the minimum value 6. In
presumably shift slightly. fact, the individual Fourier componenfg R) can be related
If one is mainly interested in the Wannier centers in theto the matrix element¢R|r|0) of Eq. (15); it thus follows
one-dimensional case, it may be preferable to take these frothat at the solution, the latter are purely transverse,
the parallel-transport solutiofi.e., from the\ ), rather than  A(R)-R=0. Unfortunately, the picture does not appear to
from thex_n at the minimum. The former approach corre- remain so simple in the multiband case, as discussed in Ap-
sponds more closely with the Berry-phase viewpdint/?°  pendix C.
and indeed the sum of the Wannier centers so defined corre- The Berry curvature, or equivalently, the transverse part
sponds to the wusual formula for the electronic of the Berry connection, can easily be shown to vanish for an
polarization'®® (Actually, for this purpose, the full parallel- isolated band in a crystal with inversion symmetsge Sec.
transport construction need not be carried outmay be IV C 3); in this case the solution foA(k) is a perfectly
calculated as the product of the unitary parts of khema-  uniform one, andp vanishes at the solution. In a noncen-
trices in any given representation, and Meobtained as its trosymmetric crystal, however, this is not the case, since a
eigenvalues. By “unitary part” we mean théW' taken nonzero Berry curvature is generally present. This provides a
from the singular value decompositih=VSW'.) On the = complementary viewpoint, for the single-band case, on the
other hand, the parallel-transport formulation does not easilfact that the noninvariant paf® of the spread functional
generalize to higher dimensions. Thus, the approach of minieannot generally be made to vanish.
mizing the() functional appears to be the most natural one in
higher dimensions, and it gives results that differ only very 3. Inversion symmetry
slightly from the parallel-transport solution for reasonable

meshes in 1D. When inversion symmetry/(r)=V(—r) is present, the

cell-periodic Bloch functions can be chosen to be real in
the reciprocal representation; that is, uy(r)
=2 cUn(G)exp(G-r) with u,(G) real. It might naively
For the case of an isolated band in multlple dimenSionSappear that all thé/ Sri](hb) matrices could then be chosen real,
the problem of finding the optimally localized Wannier func- and that the solution of the minimization problem might be
tion maps onto the problem of solving the Laplace equatiofivial in some sense. This is not quite true. Even for an
for a phase field;*® as described next)op, is not present, isolated band, there is the complication that the Berry phase
and the problem reduces to minimizifity, so that only the  of the band may be-1 instead of+1; in this case the
second term in Eq(52) appears. ClearlRR is identically one  u,(G) can be chosen retcally (i.e., in a small neighbor-
and TP =qkb js real, so that Eq(52) becomes hood around any givek), but notglobally. But this really

2. Isolated band in multiple dimensions
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only means that the co.rrespolnding Wannier function hag, g the matricesX, Y, Z computed as,= (U |;<Tunk )
definite symmetry l_mder inversion through a symmetry .Cenétc. Approachi) is a “quick fix" requiring very Iitotle reporo-

;enr d( t\r/]\éy(é';?:fy%%222”C;noézerreg;ﬂ¢thbey znshi?tt é?%r%r;gm' gramming, while approactii) is preferable in principle.

For the case of composite bands, however, the problem. is t,[o Itis also common_practice to use sindleoint sampling
choose a particular gauge transformatjea. (10)], not just or supercell calculations on extended systems, provided that

a phase tansormatig. 9], and for s e presence of e Sprcel s sufcenty lrge g ree dmenions.
inversion symmetry does not provide any obvious solution ’ P 9 pplied,

For example, consider the case of the four valence bano&e kept in mind that the convergence Qf with supercell
of Si. (Numerical results for this case appear in Sec. Vil A. Size should be expected to be slower than the convergence of

Taking the origin at the center of the bond oriented alonimal energies and forces. Moreover, the electronic polariza-

[111], it turns out to be possible to choose one of the wan-'on that'would be computed from the sum Of. our Wannier
centers is not guaranteed to be exactly identical to the one

nier functions to have inversion symmetry about the or|g|n,Fhat would be computed from the Berry-phase formitla,

while the other three have inversion symmetry about othe
Wyckoff positions (those corresponding to the other three —2e _
bond centers and the remaining Wyckoff positiorigetrahe- Per G= ——Im In detuy | "¢ fuy ), (54

. . " . Vv 0 0
dral and octahedral interstitial positionare unoccupied.
This would have been hard to guess based on symmetiysed in recent molecular-dynamics simulations of infrared

alone(although it is natural from a chemical point of view apsorption spectrd. However, the two should be very close,
Because each Wannier function does have its own INnversioand should become identical in the limit of |arge Superce”

symmetry, it turns out tha ; does vanish for Si. However, sjze.
Qop#0. The contribution td)op from a given paifmn} of

Wannier functions is related to the matrix elements D. Steepest-descent minimization
(Rm|r|On). These matrix elements can be shown to vanish _
if, in addition to obeying inversion symmetry individually, 1. Algorithm

the two Wannier functions are translational images of one |n order to minimize the spread function@l by steepest

another; but this is certainly not generally the ca$e.the  gescents, we make small updates to the unitary matrices, as

language of Appendix C, the fact thBtop# 0 for Siis re- iy Eq. (37), choosing

lated to the fact that the Berry curvature tensor does not

vanish for this systen. dWH=eG®), (55)
Finally, in some cases it might be possible to choose all . e .

the Wannier functions to have definite symmetry under in_where_e is a positive infinitesimal. We then have, to first

version, but the solution that minimiz€3 may spontane- order ine,

ously break the inversion symmetry. Some cases of this sort

are discussed in Secs. VI C and VI D below. dQ =2, t{GRdw®]
k

4. Molecular supercells and single k-point sampling

=— (k)12
In the context of plane-wave pseudopotential and related 6; IG™I%, (56)

approaches, it is common to study molecules or clusters in an 5 ,

artificial periodic superlattice arrangemé&fin such a case, Where|A[*==mqAnql” and we have made use Gf' = -G.
a singlek-point (usually ko=T") sampling of the Brillouin  Thus, the use of Eq5Y) is guaranteed to mald#1<0, i.e.,
zone suffices for conventional quantities such as energied0 reduceq. _ o _

forces, and charge densities, since the errors in these quanti- In practice, we take a fixed finite step with=a/4w,
ties will be exponentially small as long as the overlap be-Wherew=Z2,w;, so that

tween wave functions in neighboring supercells is negligible.

However, under the same conditions, the calculatiorf)of AW(k):fz Wy(A[RKD]— STTKDI]). (57)
using our approach introduces small errors that nevertheless Wb

_2 . . .
scale only ad. ==, whereL is the supercell dimensiofsee, The wave functions are then updated according to the matrix

e.g., Sec. VI ¢ The problem essentially arises from the use K o i ) X .
of the simplest finite-difference representatiorVgf, involv- exXHAW .]’ which is unitary becagsAW Is anti-Hermitian.
The choice of prefactor above is designed so that in the

ing only nearest-neighbok points (see Appendix B If . . X
higher accuracy is needed, this problem can be overcome E{ngle-bandl case, and for smptems:shes(e._g., S|mple cu-
either of two ways:(i) by using the solution ak, to con- ic), the “highest-frequency mode” associated with phase
struct  solutions .on a denser mesh d{O oints rotations is just marginally stable with the choiee=1. That

_ ; ; points, is, if one starts with the true solution and rotates the phases
u(r)=uy (r)exdi(ko—k)-r], being sure to take the discon- . . .
e 0 of the wave functions on ak points simultaneously by an
tinuity of (ko—k)-r near the supercell boundary where 5nqie + 4 with the opposite sense of rotation on nearest-
liko(r)~|s nEghglbIe; or ([), coEstruci periodic functions neighbork points, then from Eq(47) Aq®®)=+2+ on ev-
x(r), y(r), z(r) such thatx=x, y=y, z=zin the molecu- ery link, and the above choice &fW exactly returns the
lar region, with (possibly smootheddiscontinuities at the system to the solution i&e=1/2, and is marginally unstable
supercell boundaries, and then apply the theory of Appendiat a=1. We find thata=1 is still a safe choice for all the



56 MAXIMALLY LOCALIZED GENERALIZED WANNIER ... 12 855

systems studied; more efficient strategies become usefal starting point for the steepest-descent procedure. In prac-
when dealing with large systems, or very fikepoint tice, we find that this starting guess is usually quite good, as
meshes. In those cases, it is advantageous to choose at eagh be shown for the cases of Si and GaAs in Sec. VI.

step the optimalx in a line minimization(usually with a

parabolic interpolation, using the functional @0, 1, and 2. False local minima

its derivative ata=0) or to introduce a conjugate-gradient  \yg have also carried out tests initializing the minimiza-

approach in composing subsequent de.scent directions. ._tion procedure with more arbitrary starting guesses. For ex-
It should be stressed that the evolution towards the mini- 0)

. . . . . ample, we have let the starting,’ consist of energy-ordered
mum requires only the relatively inexpensive updating of theHamiltonian eigenstates with quasi-random phases, as in the

unitary matrices, and not of the wave functions, as follows._ . | f 2 band d h | ied
We choose a reference set of Bloch orbitai$’) and com- typical output of a band-structure code. We have also trie
superimposing a completely random phase rotation to each

pute once and for all the inner-product matrices u' individually, or a randond X J unitary rotation to the set
Mg?%(k,b):<u§r?£|u510&+b>_ (58) of uf?k) at each and everl. With such starting guesses, we
’ find that the minimization procedure can occasionally get
We then represent the,) (and thus, indirectly, the Wan-  trapped in a local minimum. That is, we find that the spread
nier functions in terms of the|ufy)) and a set of unitary functional Q, viewed as a function of the set &f%), does
matricesU¥) , have false local minima that must be avoided.
We find that this problem isot associated with the pres-
|unk>:2 U%%IUE?@). (59) ence of a large number of bands, but instead_wit_h_the use of
m fine k-point meshes. In fact, rather counter-intuitively, we
L s have experienced it so far only when treating isolated bands.
We begin with all theU (), initialized to 5y, Then, each o W:Ennier functions asszciated with gt]he false local

step of the steepest-descent procedure involves calculatinginima are found to display erratic and unphysical oscilla-
AW from Eqg. (57), updating the unitary matrices according tions.

to The problem appears to lie in the possibility of making
inconsistent choices in the branch cuts when evaluating the
logarithms of complex argument i@7). In a naive imple-
and then computing a new set Bf matrices according to  mentation, the branch cuts are simply chosen so that
lqP| <. At a good global minimum, all of théq*P)|
(k,b) — ()T p\1 (0)(K,b) | j(k+Db) n . - i
MEE=UTM U : (61 <7, while at a false local minimum some of thg{<?|

The cycle is then repeated until convergence is obtainedPproachr.

Note that the exponential in Elf]60) is a matrix operation, On the other hand, we have never observed the system to

which we perform by transforming to a diagonal representabecome trapped in a false local minimum when starting from

tion of AW and back again. reasonable trial projection functions, Eq$2)—(64). We
Typma”y’ we prepare a set of reference Bloch Orbita|sal.|so find that at the true glObal minimum the Wa.n.nier func-

IUE?()> by projecting from a set of initial trial orbitalg,(r) tions always turn out to be real, apart from a trivial overall

corresponding to some rough initial guess at the WanniePhase; while at the false local minima, they are typically

functions. For example, for thesg(r) we have used Gauss- complex, only being real if the initial conditions described in

ian functions centered at or near midbond positions. The iniS€C- V B have been used.

tialization procedure involves first projecting onto Bloch N summary, while false local minima can occur in our
states of the set of bands at wave vedtor minimization scheme, they do not seem to pose any foresee-

able problem in actual calculations.

UM U®exg AWK, (60)

| b= % |k (i G- (62 V. PROPERTIES OF OPTIMALLY LOCALIZED

. WANNIER FUNCTIONS
Since these are not orthonormal, we then perform a symmet-

ric orthonormalization to form a set of A. Asymptotic localization properties
Following from the early work of KohA,it is generally
[Pr) =2 (S il i) (63  expected that Wannier functions can be chosen to have ex-
m

ponential localization. While it is not the purpose of the
present work to study questions of exponential decay in the
tails of the Wannier functions, we nevertheless give a brief
discusiizon of these issues here.
0\ — a—ik-r% Kohr® proved the existence of exponentially localized

Unic(r)=e Prk(1). ©4 Wannier functions for the case of an isolated band in 1D, for
(In practice, the above steps are combindthis procedure a crystal with inversion symmetry. However, the method
is similar in principle to the one mentioned by Teicffer does not easily generalize. Blount demonstrated the analyt-
(following Ref. 54, or Satpathy and PawlowsRaalthough icity of the Bloch functions for the single-band case in 3D,
it differs from the latter in that we do the orthonormalization and claimedend of Sec. 5 of Ref.)3that this would imply
in k space. We then use this set of reference Bloch orbitals dfe exponential localization of the Wannier functiofsee

(whereS,,=(dmd ¢nk)), and finally convert to cell-periodic
functions via
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also Ref. 49; but this claim was later shown to be faulty by Wannier functions projected from real trial functions, as dis-
Nenciu (footnote on first page of Ref. 52who pointed out cussed in Sec. IV D; alternatively, it can be imposed by
the global topological aspects of the problem. Des Cloizeaukand. From Eq(25), condition (65) implies thatMQ,‘hb) is
proved the exponential localization of the band projectionequa| toM =D which in turn implies thaG®) is equal
operatorP of Eq.(12) for an arbitrary set of composite bands mn ’ mn

(_k)* . . . .
in 3D.%3 Unfortunately, this does not immediately imply that Gma ™, SO that EQ(65) continues to be satisfied during

the Wannier functions are exponentially localizedthough the steepest—descent update progedure. In t.hls way, one wil
eventually arrive at a set of maximally localized real Wan-

the converse would folloyw In a following paper, des = _ e L .
Cloizeaux was able to prove the possibility of choosing exier functions(Similarly, working in real space, it is easy to

ponentially localized Wannier functions for an isolated bandS€€ rom Appendix A that a real initial guess will result in a
(i) in 1D generally, ofii) in the centrosymmetric 3D cagé. Set of real optimally localized solutions.
The summarySec. \) of Ref. 54 gives a good discussion of We conjecture that a stronger result is true: namely, that
the difficulties and partial progress towards a solution of thehe optimally localized Wannier functions are always real
general composite-band problem. More recently, Nencidapart from a trivial overall phase of each Wannier function
completed a proof for the case of an isolated band in 3D We have not found a proof of this conjecture, but it is
without centrosymmetry? To our knowledge, however, the supported by our empirical experience. More precisely, in
problem remains unsolved for the general case of compositilne tests to be reported in Sec. VI, we find that whenever we
bands in 3D. Finally, note that some discussion of the expoarrive at the global minimum, the Wannier functions always
nential localization of the “generalized Wannier functions” turn out to be real, apart from a trivial overall phaggow-
defined for the cases of surfaces and defects has been giveper, we do find that the Wannier functions are typically
in Refs. 27 and 55-57. complex at false local minima, as discussed in Sec. IV D 2,
It is natural to speculate that the “optimally localized” and also that imposing the initial conditioi®5) does not
Wannier functions that are obtained by minimizing theeliminate false local minima, even if in this latter case the
spread functional of Eq11) are exponentially localized. Ac- |ocal minima are necessarily refl.
tually, one should distinguish between a “weak conjecture”
that the optimally localized Wannier functions have expo-

nential decay, and a “strong conjecture” that they have the VI. RESULTS

same exponential decay as that of the band projection opera- .

tor P. At the present time, we can only speculate that in 3D, A. Si

the weak conjecture, at least, will hold. For Si, the four occupied valence bands have to be taken

In 1D, we are on firmer fOOting. As shown in Secs. Ill and together as a Sing'e Composite group, because of degenera_
IV.C 1, the functions that are obtained by minimizing Eq. cies between the bottom two bandsatand between the top
(11) correspond, in principle, with those considered by prethree bands aF. Thus, we takel=4 and look for a set of
vious authors, and for which exponential localization hasfour wannier functions per primitive unit cell. These are
been demonstratéd.***°In particular, we have shown in eypected to be centered on the bond centers, and to have
Sec. lll that these will be eigenfunctions of the band-royghly the character oé-bond orbitals, i.e., even linear
projected position operatd?x P; Niu has given a simple and  compinations of the twsp® hybrids projecting toward the
elegant argument, based on this fact alone, from which onggnq center from the two neighboring atofr/annier func-
may conclude that the Wannier functions decay faster thafons of this type have been computed previously by a vari-
any power’° From this point of view, the essential difficulty ety of methodS>53-5131¢ s tempting to imagine that the
in 3D is that the Wannier functions can no longer generaHYrequirement of spanning the given set of valence bands, to-
be chosen to be eigenfunctions of all three band-projectegether with the symmetry requirement that each Wannier
position operators simultaneously. _ _ function has the expected inversion, mirror, and threefold

Returning to the general three-dimensional case, we finghtational symmetries about its corresponding bond center,
that it is not easy to carry out numerical tests of exponentiahight be enough to uniquely determine the Wannier func-
localization using the present method, which is based on disjgns. We emphasize that this is not the case, and we proceed
cretization ink space. The Wannier functions that we obtainig determine the particular set of Wannier functions that
are thus not truly localized, being instead artificially periodic minimize the spread function&b.
with a periodicity inversely proportional to the mesh spacing.  oyr calculations are carried out within the local-density

approximation to Kohn-Sham density-functional thetfry,
B. Conjecture: optimally localized Wannier functions are real using a standard plane-wave pseudopotential approach and

It seems not to be widely appreciated that the wWannief" gll—bands conjugate—gracéient mig%n&za;ﬁﬁn&/l\l € have
functionsw,(r) can always be chosen real. This dependéése horm-conserving pseudopoten the Kleinman-
only on the HamiltoniarH = pZ/2m+V/(r) being Hermitian, ylander representation, with plane-wave cutoffs ranging

; from 200 eV to 650 eV, depending on the systems studied.
and not on any symmetry of theea) potentialV(r). Indeed, . » . ; ;
from Eq. (1) it is clear that one only needs to choose The sampling of the Brillouin zone is performed with equi-

spaced Monkhorst-Pack grftithat have been offset in order
Un(1) = U% _(1) (65) to mgludel“. Since the crystal is fcc in real space, 'Fhe gr-ld. is
bce in k space, and we use the simplest possible finite-
to insure that the Wannier functions,(r) are real. This difference representation &f, using only theZ=8 nearest
condition is automatically satisfied if one starts with initial neighbors of eack point (see Appendix B The computed
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TABLE I. Minimized localization functional() in Si, and its
decomposition into invariant, off-diagonal, and diagonal parts, for (a)
differentk-point meshegsee text Units are K.

k set Q Q, Qoo Q5
1X1x1 2.024 1.999 0.025 0
2X2%2 4.108 3.707 0.401 0
4X4X4 6.447 5.870 0.577 0
6X6X6 7.611 7.048 0.563 0
8X8x8 8.192 7.671 0.520 0

Bloch functions are stored to disk, and the construction of
the Wannier functions is carried out as a separate, post- 01
processing operation. [111] Axis

Table | shows the convergence of the spread functional
and its various contributions as a function of the density of (b)
the k-point mesh used. We confirm th@t; does vanishto
machine precisionas expected from the presence of inver-
sion symmetry, as discussed in Sec. IV C 3. Sifigds in-
variant, the minimization of) reduces to the minimization
of Qgp. For eachk-point set, the minimization was initial-
ized by starting with trial Gaussians of widtstandard de-
viation) 1 A located at the bond centers. We find that for the
case of crystalline Si, these provide an excellent starting
guess; for the & 8 X8 case, for example, we find an initial
Q=0 and Qop=0.565, whereas at the minimufp is
0.520. Had we started with the random phases provided by
the ab initio code, we would have obtained an initial
0p=622.1 andQ)op=42.3. We find that typically 20 itera-
tions are needed to converge to the minimum with good
accuracy, starting with the initial choice of phases given by
the Gaussians, and using a simple fixed-step steepest-descent
procedure. Starting with a set of randomized phases requires FIG. 1. Maximally localized Wannier function in Si, for the
roughly one order of magnitude more iterations. As previ-8x8x8 k-point sampling.(a) Profile along the Si-Si bondb)
ously pointed out, the evolution does not require additionalcontour plot in thg110 plane of the bond chains. The other Wan-
scalar products between Bloch orbitals, and so it is in anyier functions lie on the other three tetrahedral bonds and are re-
case pretty fast. Because of symmetry, the Wannier centefdted by tetrahedral symmetries to the one shown.
do not move during the minimization procedure, and the
spreads of the four Wannier functions remain identical withtrivial, and would not be satisfied by a generic choice of
each other. phases(Our initial guess based on Gaussians centered in the

What is perhaps most striking about Table | is thatmiddle of the bonds does insure all these properties, but
Q> Qqp; and whileQ) converges fairly slowly wittk-point  without optimizing the localization.
density, this poor convergence is almost entirely due to the From an inspection of the contour plot it becomes readily
Q, contribution. Incidentally, since th€), contribution is  apparent that the Wannier functions are essentially confined
gauge invariant, it can be calculated once and for all at théo the first unit cell, with very smal{and decreasingcom-
starting configuration, for any giveki-point set; the quanti- ponents in further-neighbor shells. The general shape corre-
ties that are actually minimized ar®p and Qop. The  sponds to a chemically intuitive view afp® hybrids over-
former vanishes at the minimum, and the latter is found tdapping along the Si-Si bond to forma bond orbital, with
converge quite rapidly wittk-point sampling. It would be the smaller lobes of negative amplitude clearly visible in the
interesting to explore whether use of a higher-order finite-back-bond regions. These results clearly illustrate how the
difference representation &f, might improve this conver- Wannier functions can provide useful intuitive understanding
gence, especially that dB,, but we have not investigated about the formation of chemical bonds.
this possibility.

In Fig. 1, we present plots showing one of these maxi-
mally localized Wannier functions in Si, for thex8Xx8
k-point sampling. The other three are identigalated to the In GaAs the lower valence band is never degenerate with
first by the tetrahedral symmetry operatipasd are located the other(top) three valence bands, and thus several possi-
on the other three tetrahedral bonds. Each displays inversidbilities arise:(a) We can treat the four bands as a group, as
symmetry about its own bond center, and it is real apart fronwas done for silicon, obtaining solutions that are very similar
an overall complex phase. Again, all these properties are ndb the Si case, except for the loss of inversion symmetry

B. GaAs
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TABLE Il. Minimized localization functional() in GaAs, and

its decomposition into invariant, off-diagonal, and diagonal parts, (a)
for differentk-point meshes, together with the relative posit@®of
the centers along the Ga-As bofske text. Units for theQ)'’s are
Az

k set Q Q, Qop Qp B

IxX1x1 2.217 2.088 0.125 0.0035 0.593
2X2X2 4.409 3.898 0.503 0.0078 0.602
4X4X4 6.785 6.170 0.610 0.0055 0.613
6X6X6 7.982 7.386 0.590 0.0058 0.616
8X8x8 8.599 8.038 0.555 0.0059 0.617

12X 12X 12 9.146 8.635 0.504 0.0061 0.617

-0.1

[111] Axis
about the bond centeré) We can deal separately with the
bottom band and the top three bands; the latter would be
considered as a group, while the former is a single isolated
band. The solution at the minimum should resemble atomic
orbitals for the more electronegative spedit®e As anion,
in the form of threep orbitals and ona orbital, respectively.

(c) Finally, it might be interesting to consider the case in
which the four bands are treated together, but using the so-
lution of the 3 minimization for the one-band and three-
band cases, without proceeding further with the minimiza-
tion. This does not correspond to a true minimum for the
four-band() surface, but just to a stationafgaddle point.
Starting with the case in which all the four bands are
treated as a group, we show in Table Il the convergence of
the spread functional and its various contributions as a func-
tion of the density of th&-point sampling. In analogy with
the case of Si, the procedure is initialized using trial Gauss-
ians of width 1 A, centered in the middle of the bonds; this is
again a very good starting guess, dfat the 8X8x 8 mesh FIG. 2. Maximally localized Wannier function in GaAs, for the
gives an initial 35 =0.1164 and(2op;=0.593, that are re- 8x8x8 k-point sampling.(a) Profile along the Ga-As bondb)
duced to 0.0059 and 0.555, respectively, by the minimizatiorContour plot in the(110) plane of the bond chains. The other Wan-
procedure. As was the case for &point convergence is nier functions lie on the other three tetrahedral bonds and are re-
fairly slow, even though most of it is due to the slow con- lated by tetrahedral symmetries to the one shown.
vergence of the invariant part. On the other hand, the general
shape of the Wannier functions at the minimum is alreadybut they have moved towards the As, at a position that is
given rather accurately with coarser samplittgithough the  0.617 times the Ga-As bond distance. It should be noted that
tails are then not so easy to characterize, since in practice thRese Wannier functions are also very similar to the localized
Wannier functions are periodically repeated in a supercelbrbitals that are found in linear-scaling approacHeshere
conjugate to th&-point mesh. In particular, thek-point con-  orthonormality, although not imposed, becomes exactly en-
vergence of the Wannier centers is quite rapid, as is eviderfbrced in the limit of an increasingly large localization re-
from the last column of Table I, where we show the relativegion. This example highlights the connections between the
position of the centers along the Ga-As bonds. Hgiie the  two approaches. The characterization of the maximally local-
distance between the Ga atom and the Wannier center, givéred Wannier functions indicates the typical localization of
as a fraction of the bond lengtin Si the centers were fixed the orbitals that can be expected in the linear-scaling ap-
by symmetry to be in the middle of the bond=0.5, irre-  proach. Moreover, such information ought to be extremely
spective of the sampling valuable in constructing an intelligent initial guess at the
In Fig. 2, we present plots showing one of these maxi-solution of the electronic structure problem in the case of
mally localized Wannier functions in GaAs, for thex®x 8 complex or disordered systems.
k-point sampling. Again, at the minimuif}, all four Wan- As pointed out before, in GaAs we can have different
nier functions have become identicainder the symmetry choices for the Hilbert spaces that can be considered, so we
operations of the tetrahedral grgupnd they are real, except also studied the case in which only the bottom band, or the
for an overall complex phase. The shape of the Wannietop three, are used as an input for the the minimization pro-
functions is again that o§p® hybrids combining to form cedure. Table lll shows the spread functional and its various
o-bond orbitals; inversion symmetry is now lost, but the contributions for these different choices, where the bottom
overall shape is otherwise closely similar to what was foundband is first treated as isolated; next the thpebands are
in Si. The Wannier centers are still found along the bondstreated as a separate group; then these two solutions are used
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TABLE IIl. Localization functional() and its decomposition in TABLE V. Coordinates(in A) of the atoms and of the six
invariant, off-diagonal, and diagonal parts, for the case of GaAdNannier centers in the ethylene molecule.
(units are &). The bottom valence band, the top three valence
bands, and all four bands are separately included in the minimizaSpecies X y z
tion. The star {) refers to the case in which the minimization is not

actually performed, and the solution for the one-band and threet —1.235 0.936 0.000
band cases is used. Sampling is performed wittx@8& 8 mesh of ~ H 1.235 —0.936 0.000
k points_ H 1.235 0.936 0.000
H —-1.235 —0.936 0.000
k set Q Q, Qop Qp C 0.660 0.000 0.000
one band 1.968 1.944 0 0.0238 € —0.660 0.000 0.000
three bands 10.428 9.844 0.560 0.0245 WF r_x r_y f_z
four bandg 12.396 8.038 4.309 0.0483
four bands 8.599 8.038 0.555 0.0059 1 —1.049 0.622 0.000
2 1.049 —0.622 0.000
3 1.049 0.622 0.000
to construct a four-band solution, without further minimiza- 4 —1.049 —0.622 0.000
tion; and finally, this is compared with the full four-band > 0.000 0.000 0.327
minimization. In composing the results for the one-band an® 0.000 0.000 —0.327

three-band cases, we take th& 1 and 3x 3 unitary matri-
ces that would give the minimum solution for the one- and
three-band cases, and build from them a set xf#4block-  Stressed that only when all the four bands are treated simul-
diagonal unitary matrices. The four-bafdthat is obtained taneously do we achieve the overall maximum localization.
is exactly the sum of the two initia)’s. Nevertheless, the This reinforces the picture in which the maximally localized
bookkeeping change$}, is reduced, with an equal and op- Orbitals correspond to the most natural “chemical bonds™ in
posite contribution reappearing dgp. (The Qp's sum up  the system.
exactly, as they must.If we then minimize this(saddle-
poi_nt) solution, we recover the four-band minimum: the in- C. Molecular C,H,
variant part(obviously does not changef)p slightly de- )
creases, with a larger reduction f0op, in correspondence We have also studied the case o_f the _ethylene molecule
to an increased interband mixing. (C2H4), in order to make the connection with some standard
In Fig. 3, we show the contour plot for the maximally chemistry concepts, and to highlight the relation of our for-
localized one-band Wannier function in GaAs, for theMalism (derived from ak-space representation of extended
8 8 8 k-point sampling. The function is again real, and it _Bloch orbitalg to _the case of an isolated system as d?scusged
shows the typical characteristics of anorbital centered N Sec. IV C 4. First of all, the molecule is modeled in peri-
around the anion; the tetrahedral symmetry of the lattice de@dic boundary conditions, in a supercell that is large enough
forms the spherical orbital, introducing contributions that!© make the interaction with the periodic images negligible.
point along the two bond chainne in the (110 plane Consequent!y, t.he band @spersmn becomes alsg negligible,
plotted, and one perpendicular to that pfanie the three- andI’ sampllng is all that is needed for total energies, forces,
band case, on the other hand, the Wannier functions rednd densities. However, the spread functional is expected to

semble three orthogonal atomie orbitals. It should be converge slightly slower with-point sampling, as discussed
in Sec. IV C 4. We thus tested sevekapoint meshes. For

the singlek-point case, the mesh in reciprocal space is that

formed by thel’ point and all its periodical images, i.e., the
reciprocal lattice vectors; our formalism remains equally ap-
plicable to such a case. One should bear in mind that if the
supercell is not cubic, appropriate weight factors have to be
added in the calculation of the derivativesee Appendix B
We show in Table IV the coordinates for the C and H
atoms at the structural minimum, together with the Wannier
centers. In this molecule, there are six occupied valence
eigenstates, the lowest five being of—® or C—C
o-bonding character, and the tdfontier) orbital being of
C—C m-bonding character. If we treat the lowest five bonds
as a composite group, we find as expected that the minimi-
zation of () leads too-bond orbitals located on each of the
C—H or C—C bonds. However, treating all six bands to-
gether, we find that the -€C w-bonding orbital mixes
FIG. 3. Contour plot, in thé110) plane, of the maximally lo- ~ strongly with the G—C o-bonding orbital to give two Wan-
calized Wannier function in GaAs for thex8x 8 k-point sam-  nier functions that are symmetrically disposed above and be-
pling when only the bottom valence band is considered. low the x-y plane. Contour plots for the resulting-€H and
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TABLE V. The functionalQ) and its decomposition, with in-

(a) creasingk-point sampling, for ethylenéunits are £).
k set Q Q, Qop Qp
1X1X1 4.041 3.657 0.384 0
2X2X2 4.503 4.124 0.380 61077
3X3X3 4.600 4.222 0.377 81077
D. LiCl

It is also interesting to look at a more ionic system, to
understand the effect of electronegativity and band gap on
the location and localization of the Wannier functions. We
have studied rocksalt LiCl, treating all four valence bands

T (roughly ClI 3 and 3) as a unit, and again using an
8X8X 8 k-point sampling.

One could expect the Wannier functions to localize much
(b) more strongly around the anion than was the case for GaAs,
and indeed this is what we find. However, we also find that
the Wannier functions can redude further by mixing to
form sp® hybrids, sitting on the vertices of a tetrahedron
centered around the Cl atom, with each center at a distance
of 0.449 A from the Clthe Li-Cl distance being 2.57)AWe
anticipated that these hybrids might prefer to align along the
{111,111,211,111}o0r{111,2111,111, 111} sets of
directions; if this were the case, the choice between the two
sets(two degenerate global minima 6¥) would constitute a
. kind of unphysical or “anomalous” symmetry breaking
[ from cubic to tetrahedral. Instead, we find tifats, at least
to our machine precision, rotationally invariant with respect
to the orientation of thesp® hybrids, just as would be the
case for an isolated Clion in free space. This implies that
the tetrahedron of the Wannier centers around each Cl atom
is free to rotate without any discernible decrease of localiza-

FIG. 4. Contour plots for the maximally localized Wannier tion._ . . . o
functions in ethylene, §H,. (@) One of the four G-H Wannier Fmglly, consistent with the |(_jea that a larger gap is linked
functions, shown in the-y plane.(b) One of the two €&=C Wan- t02a higher degree of localization, we find a t0f§45=4.é|.59
nier functions, shown ix-z plane. A2, with Q,=3.354,Q0p=0.805 and()p=1.2x10"° A2,

C=C Wannier functions are shown in Fig. 4, and the loca-
tions of the Wannier centers are reported in Table IV. The
picture that emerges from this “natural” symmetry breaking We have discussed a technique for obtaining a set of well-
of the planar geometry is just the Lewis picture of the=C  localized Wannier functions for a given band or composite
double bond. set of bands in a crystalline solid. We have in mind several
In our calculations we have used a cubic supercell of sidéinds of applications for this method.
7 A; this gives to each band a dispersion that is always First, we believe that this approach may help to obtain
smaller than 0.02 eV, and that originates from the interactiorthemical intuition about the nature of chemical bonds in sol-
with the superperiodic images. Increasing t@oint sam- ids, and to characterize trends in bonding properties within
pling has negligible effects on the equilibrium positions of classes of solids. As emphasized in the introduction, the
the C and H atoms and on the location of the Wannier cenwWannier functions defined here are the natural generalization
ters. But it does still affect the localization functional, which of the concept of “localized molecular orbital8~?®to the
displays a slower convergence with respect to the number afase of solids. As illustrated in the examples of GaAs and
k points usedalthough much faster than was the case for Siethylene(C,H,) above, the determination of the Wannier
or GaA9. The results are summarized in Table V, where wefunctions can give chemical intuition into the nature of the
show theQ) contributions for the maximally localized Wan- bond orbitals of the material, including the spontaneous sym-
nier functions with increasing-point sampling. It is readily ~metry breaking that occurs in the Lewis picture of a double
seen that the slow convergence is coming mostly from ther triple bond. We also suspect that it may be instructive to
invariant part of the functional; a finérpoint mesh provides generate, characterize and plot the Wannier functions across
both a more detailed sampling of the Brillouin Zone and aa series of compounds, e.g., for II-VI semiconductors as one
more accurate calculation of the gradients. varies from wide- to narrow-gap members, or in cubic per-

VII. DISCUSSION
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ovskites of varying composition. Moreover, as emphasizegositions, we find a tota, of 2.04, in good agreement with
by Hierse and Stechétthe Wannier functions may be trans- the established theoretical value of 1.99 as calculated by
ferable to a considerable degree for similar bonds in differenﬁnear_response metho&%Moreover’ in arriving at the total
chemical systemefor example, for &-H or C—C bonds in  gjectronic z%;#'=—-0.96, we find contributions of-1.91,

a variety of hydrocarbonsit should be noted, however, that g g5, and+0.30 from the groups of four first-neighbor, 12

this is even more Iil(<)ely to be true for nonorthogonal gecond-neighbor, and remaining further-neighbor Wannier
Wannier-like functions? as opposed to the orthogonal ONeS centers, respectively. It is interesting to note that inclusion of

studied here. _ _ _ nearest-neighbor contributions alone would thus significantly
Secon_d, It is p055|bl_e that the_ Wannier fgnctmns MaYoverestimate the magnitude @.*', and that the second-
prove s_unable as a basis for use in constructing theories 0(r)Teighbor Wannier centers move in the opposite direction to
interacting or strongly correlated electron systems. For ex: . ion disolaci
ample, it might be possible to build good approximate Cor_the Ga atom motion. If_ we repeat the calculation disp acing
related wave functions from sums of Slater determinants of"€ AS atom, we obtain a totd of —2.07 (the acoustic
the Wannier functions. For this purpose, one would clearly>Ym rulé is only approximately _satlsfled with a finite
need to choose a set of bands that includes some low-lyinkPoint sampling. The total electroni@j;*=-7.07 has now
unoccupied states of the one-particle mean-field Hamilcontributions of—1.74,—4.63, and—0.71 from the groups
tonian. Similarly, it might be possible to build accurate Of four first-neighbor, 12 second-neighbor, and remaining
model Hamiltonians for magnetic systems, or for transporfurther-neighbor Wannier centers, respectively. .
properties of metalgAgain, for metals it would appear nec-  In fact, the pattern of displacements of the Wannier cen-
essary to choose a composite group of bands that brackei@'s can be regarded as defining a kind of coarse-grained
the Fermi level, and to specify the occupation as a kind ofepresentation of the polarization fiel@(r). To illustrate
density matrix in the Wannier indices. this idea more directly, we have carried out a calculation for
Third, the present scheme might prove useful for predictbulk GaAs in which a long-wavelength transverse optical
ing the suitability of linear-scaling methods for different (TO) phonon has been frozen in. We take the wave vector
kinds of insulating materials. Since the linear-scalingd=(7/4a)(X+y) (a is the lattice parameterand relative
methods depend strongly on the localization properties ofdisplacements{(r) = &qsin(-r)z in a 16-atom supercell,
the Wannier functiongor, closely related, the density ma- composed of eight unit cells repeated in &0 direction.
trix), the present scheme might be a simple and useful way t¥/e assign a displacement amplitugg=0.01a to the Ga
characterize the degree of localization for a given target masublattice, and- £, M g,/M s to the As sublattice Nl g, and
terial. This information might then help predict whether theM as are the masses of the two species; the center of mass
material is a good candidate for a linear-scaling method; andoesn’t movg Observing the resulting displacements of the
if so, what type of linear-scaling method is likely to work Wannier centers, we can obtain a picture on how the local
best, and what real-space cutoff parameter is likely to bépolarization changes from cell to céBay, by summing all
required. the four Wannier centers surrounding one As gtofitting
Finally, an important feature of the present approach ighese to the same forR(r)=Pgsin(@-r)z, we obtain a
that it generates a list of the locations of the Wannier centerd?,=0.249, and, via the acoustic sum ruleZ&(®
This information alone can often be of crucial importance. In+Z%:®=—8), we get Z5.®=-1.52 and Z3:®=—6.48.
fact, we envisage a number of interesting applications irThese results are only in fair agreement with the bulk values;
which one essentially throws away all other informationthe discrepancies might be due to the finite size of our su-
about the Wannier functions, keeping only their locations.percell, or to not having used the proper eigenvector for the
For example, the shift of the Wannier center away from thephonon mode considered. However, the main point of this
bond center might serve as a kind of measure of bond ionicdemonstration is that, given the calculation on the supercell
ity. Also, the vector sum of the Wannier centers immediatelycontaining the frozen TO phonon, there is no other way that
gives the bulk electronic polarizatio®; all three Cartesian the transverse component of the polarization field could have
components oP can thus be determined simultaneously us-been obtained. Since the mode is transvelP¢e) cannot be
ing a conventionak mesh, instead of constructing separatedetermined from the charge density; sirg#0, the Berry-
specialk-point strings to compute each separate Cartesiaphase approach does not apply; and since the displacement is
component oP as is needed otherwise. finite, the linear-response approach is not directly applicable.
But more importantly, the information on the locations of However, the present scheme allows a direct finite-difference
the Wannier functions may open the possibility of calculat-calculation of the transverse polarization field, a quantity that
ing properties that cannot otherwise be obtained, especiallwas previously unavailable.
for distorted, defective, or disordered systems. For example, It would be interesting to apply this kind of analysis to
it becomes possible not only to calculate the B@ynami-  supercell simulations of amorphous systems suca-kisO
cal) effective chargeZ*, but also to decompose it into dis- or a-GaAs. Once again, while only the longitudinal part of
placements of individual neighboring Wannier centers. ToP(r) can be determined from the charge density, a similar
illustrate this idea, we have carried out a calculation on aletermination of both the longitudinal and transverse com-
cubic supercell of GaAs containing 64 atom§-¢gnly  ponents is possible with access to the displacements of the
k-point sampling, in which all atoms are in their equilibrium Wannier centers, thus leading to a more complete theory of
positions except for one Ga atom that is displaced by 0.the dielectric properties of such systems. This information
A along the[111] direction. Observing the consequent dis- might be used to assist the approach of Ref. 51, in which the
placement of the Wannier centers from their bulk crystallineinfrared absorption spectrum of an amorphous system is ex-



12 862 NICOLA MARZARI AND DAVID VANDERBILT 56

tracted from a molecular-dynamics simulation. As a limited(where P=3;]i}(i| and Q=1-P) and a remainder
test, we have carried out calculations for a 64-atom ?Uperceﬁi:EaEi#jKi|ra|j>|2. Defining matrices X;;={i|x|j),
of crystalline Si with random displacements typical of Xp.ij=Xij &, X'=X—Xp, and similarly forY andZ, this
~1000 K, and find that the calculation of the displaced Wan-gn be rewritten

nier centers is straightforward.

Finally, we conclude by pointing out that our work opens Q=t[X'2+Y'2+2'?]. (A1)
numerous possibilities for further development and future . ) ] .
study. On a practical level, it might be useful to explore theThus if X, Y, andZ could be simultaneously diagonalized,
use of more accurate, higher-order finite-difference formulaghen () could be minimized to zero, but for noncommuting
for V, (see Appendix Bto see whether convergence with matrices this is not possible. In a sense, our job is to perform
respect tok-point sampling can be improved. It might be the optimal approximate simultaneous codiagonalization of
interesting to apply our analysis within the semiempiricalthe three Hermitian matrices, Y, andZ by a single unitary
tight-binding context, although it should be noted that matrixtransformation. We are not aware of a formal solution for
elements of, y, andz (and, for(),, also ofr?) would be this problem, but a steepest-descent numerical solution is
needed, in addition to the Hamiltonian and overlap matrixfairly straightforward. Since X' Xp]=0, etc.,
elements. Going beyond the scope of the present work, it
might be interesting to explore other localization criteria, dQ=2tX"dX+Y'dY+Z'dZ]. (A2)
e.g., the maximization of the Coulomb self-interaction of the\we consider an infinitesimal unitary  transformation

Wannier functions. It would also be of great interest to de'|i)—>|i>+Ejoi|j> (where dW is anti-Hermitian, from
velop a corresponding theory of maximally localizeohor- |y hich dX=[X,dW], etc. Inserting in Eq(A2) and using

thogonalWannier-like functions(While the direct connec- t[A[B,C]]=t[C[A,B]] and[X’,X]=[X’,Xp], we obtain
tion to the polarization properties would be lost, there WOUIddQ=tr[dWG], where

be important implications for some linear-scaling algo-

rithms) Finally, there are many questions of a mathematical G=2{[X"Xp]+[Y',Ypl+[Z".Zp]}, (A3)
character that deserve further study. For example, is it pos- ] ) ] )

sible to prove that our Wannier functiorighose that mini- SO that the desired gradient &)/dW=G as given above.

mize Q) have exponential decay, even in the general nonYhe minimization can then be carried out using steepest de-
centrosymmetric multiband case? Are they always real, agcents following the general approach outlined in Sec. IV D.
conjectured in Sec. V B? And are there further results thapiore sophisticated but related methods are discussed in Ref.
can be derived regarding the interrelations between the meg5- ) ) ) o )

ric tensor, the Berry connection, and the Berry curvature, as !f this approach is applied to a finite system having a

discussed in Appendix C? We hope that our work will stimu-Crystalline interior, the solutions in the interior are expected
late some investigations of these questions. to correspond precisely with the maximally localized Wan-

nier functions as determined using tkespace methods of
the main text. In the vicinity of surfaces or defects, or for
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We assume that the Brillouin zone has been discretized
APPENDIX A: MINIMIZATION OF SPREAD into a uniform Monkhorst-Pack me$h.Let b be a vector
FUNCTIONAL IN REAL SPACE connecting & point to one of its near neighbors, andZebe

o i the number of such neighbors to be included in the finite-
In Sec. lll above, the problem of finding the optimally itterence formulas. We seek the simplest possible finite-
localized Wannier functions for a periodic system was for-qitarance formula folV, i.e., the one involving the small-

mulated directly in real space. In this App_ef‘dix' we briefly est possibl&. When the Bravais lattice point group is cubic,
reformulate the problem for the case of a finite systelas- i iy oniy be necessary to include the first shell &6, 8
ter, molecule, etg, and sketch how the minimization of the ."45 neighbors for simple cubic, bce, or fdc—sp’ac’e

functional can be perforr_ned in this case. This prowd_es Fneshes, respectively. Otherwise, further shells must be in-
complementary perspective to tespace procedure dis- cluded until it is possible to satisfy the condition
cussed in the main text.

We change notatiofRn)— |i) and now refer to the as
“localized orbitals” rather than “Wannier functions,” but > Wpb,bg=8,p (B1)
their meaning is the same: they are a set of orthonormal b
orbitals spanning the Hamiltonian eigenstates in an energly an appropriate choice of a weight, associated with each
range of intereste.g., for the occupied valence states of ashell|b|=b. For the three kinds of cubic mesh, E&1) is
molecule or cluster satisfied withw,=3/Zb? (single shell. Taking next the
Following the approach of Sec. Ill, we decomposeslightly more complicated case of an orthorhombic lattice,
Qin[(r2>i—r_i2] into an invariant parf), =X tr{ Pr,Qr ] one can letb run over the two nearest neighbors in each
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Cartesian direction 4=6), with w,= 1/2))2( for the two

neighbors attb,X, etc. Even in the worst case of minimal g“B:Re; <¢“'“|¢”ﬁ>_% (Yol )l Y ), (CH)
(triclinic) symmetry, only six pairs of neighborsZ & 12)

should be needed, as the freedom to choose six weighthich reduces in the single-band case to the expression of
should allow one to satisfy the six independent conditiondPati-*?

comprising Eq(B1). From Eq.(CJ) it is obvious that the distance, and thus the
Now, if f(k) is a smooth function ok, its gradient can be Metric, are gauge-invariant quantities. These are therefore
expressed as intrinsic properties of the manifold. One way of thinking

about the metric is to observe that for any given path in
space, the line integral of'? along the path provides a
measure of the total “quantum distance” along the path;
intuitively, it is a measure of the amount of change of char-
We can check the correctness of this finite-difference forycter of the states as one traverses the path. The physical
mula by applying it to the case of a linear function meaning of this distance for the case of temporal evolution
f(k)=fo+g-k, for which we find V,f(k) of quantum states is discussed in Refs. 42—44.

Vf(k)=2b wpb[ f(k+b)—f(K)]. (B2)

=ZpWp2 gb,g5bs=g, . In a similar way, The second type of geometric object that can be defined is
a “geometric phase” or “Berry phase® Here, one is in-
|VE(K)|2=> wy[f(k+b)—f(k)]% (B3) terested in considering closed pathsiirspace, and relating
b the phaseglor, for the multistate case, the unitary rotadion

) induced by adiabati¢parallel” ) transport along the path.
‘We note that improved accuracy akeset convergence The myltistate(“non-Abelian”) case has been discussed by
might be obtained by utilizing improved, higher-order finite- \yjiiczek and Ze® Mead?” and Restd° One can define a
difference formulas involving more shells of neighboring (non—gauge—invari’:;\mtBerr’y connection

k-points, but we have not explored this possibility here.

Aa,nm: |<'70n| ’»Dm,a> (Co)
APPENDIX C: GEOMETRIC PROPERTIES AND .
COMPLEXITY OF ELECTRON BANDS and a(gauge-covarlamtBerry curvature
Consider a manifold of] orthonormal statesy,(\)), Bos=—9aPgnmT IpAsnmti[As,Aglam.  (C7)

n=1,...J, depending on a continuouwsdimensional pa- ) .
rameter\. Alternatively, one can view these as representing! "€ invariants of the latter, such as

the projectionP(N\)==,|¢n(N)){#n(N)|. For the applica-

tion to electron bands_in crystals, we identif\}_/—>k and_ trB,z=2 Im>, (n.al ¥n. ), (C8)
¥n(N)—u, . Here, we investigate the geometric properties n

of such a manifold, generalizing the single-stale=(L) re-
sults of Refs. 42—44 to the multistate case.

One can define two kinds of intrinsic geometric proper-
ties: ageometric distancend ageometric phaseWe con-
sider the former first. The geometric distaridg, between
two points\; and\, is here taken to be

[see EQ.(3.29 of Ref. 20 are thus gauge invarianfWe
shall use the notation “tr” and “Tr” to denote electronic
and Cartesian traces, respectivgely.

There is a tantalizing similarity between the mewig;,
Eg. (C5), and the quantum trace of the Berry curvature, Eq.
(C9). In fact, defining the gauge-invariant quantity

D=t P1Qz]=3]P1—P,?, (Cy

where Q(\)=1—P(\). In the case of a single state, this ]:aﬁzzn: <'/’n,a|Q|‘/’n,B> (C9
becomeD2,=1— | (| 4,)|?, which for small separations is

consistent with the slightly different definition where agaiQ=1—P, and using Eq(C3) to show that the
D§2=2—2|<¢//1| )| of Ref. 42. Considering the distance for second term in Eq(C5) is intrinsically real, we obtain sim-

infinitesimal separations, one can define a RiemanniaRly 9.5=ReF,; and tB,z=21Im7,s. This suggests that
metric*? there may be some deep connections between the two

quantities’?~**In the case where the statgg are eigenstates
of a HamiltonianH(\), one moreover ha$

D)Z\,)\-%-d)\:EB Gapdh A g. (C2
«, J -
H, H
Introducing the notation),, ,=dy,/d\,, etc., and making Fop= 2 (vl |¢m>(¢m|2 ’B|¢n>, (C10
use of ’ =1 m3341 (E,—Ep)
whereH ,=dH(\)/d\, .
0= (i Yim o)+l ). (3 «=dH(V)/dN,

We now return to the case of electron bands in crystals,
_ N—k and#,(\)—up,, and discuss the geometric properties
= + + n n

0= (il Yimap) * (¥, apl ¥m) +2 RErn ol Y g, (C4 induced by the band projection opera®f). Note thatg, A,

which follow from the fact that thef,, remain orthonormal at andB have units of2, |, andl?, respectively. Again focusing

first and second order id\, the metricg,; becomes, after first on the metric, and comparing E@4) with the defini-
some manipulation, tions (C1) and(C2), we find
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Q =£2 > WG b (C11) <Om|r|Rn>=Lgf dkA,(K)e kR (C16)
NGRS ap=ap (2m)°Jgz ™"
or, using Eq(B1) and restoring the continuum limit, The right-hand side is just,(R), the Fourier coefficient of
Vv the Berry curvature. EqC15) is just the expression for the
0= j dk Trg(k), C12 position of the Wannier center, which contributes to the elec-
2m)3 ez 9(k) (€12 tronic polarizatior?'*>"?°Moreover,

where the integral is over the Brillouin zone. Thus, the in- _ Vv o
variant part of the spread functional is nothing other than the Qp=2, ﬁj dk|Apn(kK)—r,/?, (C1y
Brillouin-zone average of the trace of the metric! m (2m)" Jez

It may be interesting to see whether other global proper- v
ties of the metric might be given some physical interpreta- 0. = f KIA- (K)|2 1
tion. In particular, we define a dimensionless and gauge- ob n;n (2m)3 Bzd [Amd()1%. (C19

invariant quantity,
a Y Egs. (C17—(C18 show that the noninvariant parts of the

o spread functional are also conveniently written in terms of

C= JBde det’%g(k). (€13 the Berry connection. If the above equations are reexpressed
in terms of the Fourier coefficientd,,(R), Egs.(19) and

We shall call this the “complexity” of the bands. Math- (20) are immediately recovered.

ematically, it is really nothing other than the volume of the |n the single-band case, we showed in Sec. IV C 2 that the

Brillouin zone as measured according to the megtitiow-  minimum value off) could be related to the transverse part
ever, we have called it the "complexity” because it mea- of the Berry connection, which in turn is determined by the
sures the variation of the character of the band prOJeCt'O@auge-invariant Berry curvature. In the multiband case, the

operatorP'™ throughout the Brillouin zone. Everything said Berry curvatureBg‘g(k) is no longer gauge invariant, and it

here applies to any isolated band or composite group of not ghvious whether it is possible to make a corresponding
bands, but we have in mind primarily the case where all the
occupied valence bands in an insulator are considered as

composite group. In this case, and assuming that one is on

ecomposition. Nevertheless, one can derive similar corre-
ﬁ?ondences as those above AorSo,

interested in quantitiegsuch as total energies and forges mno = —iluy Ue S+ilu u C19
that can be expressed as a trace over the bands, the complex- ap(K) = =1 {Um.o] QlUn ) +1(Um 5| Qlun.o), (€19
ity might thus be expected to refle@nd even predigtthe Bfﬁ”(R)z (U] T 0 QT 5= T Qo] Up). (C20

number ofk points needed for an accurate sampling of the

Brillouin zone. We have not tested this idea numerically, butMaking use off ,Qr s~ Qr,=[Pr,P,PrzP], one finds
this would clearly be an interesting avenue for future explo-

ration. 5 )

Turning now to phase properties, we note that a finite- H[Prapvpfﬁp]”c:; % Bap(R)|

different representation of the Berry connection is

el

= dk||B,z(k)||?. (C21
Aumn=1S Wb MED—6nl. (C19 @) ) oy MBas I (C21
Each form above is manifestly gauge invariant and positive
definite. Thus, it can be seen that the Berry curvature will
vanish if and only if the band-projected position operators

Restoring the continuum limit ik space, we can write

rnzisf dkA 4 (k), (C1H PxP, PyP, and PzP commute with one another; as dis-

(2m)* ez cussed following Eq(17), this is also just the condition that

and more generally, Q vanishes at the minimum.
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