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Maximally localized generalized Wannier functions for composite energy bands
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~Received 10 July 1997!

We discuss a method for determining the optimally localized set of generalized Wannier functions associ-
ated with a set of Bloch bands in a crystalline solid. By ‘‘generalized Wannier functions’’ we mean a set of
localized orthonormal orbitals spanning the same space as the specified set of Bloch bands. Although we
minimize a functional that represents the total spread(n^r

2&n2^r &n
2 of the Wannier functions in real space, our

method proceeds directly from the Bloch functions as represented on a mesh ofk points, and carries out the
minimization in a space of unitary matricesUmn

(k… describing the rotation among the Bloch bands at eachk point.
The method is thus suitable for use in connection with conventional electronic-structure codes. The procedure
also returns the total electric polarization as well as the location of each Wannier center. Sample results for Si,
GaAs, molecular C2H4, and LiCl will be presented.@S0163-1829~97!02944-5#
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I. INTRODUCTION

The study of periodic crystalline solids leads naturally
a representation for the electronic ground state in term
extended Bloch orbitalscnk„r ), labeled via their bandn and
crystal-momentumk quantum numbers. An alternative re
resentation can be derived in terms of localized orbitals
Wannier functionswn(r2R), that are formally defined via a
unitary transformation of the Bloch orbitals, and are labe
in real space according to the bandn and the lattice vector o
the unit cellR to which they belong.1–4

The Wannier representation of the electronic problem
widely known for its usefulness as a starting point for va
ous formal developments, such as the semiclassical theo
electron dynamics or the theory of magnetic interactions
solids. But until recently, thepractical importance of Wan-
nier functions in computational electronic structure theo
has been fairly minimal. However, this situation is now b
ginning to change, in view of two recent developments. Fi
there is a vigorous effort underway on the part of ma
groups to develop so-called ‘‘order-N’’ or ‘‘linear-scaling’’
methods, i.e., methods for which the computational time
solving for the electronic ground state scales only as the
power of system size,5 instead of the third power typical o
conventional methods based on solving for Bloch sta
Many of these methods are based on solving directly
localized Wannier or Wannier-like orbitals that span the
cupied subspace,6–14 and thus rely on the localization prop
erties of the Wannier functions. Second, a modern theor
electric polarization of crystalline insulators has just recen
emerged;15–20 it can be formulated in terms of a geometr
phase in the Bloch representation, or equivalently, in te
of the locations of the Wannier centers.

The linear-scaling and polarization developments are
the heart of the motivation for the present work. Howev
there is another motivation that goes back to a theme that
recurred frequently in the chemistry literature over the l
40 years, namely, the study of ‘‘localized molecul
orbitals.’’21–26The idea is to carry out, for a given molecu
or cluster, a unitary transformation from the occupied o
particle Hamiltonian eigenstates to a set of localized orbi
560163-1829/97/56~20!/12847~19!/$10.00
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that correspond more closely to the chemical~Lewis! view of
molecular bond orbitals. It seems not to be widely appre
ated that these are the exact analogues, for finite system
the Wannier functions defined for infinite periodic system
Various criteria have been introduced for defining the loc
ized molecular orbitals,21–24 two of the most popular being
the maximization of the Coulomb23 or quadratic24 self-
interactions of the molecular orbitals. One of the motivatio
for such approaches is the notion that the localized molec
orbitals may form the basis for an efficient representation
electronic correlations in many-body approaches, and ind
this ought to be equally true in the extended, solid-state c

One major reason why the Wannier functions have s
little practical use to date in solid-state applications is u
doubtedly their nonuniqueness. Even in the case of a sin
isolated band, it is well known that the Wannier functio
wn(r ) are not unique, due to a phase indeterminacyeifn(k) in
the Bloch orbitalscnk(r ). For this case, the conditions re
quired to obtain a set of maximally localized, exponentia
decaying Wannier functions are known.2,27

In the present work we discuss the determination of
maximally localized Wannier functions for the case of co
posite bands. Now a stronger indeterminacy is present,
resentable by a free unitary matrixUmn

(k) among the occupied
Bloch orbitals at every wave vector. We require the choice
a particular set ofUmn

(k) according to the criterion that the sum
V of the second moments of the corresponding Wann
functions be minimized.~This is the exact analogue of th
criteria of Boys24 for the molecular-orbital case.! We show
that V can be decomposed into a sum of two contributio
The first is invariant with respect to theUmn

(k) and reflects the
k-space dispersion of the band projection operator, while
second reflects the extent to which the Wannier functions
to be eigenfunctions of the band-projected position ope
tors. We show how this formulation reduces to previous o
in the case of a single isolated band, or in one dimension
for centrosymmetric crystals.

We also describe a numerical algorithm for computing
optimally localized Wannier functions on ak-space mesh.
The algorithm is designed to operate in a post-process
12 847 © 1997 The American Physical Society
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12 848 56NICOLA MARZARI AND DAVID VANDERBILT
mode after a conventional band-structure calculation, tak
as its input the Bloch functions computed on a mesh ok
points.~Thus, it isnot a linear-scaling method.! We present
sample results for the optimally localized Wannier functio
in Si, GaAs, molecular C2H 4, and LiCl. It should be empha
sized that this procedure generates incidentally a se
Wannier-center positions; these by themselves can so
times be very useful for analyzing the bonding properties
the electronic polarization of disordered or distorted insu
ing materials.

In this work, we have not considered any further gen
alizations of the problem, although several interesting po
bilities come to mind. For example, one could relax the c
straint that the Wannier functions should be orthonorma
each other~in this case they should probably not be call
‘‘Wannier functions’’!. Such functions would correspond t
the ‘‘localized orbitals’’ or ‘‘support functions’’ appearing in
certain linear-scaling methods6,10,13 and in the chemical-
pseudopotential approach.28–30 Alternatively, one could re-
tain the orthonormality requirement, but ask to find a larg
set of functions spanning a space containing the des
bands as a subspace. For example, in Si one could ask
maximally localized set of four Wannier-like functions p
atom spanning a space twice as large as, but containing
space of the four occupied valence bands.4,31 Again, this is
very similar to what is done in certain linear-scalin
methods.10,12,13These interesting generalizations deserve
vestigation, but have not been pursued here.

The manuscript is organized as follows. The problem
introduced in Sec. II. Expressions for the spread function
and for its decomposition into gauge-invariant and gau
dependent parts, are developed first in real space in Sec
Section IV then formulates the corresponding expression
discretek space~that is, on a mesh of wave vectors!. Special
features that arise in one dimension, or for a single isola
band, or for a crystal with inversion symmetry, are also d
cussed there, as is the steepest-descent minimization
rithm that we use. Some discussion and speculation abou
asymptotic localization properties, and the real versus c
plex nature of the Wannier functions, appear in Sec. V.
Sec. VI we present test results for Si, GaAs, C2H 4, and LiCl
systems. Finally, in Sec. VII, we discuss the significance
the work, emphasizing possible applications of our approa
Some details of the real-space, discretek-space, and continu
ous k-space formulations are deferred to Appendixes A,
and C, respectively. In particular, the relationship of t
present work to the theory of adiabatic quantum phases
quantum distances is discussed in Appendix C.

II. PRELIMINARIES

A. Isolated and composite bands

We confine ourselves here to the case of an independ
particle HamiltonianH5p2/2m1V(r ) with a real periodic
potentialV(r ). We thus assume the absence of electric a
magnetic fields, and we suppress spin. The eigenfunction
H are the Bloch functionscnk(r ) labeled by bandn and
wave vectork.

A Bloch band is said to beisolatedif it does not become
degenerate with any other band anywhere in the Brillo
zone~BZ!. Conversely, a group of bands are said to form
g
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composite groupif they are connected among themselves
degeneracies, but are isolated from all lower or higher ban
For example, in Si the four valence bands form a compo
group, while in GaAs the lowest valence band is isolated a
the higher three form a composite group.

In the case of isolated bands, it is natural to define W
nier functions individually for each band. That is, the Wa
nier function for bandn ~together with its periodic images!
spans the same space as does the isolated Bloch band.
case of composite bands, however, it is more natural to c
sider a set ofJ ‘‘generalized Wannier functions’’ that~to-
gether with their periodic images! span the same space as t
composite set ofJ Bloch bands. That is, the ‘‘generalize
Bloch functions’’cnk that are connected with thenth gener-
alized Wannier function will not necessarily be eigensta
of the Hamiltonian at thisk, but will be related to them by a
J3J unitary transformation.

The formulation that follows is designed to apply equa
to the isolated and composite cases. For the isolated c
J51, and sums overn can be ignored. For the composi
case, the terms ‘‘Bloch function’’ and ‘‘Wannier function’
should be understood to be meant in the generalized s
discussed above.

It may sometimes be convenient to consider a group
bands as composite even when some of the members
actually isolated. For example, one may wish to consider
of the occupied valence bands of an insulator as a compo
group. This is rather natural in connection with linear-scali
algorithms and the theory of electronic polarization. Th
for GaAs, one may choose to regard all four valence band
a composite group. In this case the Wannier functions w
resembles-bonded pairs ofsp3 hybrids, arguably the mos
natural choice. Moreover, the GaAs Wannier functions
fined in this way turn out to be considerably more localiz
than those of the top three or bottom valence bands s
rately. Again, the formulation below should be taken to a
ply equally to this case, withn running over theJ adjacent
bands that are being considered as a composite group.

Finally, the formalism applies equally to any isolate
band or composite group that may exist in a metal or in
lator, regardless of occupation. However, because the ex
tation values of physical operators only depend upon oc
pied states, one is usually interested in the case of occu
bands in insulators.

B. Definitions

We denote bywn(r2R) or uRn& the Wannier function in
cell R associated with bandn, given in terms of the Bloch
functions as

uRn&5
V

~2p!3E dke2 ik•Rucnk&, ~1!

so that

ucnk&5(
R

eik•RuRn&. ~2!

Here V is the real-space primitive cell volume. It is easi
shown that the Wannier functions form an orthonormal s
As usual, the periodic part of the Bloch function is defined
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56 12 849MAXIMALLY LOCALIZED GENERALIZED WANNIER . . .
unk~r !5e2 ik•rcnk~r !. ~3!

As shown by Blount,3 matrix elements of the position opera
tor between Wannier functions take the form

^Rnur u0m&5 i
V

~2p!3E dkeik•R^unku¹kuumk&, ~4!

the converse relation being

^unku¹kuumk&52 i(
R

e2 ik•R^Rnur u0m&. ~5!

In equations like these the¹k is understood to act to th
right, i.e., only on the ket. The consistency of these t
equations is easily checked; the latter can be derived by
ing that

^unkuum,k1b&5^cnkue2 ib–rucm,k1b&

5(
R

e2 ik–R^Rnue2 ib–ru0m&,

and then equating first orders inb. Similarly, equating sec-
ond orders inb leads to

^Rnur 2u0m&52
V

~2p!3E dkeik•R^unku¹k
2uumk&. ~6!

Introducing the notation r̄ n5^0nur u0n& and ^r 2&n
5^0nur 2u0n& for the diagonal elements in the cell at th
origin, we have

r̄ n5 i
V

~2p!3E dk^unku¹kuunk& ~7!

and

^r 2&n5
V

~2p!3E dkuu¹kunk&u2. ~8!

This last follows from Eq.~6! after an integration by parts.

C. Arbitrariness in definition of Wannier functions

As is well known, Wannier functions are not unique. F
a single isolated band, the freedom in choice of the Wan
functions corresponds to the freedom in the choice of
phases of the Bloch orbitals as a function of wave vectok.
Thus, given one set of Bloch orbitals and associated Wan
functions, another equally good set is obtained from

uunk&→eifn~k!uunk&, ~9!

wherefn is a real function ofk. Such a transformation pre
serves the Wannier centerr̄ n modulo a lattice vector,3,15,16

but of course it does not preserve the spread^r 2&n2 r̄ n
2 .

For a composite set of bands, the corresponding freed
is

uunk&→(
m

Umn
~k!uumk&, ~10!

whereUmn is a unitary matrix that mixes the bands at wa
vector k. Equation~9! can be regarded as a special case
o
t-

er
e

er

m

f

Eq. ~10! that results when theU are chosen diagonal. Th
transformation~10! does not preserve the individual Wanni
centers, but does preserve the sum of the Wannier cen
modulo a lattice vector.15 We shall frequently refer to this
freedom as a ‘‘gauge freedom’’ and the transformation~10!
as a ‘‘gauge transformation.’’

Our goal is to pick out, from among the many arbitra
choices of Wannier functions, the particular set that is ma
mally localized according to some criterion. Our choice
criterion is introduced and justified in the following sectio
Of course, some arbitrariness will remain:~i! there will al-
ways be an arbitrary overall phase of each of theJ Wannier
functions;32 ~ii ! there is a freedom to permute theJ Wannier
functions among themselves; and~iii ! there is a freedom to
translate any one of theJ Wannier functions by a lattice
vector~that is, to decide which Wannier functions belong
the ‘‘home’’ unit cell labeled byR50). Aside from these
trivial remaining degrees of freedom, we expect to find
unique set of maximally localized Wannier functions.

We should mention that related approaches have b
proposed in the literature~see Refs. 31, 33–36, and prio
attempts in Refs. 37, 38! in order to construct localized Wan
nier functions starting from first-principles Bloch orbitals.
general, they have relied onseparate, heuristic choices for
theUmn in Eq. ~10! and thefn in Eq. ~9!. The former trans-
formation is used to remove the nonanalyticities at points
degeneracy in the Brillouin zone, and the latter one~in the
spirit of Ref. 33! is applied separately to each resulting Wa
nier function to make it more localized. Although such a
proaches can provide reasonably localized Wannier fu
tions in many cases, they do not provide the maxima
localized set according to a pre-defined criterion, nor c
they easily be generalized to systems having low symme

III. SPREAD FUNCTIONAL IN REAL SPACE

As a measure of the total delocalization or spread of
Wannier functions, we introduce the functional

V5(
n

@^r 2&n2 r̄ n
2# ~11!

~recall r̄ n5^r &n). Eq. ~11! is to be minimized with respect to
the unitary transformationsUmn

(k) . A functional of this form
has previously appeared as one possible definition24 of the
‘‘localized molecular orbitals’’21–26discussed in the chemis
try literature. Other localization criteria, such as maximizi
the sum of Coulomb self-energies of the orbitals23 or the the
product of the separations of the centroids22 have also been
suggested. We focus on the Wannier function obtained
minimizing Eq.~11! for the following reasons.~i! The Wan-
nier functions so determined correspond precisely to th
considered by previous authors for the isolated-band cas
one dimension~1D! Refs. 2, 3 and 39 and 3D.3 ~ii ! In the 1D
multiband case, the optimally localized Wannier functio
defined by minimizing Eq.~11! turn out to be identical to the
eigenfunctions of the projected position operatorPxP,39,40as
will be demonstrated shortly.~Here P is the projection op-
erator onto the group of bands under consideration,
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12 850 56NICOLA MARZARI AND DAVID VANDERBILT
P5(
Rn

uRn&^Rnu5(
nk

ucnk&^cnku, ~12!

and Q512P is the projection operator onto all othe
bands.! ~iii ! It is one of the functionals proposed in th
chemistry24 and physics literature33,34,36,31 ~but where the
second term on the LHS of Eq.~11! is usually neglected!.
~iv! It leads to a particularly elegant formalism, allowing, f
example, the decomposition into invariant, diagonal, and
diagonal contributions as described below.

We find it convenient to decompose the functional~11!
into two terms,

V5V I1Ṽ, ~13!

where

V I5(
n

F ^r 2&n2(
Rm

u^Rmur u0n&u2G ~14!

and

Ṽ5(
n

(
RmÞ0n

z^Rmur u0n& z2. ~15!

Clearly the second term is positive definite. While it is n
immediately obvious, the first term is also positive defini
and, moreover, it isgauge invariant~i.e., independent of the
choice of unitary transformations among the bands!. To see
this, we use the definitions ofP andQ in terms of the Wan-
nier functions to write

V I5(
na

^0nur aQrau0n&

5(
a

trc@PraQra#

5iPxQic
21iPyQic

21iPzQic
2. ~16!

Here trc indicates the trace per unit cell, andiAic
25trc@A†A#.

The last form makes it obvious thatV I is positive definite.
Operators of the formPrQ have been discussed extensive
by Nenciu;41 unlike r itself, PrQ commutes with lattice
translations, and its expectation value is well defined in a
~normalizable! extended state. Thus, it follows thatV I is
gauge invariant~i.e., invariant with respect to the choice o
Wannier functions, or equivalently to the choice of the u
tary mixing matricesUmn

„k…). This will become even clearer in
Sec. IV, whereV I is expressed in a finite-differencek-space
representation.

It was stated earlier that in 1D the set of Wannier fun
tions that minimizes the spread functional, Eq.~11!, turns out
to be identical to the set of eigenfunctions of the projec
position operatorPxP. This can now be seen as follow
Choose the Wannier functionsu0m& to be eigenfunctions o
PxP with associated eigenvaluesx̄ 0m . Then

^Rnuxu0m&5^RnuPxPu0m&5 x̄ 0mdR,0dm,n . ~17!
f-

t
,

y

-

-

d

Clearly Ṽ vanishes, and sinceV I is gauge invariant, this
minimizes Eq.~13!. Thus in 1D the solution is essentiall
trivial, even in the multiband case, andVmin5V I at the so-
lution.

From this point of view, it can now be understood that t
essential difficulty in the three-dimensional case is that
operatorsPxP, PyP, and PzP do not commute~or, in the
language of Appendix A, that matricesX, Y, andZ do not
commute.! For if they did, one could choose the Wanni
functions to be simultaneous eigenfunctions of all three, a
one could again makeṼ vanish. But this is not generally th
case, and the problem is to find a set of Wannier functio
that makes the best possible compromise in the attemp
diagonalize all three simultaneously. Indeed, it appears v
natural that the criterion should be simply to reduce, as fa
possible, the mean-square average of all off-diagonal ma
elements ofx, y, andz between Wannier functions; this i
precisely the criterion encoded intoṼ. A procedure for car-
rying out this minimization directly in real space is sketch
in Appendix A. However, for crystalline solids with periodi
boundary conditions, it is more straightforward to work ink
space as discussed in the following section.

Finally, for later reference, it is useful to decomposeṼ
into band-off-diagonal and band-diagonal pieces,

Ṽ5VOD1VD , ~18!

where

VOD5 (
mÞn

(
R

z^Rmur u0n& z2. ~19!

and

VD5(
n

(
RÞ0

z^Rnur u0n& z2. ~20!

IV. SPREAD FUNCTIONAL IN k SPACE

A. Transition to k space

We now derive expressions forV, V I , Ṽ, etc. in terms of
a discretizedk-space mesh. We begin by substituting expr
sions~7! and ~8! into Eq. ~11!, and making use of

V

~2p!3E dk→
1

N(
k

, ~21!

whereN is the number of real-space cells in the system,
equivalently, the number ofk-points in the Brillouin zone.
Using the finite-difference expressions for¹k and¹k

2 intro-
duced in Appendix B, we have

r̄ n5
i

N(
k,b

wbb@^unkuun,k1b&21# ~22!

and

^r 2&n5
1

N(
k,b

wb@222 Rê unkuun,k1b&#. ~23!
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Hereb are vectors connecting eachk point to its near neigh-
bors andwb are associated weights~see Appendix B!.

Clearly, these expressions reduce to Eqs.~7! and~8! in the
limit of dense mesh spacing (N→`, b→0). However, we
should like to insist on a second desirable property as w
namely, that for a givenk mesh,r̄ n and ^r 2&n should trans-
form as expected when the definition ofu0n& is shifted by a
lattice vector.~This corresponds to changing the choice
which Wannier functions belong to the ‘‘home’’ unit cell!
That is, when uunk&→uunk&e

2 ik•R, so that ^unkuun,k1b&
→^unkuun,k1b&e

2 ib•R, we should find

r̄ n→ r̄ n1R,

^r 2&n→^r 2&n12 r̄ n•R1R2, ~24!

so thatV will be unchanged. Expressions~22! and ~23! do
not obey these requirements, but can be modified to do
As long as the modifications leave the summands unchan
to orderb and b2 in Eqs. ~22! and ~23!, respectively, they
will still reduce to Eqs.~7! and ~8! in the continuum limit.

Let

Mmn
~k,b!5^umkuun,k1b& ~25!

and, for a givenn, k, andb̂, let

Mnn
~k,b!511 ixb1

1

2
yb21O~b3!. ~26!

By expandinĝ un,k1buun,k1b&51 order by order inb, it is
easy to check thatx and y are real. Then, referring to Eqs
~22! and ~23!, we have

Mnn
~k,b!215 ixb1O~b2!, ~27!

222 ReMnn
~k,b!52yb21O~b3!. ~28!

It is also easy to check that

ixb5 i Im lnMnn
~k,b!1O~b2!, ~29!

2yb2512uMnn
~k,b!u21x2b21O~b3!. ~30!

Thus, in place of Eq.~22! we write

r̄ n52
1

N(
k,b

wbbIm lnMnn
~k,b! , ~31!

and, in place of Eq.~23!,

^r 2&n5
1

N(
k,b

wb$@12uMnn
~k,b!u2#1@ Im lnMnn

~k,b!#2%. ~32!

When inserted in Eq.~11!, this gives our operational defini
tion of the spread functionalV.

It is easy to check that Eqs.~31! and~32! obey conditions
~24! exactly, while still reducing to Eqs.~7! and ~8! in the
continuum limit. The expression for the Wannier center, E
~31!, is strongly reminiscent of the Berry-phase expression
Refs. 15 and 16, and reduces to it for an isolated band in
@It is also exactly invariant, modulo a lattice vector, und
any change of phases of the form of Eq.~9!, provided that
the phases still vary smoothly enough withk to prevent am-
ll:

f

o.
ed

.
f

D.
r

biguity in the choice of branch when evaluating lnMnn
(k,b) . Of

course, it is not invariant under an arbitrary gauge trans
mation, Eq.~10!#.

Note that expression~32! for ^r 2&n is not unique, even
when insisting on the invariance condition~24!. For ex-
ample, replacing

12uMnn
~k,b!u2→22 Re lnMnn

~k,b! ~33!

results in an equally valid finite-difference formula forV.
However, use of the form~32! facilitates a connection with
the decomposition ofV5V I1VOD1VD into invariant, off-
diagonal, and diagonal components as in Eqs.~13! and~18!.
Following the lines of the formalism above, one finds th
Eq. ~14! becomes

V I5
1

N(
k,b

wbS J2(
mn

uMmn
~k,b!u2D

5
1

N(
k,b

wbtr@P~k!Q~k1b!#, ~34!

whereP(k)5(nuunk&^unku, Q(k)512P(k), and the band in-
dicesm,n run over 1,. . . ,J. Similarly, Eqs.~19! and ~20!
become

VOD5
1

N(
k,b

wb (
mÞn

uMmn
~k,b!u2 ~35!

and

VD5
1

N(
k,b

wb(
n

~2Im lnMnn
~k,b!2b• r̄ n!2. ~36!

From these expressions, it is again evident thatV I , VOD,
andVD are all positive definite.

Equation~34! also now shows clearly thatV I is gauge-
invariant @i.e., independent of the choice of the Wanni
functions, Eq.~10!#. Heuristically,V I represents the degre
of dispersion of the band projection operatorP„k… through the
Brillouin zone. That is,V I is small insofar asP„k… is nearly
independent ofk. ~Note that tr@P1Q2#5iP12P2i2/2 repre-
sents the ‘‘spillage,’’ or degree of mismatch, between
spaces 1 and 2.! SinceV I is invariant with respect to gaug
transformations~10!, it can be evaluated once and for all
the initial gauge~i.e., using the initialunk) before performing
the minimization procedure outlined below.

It is amusing to note, following the ideas of Refs. 42–4
that one can define a ‘‘quantum distance’’ between two wa
vectorsk andk8 asdl25tr@P„k…Q„k8…#, thus inducing a met-
ric upon thek space. The invariant part of the spread fun
tional V I turns out to be nothing other than the Brillouin
zone average of the trace of this metric. We discuss
properties of this metric, and speculate about its utility,
Appendix C.

B. Gradient of spread functional

We now consider the first-order change of the spre
functionalV arising from an infinitesimal gauge transform
tion, Eq. ~10!, given by
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Umn
~k!5dmn1dWmn

~k! , ~37!

where dW is an infinitesimal antiunitary matrix
dW†52dW, so that

uunk&→uunk&1(
m

dWmn
~k!uumk&. ~38!

We seek an expression fordV/dWmn
„k… . We use the conven

tion

S dF

dWD
nm

5
dF

dWmn
~39!

~note the reversal of indices!, so that

dtr@dWB#

dW
5B, ~40!

d Re tr@dWB#

dW
5A@B#, ~41!

d Im tr@dWB#

dW
5S@B#, ~42!

whereA andS are the superoperatorsA@B#5(B2B†)/2 and
S@B#5(B1B†)/2i . As we shall see shortly, it is possible
cast dV into the form of the numerators of Eqs.~41! and
~42!.

For the present purpose it is convenient to wr
V5V I,OD1VD , whereVD is the diagonal part given by Eq
~36!, and the invariant and off-diagonal parts are combin
into

V I,OD5V I1VOD

5
1

N(
k,b

wb(
n

@ 1 2uMnn
~k,b!u2#. ~43!

From Eq.~38! it follows that

dMnn
~k,b!52@dW~k!M ~k,b!#nn1@M ~k,b!dW~k1b!#nn .

~44!

Using M (k,b)5@M (k1b,2b)#† and dW52dW†, the second
term in Eq. ~44! can be transformed to becom
2@dW(k1b)M (k1b,2b)#nn* . Defining

Rmn
~k,b!5Mmn

~k,b!Mnn
~k,b!* , ~45!

we thus find

dV I,OD5
4

N(
k,b

wbRe tr@dW~k!Rmn
~k,b!#. ~46!

Similarly, defining

qn
~k,b!5Im ln Mnn

~k,b!1b• r̄ n ~47!

and

R̃mn
~k,b!5

Mmn
~k,b!

Mnn
~k,b!

, ~48!

Eq. ~36! gives for the diagonal part
d

dVD5
2

N(
k,b

wb(
n

qn
~k,b!Im@2dW~k!R̃~k,b!

1dW„k1b…R̃~k1b,2b!#nn . ~49!

Substitutingqn
(k1b,2b)52qn

(k,b) , the two terms can be com
bined, resulting in

dVD52
4

N(
k,b

wbIm tr@dW~k!T~k,b!#, ~50!

where

Tmn
~k,b!5R̃mn

~k,b!qn
~k,b! . ~51!

We thus arrive at the desired expression for the gradien
the spread functional,

G~k!5
dV

dW~k!
54(

b
wb~A@R~k,b!#2S@T~k,b!# !. ~52!

We note, for completeness, that making the replacement~33!

has just the effect of replacingR by R̃ in the first term above.
The condition for having found a minimum is that th

above expression should vanish. We discuss the nume
minimization of the spread functional by steepest desce
using this gradient expression, in Sec. IV D.

C. Special cases

1. One dimension

As mentioned in Sec. III, in 1D it should be possible
choose the Wannier functions to be eigenfunctions of
band-projected position operatorPxP, and thus to make

Ṽ5VOD1VD vanish. Unfortunately, on a finitek meshṼ
cannot generally be made to vanish completely. At the m
mum,VD does vanish, butVOD does not, leaving a remain
der that is expected to approach zero asO(b2) with mesh
spacingb.

First, note that starting from any given gauge, it
straightforward to adjust the phases of theuunkj

& in order to

makeVD50 without affectingVOD whatsoever. For eachn,
let ln5sn /usnu where sn5) j 50

N21Mnn
(kj ,1b)

~thus ln is the
‘‘Berry phase’’ of bandn); then, starting from the first poin
j 50, recursively set the phase ofuun,kj 1b& such that

Mnn
(kj ,1b)

5ln
1/N , for successivek points j . Then all the

Mnn
(kj ,1b) will have the same phase andVD will vanish. This

operation has no effect whatsoever on the magnitudes of
elements ofMmn

(k,1b) , and so, by Eq.~35!, it leavesVOD

unchanged. This argument demonstrates thatVD50 and
thusṼ5VOD at the minimum.

A good starting guess that will makeVOD rather small
~and keepVD50) can be constructed as follows. We fir
establish a notion of ‘‘parallel transport’’ of the Bloch func
tions. Starting with some arbitrary choice~from among all
possibleJ3J unitary rotations! of the uunk0

& at an initial k

point k0, we choose theuun,k01b& at the next pointk01b by

insisting thatMmn
(k0 ,1b) should be Hermitian.@This choice is

uniquely given by the singular value decompositi
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M5VSW†, whereV andW are unitary andS is a diagonal
matrix with nonnegative diagonal elements. Th
M5(VSV†)(VW†); and by appropriate unitary rotation, th
VW† term can be eliminated, leavingM Hermitian.# This
procedure is repeated, progressing fromk point to k point
@and usingun,2p/a(x)5un,p/a(x)e2p ix/a when crossing the
Brillouin-zone boundary# until the loop is completed, estab
lishing a new set of states atk0 that are related to the initia
ones by a unitary transformationL. ~This matrix L is the
generalization of the Berry phase45 to a non-Abelian multi-
dimensional manifold.20,46–48! Next, one diagonalizes
L5VlV†, and rotates the bands at everyk point by the same
unitary matrixV. Having done this, one finds that each sta
uunk0

& is carried onto itself by parallel transport around t

loop, except that it returns with an excess phaseln . Finally,
defining gn5ln

21/N and modifying the phases a
uunkj

&→gn
j uunkj

&, we arrive at the desired solution~parallel-
transport gauge!.

At this solution, eachMmn
(k,1b)5Kmn

(k)gn with K Hermitian.
It follows that the Im lnMnn

(k,1b) are independent ofk, the

Wannier centersx̄ n are determined by theln , and thusVD
of Eq. ~36! vanishes. From Eq.~35! it can be seen thatVOD
does not generally vanish. However,VOD depends only on
the matricesKmn

(k) , and these can be shown to scale
dmn1O(b2), so that uMmn

(k,1b)u2 is expected to scale a
O(b4), andVOD asO(b2).

If a minimization of V is then carried out starting from
this parallel-transport solution, one expectsVD to remain
zero andVOD to be reduced slightly, the reduction aga
being expected to beO(b2). The Wannier centers will also
presumably shift slightly.

If one is mainly interested in the Wannier centers in t
one-dimensional case, it may be preferable to take these
the parallel-transport solution~i.e., from theln), rather than
from the x̄ n at the minimum. The former approach corr
sponds more closely with the Berry-phase viewpoint,15–17,20

and indeed the sum of the Wannier centers so defined co
sponds to the usual formula for the electron
polarization.15,16 ~Actually, for this purpose, the full parallel
transport construction need not be carried out.L may be
calculated as the product of the unitary parts of theM ma-
trices in any given representation, and theln obtained as its
eigenvalues. By ‘‘unitary part’’ we mean theVW† taken
from the singular value decompositionM5VSW†.! On the
other hand, the parallel-transport formulation does not ea
generalize to higher dimensions. Thus, the approach of m
mizing theV functional appears to be the most natural one
higher dimensions, and it gives results that differ only ve
slightly from the parallel-transport solution for reasonab
meshes in 1D.

2. Isolated band in multiple dimensions

For the case of an isolated band in multiple dimensio
the problem of finding the optimally localized Wannier fun
tion maps onto the problem of solving the Laplace equat
for a phase field,3,49 as described next.VOD is not present,
and the problem reduces to minimizingVD , so that only the
second term in Eq.~52! appears. ClearlyR̃ is identically one
andT(k,b)5q(k,b) is real, so that Eq.~52! becomes
s

m

re-

ly
i-

n
y

s,

n

G„k…54i(
b

wbIm ln M „k,b…. ~53!

At the solution, this expression must vanish. Starting fro
some initial guess on the phases of theuuk& and making the
substitution of Eq.~9!, it can be seen that Eq.~53! corre-
sponds to a solution of the Laplace equation for the ph
field f(k). This corresponds closely to the discussion in t
vicinity of Eq. ~5.15! of Ref. 3.

The quantity2(bwbbIm lnM(k,b) is a finite-difference
representation of the vector fieldA(k)5 i ^uku¹kuuk&; in the
language of the theory of geometrical phases,A(k) is known
as the ‘‘gauge potential’’ or ‘‘Berry connection.’’20,45,47The
average value ofA(k) is gauge-invariant~modulo a quan-
tum! and is set by the Berry phase,15–17 but A(k) is locally
gauge-dependent. The minimization ofV via the solution of
the Laplace equation selects the gauge that makes¹•A van-
ish, but its curl,B5¹3A, is generally nonzero. In fact,B,
which is known as the ‘‘Berry curvature,’’ is a gauge
invariant quantity; it can be regarded as an intrinsic prope
of the band.20,48

SinceA(k) is periodic ink space, one can alternativel
think in terms of the Fourier coefficientsA(R). These can be
divided into three contributions: theuniform part,A(R50);
and, forRÞ0, the longitudinal and transversepartsAL(R)
and AT(R), i.e., the components ofA„R… parallel and per-
pendicular toR̂, respectively. The uniform part gives th
Wannier center; the longitudinal part is the part that can
made to vanish by appropriate choice of gauge; and
transverse part is gauge invariant~it is related to the Berry
curvature! and determines the minimum value ofVD . In
fact, the individual Fourier componentsA(R) can be related
to the matrix elementŝRur u0& of Eq. ~15!; it thus follows
that at the solution, the latter are purely transver
A(R)•R50. Unfortunately, the picture does not appear
remain so simple in the multiband case, as discussed in
pendix C.

The Berry curvature, or equivalently, the transverse p
of the Berry connection, can easily be shown to vanish for
isolated band in a crystal with inversion symmetry~see Sec.
IV C 3!; in this case the solution forA(k) is a perfectly
uniform one, andVD vanishes at the solution. In a nonce
trosymmetric crystal, however, this is not the case, sinc
nonzero Berry curvature is generally present. This provide
complementary viewpoint, for the single-band case, on
fact that the noninvariant partṼ of the spread functiona
cannot generally be made to vanish.

3. Inversion symmetry

When inversion symmetryV(r )5V(2r ) is present, the
cell-periodic Bloch functions can be chosen to be real
the reciprocal representation; that is, unk(r )
5(Gunk(G)exp(iG•r ) with unk(G) real. It might naively
appear that all theMmn

(k,b) matrices could then be chosen rea
and that the solution of the minimization problem might
trivial in some sense. This is not quite true. Even for
isolated band, there is the complication that the Berry ph
of the band may be21 instead of11; in this case the
unk(G) can be chosen reallocally ~i.e., in a small neighbor-
hood around any givenk), but notglobally. But this really
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12 854 56NICOLA MARZARI AND DAVID VANDERBILT
only means that the corresponding Wannier function
definite symmetry under inversion through a symmetry c
ter ~‘‘Wyckoff position’’ ! other than the one at the origin
and the Berry phase can be reset to11 by a shift of origin.
For the case of composite bands, however, the problem
choose a particular gauge transformation@Eq. ~10!#, not just
a phase transformation@Eq. ~9!#, and for this the presence o
inversion symmetry does not provide any obvious solutio

For example, consider the case of the four valence ba
of Si. ~Numerical results for this case appear in Sec. VI A!
Taking the origin at the center of the bond oriented alo
@111#, it turns out to be possible to choose one of the W
nier functions to have inversion symmetry about the orig
while the other three have inversion symmetry about ot
Wyckoff positions ~those corresponding to the other thr
bond centers!, and the remaining Wyckoff positions~tetrahe-
dral and octahedral interstitial positions! are unoccupied.4

This would have been hard to guess based on symm
alone~although it is natural from a chemical point of view!.
Because each Wannier function does have its own inver
symmetry, it turns out thatVD does vanish for Si. However
VODÞ0. The contribution toVOD from a given pair$mn% of
Wannier functions is related to the matrix elemen
^Rmur u0n&. These matrix elements can be shown to van
if, in addition to obeying inversion symmetry individually
the two Wannier functions are translational images of o
another; but this is certainly not generally the case.~In the
language of Appendix C, the fact thatVODÞ0 for Si is re-
lated to the fact that the Berry curvature tensor does
vanish for this system.!

Finally, in some cases it might be possible to choose
the Wannier functions to have definite symmetry under
version, but the solution that minimizesV may spontane-
ously break the inversion symmetry. Some cases of this
are discussed in Secs. VI C and VI D below.

4. Molecular supercells and single k-point sampling

In the context of plane-wave pseudopotential and rela
approaches, it is common to study molecules or clusters i
artificial periodic superlattice arrangement.50 In such a case
a singlek-point ~usually k05G) sampling of the Brillouin
zone suffices for conventional quantities such as energ
forces, and charge densities, since the errors in these qu
ties will be exponentially small as long as the overlap b
tween wave functions in neighboring supercells is negligib
However, under the same conditions, the calculation ofV
using our approach introduces small errors that neverthe
scale only asL22, whereL is the supercell dimension~see,
e.g., Sec. VI C!. The problem essentially arises from the u
of the simplest finite-difference representation of¹k , involv-
ing only nearest-neighbork points ~see Appendix B!. If
higher accuracy is needed, this problem can be overcom
either of two ways:~i! by using the solution atk0 to con-
struct solutions on a denser mesh ofk points,
uk(r )5uk0

(r )exp@i(k02k)•r #, being sure to take the discon

tinuity of (k02k)•r near the supercell boundary whe
uk0

(r ) is negligible; or ~ii !, construct periodic functions

x̃ (r ), ỹ (r ), z̃(r ) such thatx̃5x, ỹ5y, z̃5z in the molecu-
lar region, with ~possibly smoothed! discontinuities at the
supercell boundaries, and then apply the theory of Appen
s
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A to the matricesX, Y, Z computed asXmn5^umk0
uxũunk0

&,
etc. Approach~i! is a ‘‘quick fix’’ requiring very little repro-
gramming, while approach~ii ! is preferable in principle.

It is also common practice to use singlek-point sampling
for supercell calculations on extended systems, provided
the supercell is sufficiently large in all three dimensions.
such cases, our procedure can again be applied, but it sh
be kept in mind that the convergence ofV with supercell
size should be expected to be slower than the convergenc
total energies and forces. Moreover, the electronic polar
tion that would be computed from the sum of our Wann
centers is not guaranteed to be exactly identical to the
that would be computed from the Berry-phase formula,15

Pel•G5
22e

V
Im ln det̂ umk0

ue2 iG•ruunk0
&, ~54!

used in recent molecular-dynamics simulations of infra
absorption spectra.51 However, the two should be very clos
and should become identical in the limit of large superc
size.

D. Steepest-descent minimization

1. Algorithm

In order to minimize the spread functionalV by steepest
descents, we make small updates to the unitary matrice
in Eq. ~37!, choosing

dW~k!5eG~k!, ~55!

where e is a positive infinitesimal. We then have, to fir
order ine,

dV5(
k

tr@G~k!dW~k!#

52e(
k

iG~k!i2, ~56!

whereiAi25(mnuAmnu2 and we have made use ofG†52G.
Thus, the use of Eq.~55! is guaranteed to makedV,0, i.e.,
to reduceV.

In practice, we take a fixed finite step withe5a/4w,
wherew5(bwb , so that

DW~k!5
a

w(
b

wb~A@R~k,b!#2S@T~k,b!# !. ~57!

The wave functions are then updated according to the ma
exp@DW(k)#, which is unitary becauseDW is anti-Hermitian.
The choice of prefactor above is designed so that in
single-band case, and for simplek meshes~e.g., simple cu-
bic!, the ‘‘highest-frequency mode’’ associated with pha
rotations is just marginally stable with the choicea51. That
is, if one starts with the true solution and rotates the pha
of the wave functions on allk points simultaneously by an
angle 6g, with the opposite sense of rotation on neare
neighbork points, then from Eq.~47! Dq(k,b)562g on ev-
ery link, and the above choice ofDW exactly returns the
system to the solution ifa51/2, and is marginally unstable
at a51. We find thata51 is still a safe choice for all the



e

e

nt

in
th

s

-

ti
g

e

ta

al

nie
-
in
h

e

n
s

rac-
, as

a-
ex-

the
ied
ach

t
e
get
ad

-
e of
e
ds.

cal
la-

g
the

that

m to
om

c-
all
lly
in

ur
see-

ex-
e
the
rief

d
for
od
lyt-
,

56 12 855MAXIMALLY LOCALIZED GENERALIZED WANNIER . . .
systems studied; more efficient strategies become us
when dealing with large systems, or very finek-point
meshes. In those cases, it is advantageous to choose at
step the optimala in a line minimization~usually with a
parabolic interpolation, using the functional ata50, 1, and
its derivative ata50! or to introduce a conjugate-gradie
approach in composing subsequent descent directions.

It should be stressed that the evolution towards the m
mum requires only the relatively inexpensive updating of
unitary matrices, and not of the wave functions, as follow
We choose a reference set of Bloch orbitalsuunk

(0)& and com-
pute once and for all the inner-product matrices

Mmn
~0!~k,b!5^umk

~0!uun,k1b
~0! &. ~58!

We then represent theuunk& ~and thus, indirectly, the Wan
nier functions! in terms of theuunk

(0)& and a set of unitary
matricesUmn

„k… ,

uunk&5(
m

Umn
~k!uumk

~0!&. ~59!

We begin with all theUmn
(k) initialized to dmn . Then, each

step of the steepest-descent procedure involves calcula
DW from Eq. ~57!, updating the unitary matrices accordin
to

U ~k!→U ~k!exp@DW~k!#, ~60!

and then computing a new set ofM matrices according to

M ~k,b!5U ~k!†M ~0!~k,b!U ~k1b!. ~61!

The cycle is then repeated until convergence is obtain
Note that the exponential in Eq.~60! is a matrix operation,
which we perform by transforming to a diagonal represen
tion of DW and back again.

Typically, we prepare a set of reference Bloch orbit
uunk

(0)& by projecting from a set of initial trial orbitalsgn(r )
corresponding to some rough initial guess at the Wan
functions. For example, for thesegn(r ) we have used Gauss
ian functions centered at or near midbond positions. The
tialization procedure involves first projecting onto Bloc
states of the set of bands at wave vectork,

ufnk&5(
m

ucmk&^cmkugn&. ~62!

Since these are not orthonormal, we then perform a symm
ric orthonormalization to form a set of

uf̃nk&5(
m

~S21/2!mnufmk& ~63!

~whereSmn5^fmkufnk&), and finally convert to cell-periodic
functions via

unk
~0!~r !5e2 ik•rf̃nk~r !. ~64!

~In practice, the above steps are combined.! This procedure
is similar in principle to the one mentioned by Teichler33

~following Ref. 54!, or Satpathy and Pawlowska,35 although
it differs from the latter in that we do the orthonormalizatio
in k space. We then use this set of reference Bloch orbital
ful

ach

i-
e
.

ng

d.

-

s

r

i-

t-

as

a starting point for the steepest-descent procedure. In p
tice, we find that this starting guess is usually quite good
will be shown for the cases of Si and GaAs in Sec. VI.

2. False local minima

We have also carried out tests initializing the minimiz
tion procedure with more arbitrary starting guesses. For
ample, we have let the startingunk

(0) consist of energy-ordered
Hamiltonian eigenstates with quasi-random phases, as in
typical output of a band-structure code. We have also tr
superimposing a completely random phase rotation to e
unk

(0) individually, or a randomJ3J unitary rotation to the se
of unk

(0) at each and everyk. With such starting guesses, w
find that the minimization procedure can occasionally
trapped in a local minimum. That is, we find that the spre
functionalV, viewed as a function of the set ofUmn

„k… , does
have false local minima that must be avoided.

We find that this problem isnot associated with the pres
ence of a large number of bands, but instead with the us
fine k-point meshes. In fact, rather counter-intuitively, w
have experienced it so far only when treating isolated ban
The Wannier functions associated with the false lo
minima are found to display erratic and unphysical oscil
tions.

The problem appears to lie in the possibility of makin
inconsistent choices in the branch cuts when evaluating
logarithms of complex argument in~47!. In a naive imple-
mentation, the branch cuts are simply chosen so
uqn

(k,b)u<p. At a good global minimum, all of theuqn
(k,b)u

!p, while at a false local minimum some of theuqn
(k,b)u

approachp.
On the other hand, we have never observed the syste

become trapped in a false local minimum when starting fr
reasonable trial projection functions, Eqs.~62!–~64!. We
also find that at the true global minimum the Wannier fun
tions always turn out to be real, apart from a trivial over
phase; while at the false local minima, they are typica
complex, only being real if the initial conditions described
Sec. V B have been used.

In summary, while false local minima can occur in o
minimization scheme, they do not seem to pose any fore
able problem in actual calculations.

V. PROPERTIES OF OPTIMALLY LOCALIZED
WANNIER FUNCTIONS

A. Asymptotic localization properties

Following from the early work of Kohn,2 it is generally
expected that Wannier functions can be chosen to have
ponential localization. While it is not the purpose of th
present work to study questions of exponential decay in
tails of the Wannier functions, we nevertheless give a b
discussion of these issues here.

Kohn2 proved the existence of exponentially localize
Wannier functions for the case of an isolated band in 1D,
a crystal with inversion symmetry. However, the meth
does not easily generalize. Blount demonstrated the ana
icity of the Bloch functions for the single-band case in 3D3

and claimed~end of Sec. 5 of Ref. 3! that this would imply
the exponential localization of the Wannier functions~see
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12 856 56NICOLA MARZARI AND DAVID VANDERBILT
also Ref. 49!; but this claim was later shown to be faulty b
Nenciu ~footnote on first page of Ref. 52!, who pointed out
the global topological aspects of the problem. Des Cloize
proved the exponential localization of the band project
operatorP of Eq. ~12! for an arbitrary set of composite band
in 3D.53 Unfortunately, this does not immediately imply th
the Wannier functions are exponentially localized~although
the converse would follow!. In a following paper, des
Cloizeaux was able to prove the possibility of choosing
ponentially localized Wannier functions for an isolated ba
~i! in 1D generally, or~ii ! in the centrosymmetric 3D case.54

The summary~Sec. V! of Ref. 54 gives a good discussion o
the difficulties and partial progress towards a solution of
general composite-band problem. More recently, Nen
completed a proof for the case of an isolated band in
without centrosymmetry.52 To our knowledge, however, th
problem remains unsolved for the general case of compo
bands in 3D. Finally, note that some discussion of the ex
nential localization of the ‘‘generalized Wannier functions
defined for the cases of surfaces and defects has been
in Refs. 27 and 55–57.

It is natural to speculate that the ‘‘optimally localized
Wannier functions that are obtained by minimizing t
spread functional of Eq.~11! are exponentially localized. Ac
tually, one should distinguish between a ‘‘weak conjectur
that the optimally localized Wannier functions have exp
nential decay, and a ‘‘strong conjecture’’ that they have
same exponential decay as that of the band projection op
tor P. At the present time, we can only speculate that in 3
the weak conjecture, at least, will hold.

In 1D, we are on firmer footing. As shown in Secs. III an
IV C 1, the functions that are obtained by minimizing E
~11! correspond, in principle, with those considered by p
vious authors, and for which exponential localization h
been demonstrated.2,3,39,40 In particular, we have shown in
Sec. III that these will be eigenfunctions of the ban
projected position operatorPxP; Niu has given a simple and
elegant argument, based on this fact alone, from which
may conclude that the Wannier functions decay faster t
any power.40 From this point of view, the essential difficult
in 3D is that the Wannier functions can no longer genera
be chosen to be eigenfunctions of all three band-projec
position operators simultaneously.

Returning to the general three-dimensional case, we
that it is not easy to carry out numerical tests of exponen
localization using the present method, which is based on
cretization ink space. The Wannier functions that we obta
are thus not truly localized, being instead artificially period
with a periodicity inversely proportional to the mesh spacin

B. Conjecture: optimally localized Wannier functions are real

It seems not to be widely appreciated that the Wann
functions wn(r ) can always be chosen real. This depen
only on the HamiltonianH5p2/2m1V(r ) being Hermitian,
and not on any symmetry of the~real! potentialV(r ). Indeed,
from Eq. ~1! it is clear that one only needs to choose

unk~r !5un,2k* ~r … ~65!

to insure that the Wannier functionswn(r ) are real. This
condition is automatically satisfied if one starts with initi
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Wannier functions projected from real trial functions, as d
cussed in Sec. IV D; alternatively, it can be imposed
hand. From Eq.~25!, condition ~65! implies thatMmn

(k,b) is
equal toMmn

(2k,2b)* , which in turn implies thatGmn
(k) is equal

to Gmn
(2k)* , so that Eq.~65! continues to be satisfied durin

the steepest-descent update procedure. In this way, one
eventually arrive at a set of maximally localized real Wa
nier functions.~Similarly, working in real space, it is easy t
see from Appendix A that a real initial guess will result in
set of real optimally localized solutions.!

We conjecture that a stronger result is true: namely, t
the optimally localized Wannier functions are always re
~apart from a trivial overall phase of each Wannier functio!.

We have not found a proof of this conjecture, but it
supported by our empirical experience. More precisely,
the tests to be reported in Sec. VI, we find that whenever
arrive at the global minimum, the Wannier functions alwa
turn out to be real, apart from a trivial overall phase.@How-
ever, we do find that the Wannier functions are typica
complex at false local minima, as discussed in Sec. IV D
and also that imposing the initial condition~65! does not
eliminate false local minima, even if in this latter case t
local minima are necessarily real.#

VI. RESULTS

A. Si

For Si, the four occupied valence bands have to be ta
together as a single composite group, because of degen
cies between the bottom two bands atX, and between the top
three bands atG. Thus, we takeJ54 and look for a set of
four Wannier functions per primitive unit cell. These a
expected to be centered on the bond centers, and to
roughly the character ofs-bond orbitals, i.e., even linea
combinations of the twosp3 hybrids projecting toward the
bond center from the two neighboring atoms.4 Wannier func-
tions of this type have been computed previously by a v
ety of methods.35,58–61,31It is tempting to imagine that the
requirement of spanning the given set of valence bands
gether with the symmetry requirement that each Wann
function has the expected inversion, mirror, and threef
rotational symmetries about its corresponding bond cen
might be enough to uniquely determine the Wannier fu
tions. We emphasize that this is not the case, and we pro
to determine the particular set of Wannier functions th
minimize the spread functionalV.

Our calculations are carried out within the local-dens
approximation to Kohn-Sham density-functional theory62

using a standard plane-wave pseudopotential approach
an all-bands conjugate-gradient minimization.63 We have
used norm-conserving pseudopotentials64 in the Kleinman-
Bylander representation, with plane-wave cutoffs rang
from 200 eV to 650 eV, depending on the systems stud
The sampling of the Brillouin zone is performed with equ
spaced Monkhorst-Pack grids65 that have been offset in orde
to includeG. Since the crystal is fcc in real space, the grid
bcc in k space, and we use the simplest possible fin
difference representation of¹k using only theZ58 nearest
neighbors of eachk point ~see Appendix B!. The computed
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56 12 857MAXIMALLY LOCALIZED GENERALIZED WANNIER . . .
Bloch functions are stored to disk, and the construction
the Wannier functions is carried out as a separate, p
processing operation.

Table I shows the convergence of the spread functio
and its various contributions as a function of the density
the k-point mesh used. We confirm thatVD does vanish~to
machine precision! as expected from the presence of inve
sion symmetry, as discussed in Sec. IV C 3. SinceV I is in-
variant, the minimization ofV reduces to the minimization
of VOD. For eachk-point set, the minimization was initial
ized by starting with trial Gaussians of width~standard de-
viation! 1 Å located at the bond centers. We find that for t
case of crystalline Si, these provide an excellent star
guess; for the 83838 case, for example, we find an initia
VD50 and VOD50.565, whereas at the minimumVOD is
0.520. Had we started with the random phases provided
the ab initio code, we would have obtained an initi
VD5622.1 andVOD542.3. We find that typically 20 itera
tions are needed to converge to the minimum with go
accuracy, starting with the initial choice of phases given
the Gaussians, and using a simple fixed-step steepest-de
procedure. Starting with a set of randomized phases requ
roughly one order of magnitude more iterations. As pre
ously pointed out, the evolution does not require additio
scalar products between Bloch orbitals, and so it is in a
case pretty fast. Because of symmetry, the Wannier cen
do not move during the minimization procedure, and
spreads of the four Wannier functions remain identical w
each other.

What is perhaps most striking about Table I is th
V I@VOD; and whileV converges fairly slowly withk-point
density, this poor convergence is almost entirely due to
V I contribution. Incidentally, since theV I contribution is
gauge invariant, it can be calculated once and for all at
starting configuration, for any givenk-point set; the quanti-
ties that are actually minimized areVD and VOD. The
former vanishes at the minimum, and the latter is found
converge quite rapidly withk-point sampling. It would be
interesting to explore whether use of a higher-order fin
difference representation of¹k might improve this conver-
gence, especially that ofV I , but we have not investigate
this possibility.

In Fig. 1, we present plots showing one of these ma
mally localized Wannier functions in Si, for the 83838
k-point sampling. The other three are identical~related to the
first by the tetrahedral symmetry operations! and are located
on the other three tetrahedral bonds. Each displays inver
symmetry about its own bond center, and it is real apart fr
an overall complex phase. Again, all these properties are

TABLE I. Minimized localization functionalV in Si, and its
decomposition into invariant, off-diagonal, and diagonal parts,
different k-point meshes~see text!. Units are Å2.

k set V V I VOD VD

13131 2.024 1.999 0.025 0
23232 4.108 3.707 0.401 0
43434 6.447 5.870 0.577 0
63636 7.611 7.048 0.563 0
83838 8.192 7.671 0.520 0
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trivial, and would not be satisfied by a generic choice
phases.~Our initial guess based on Gaussians centered in
middle of the bonds does insure all these properties,
without optimizing the localization.!

From an inspection of the contour plot it becomes read
apparent that the Wannier functions are essentially confi
to the first unit cell, with very small~and decreasing! com-
ponents in further-neighbor shells. The general shape co
sponds to a chemically intuitive view ofsp3 hybrids over-
lapping along the Si-Si bond to form as bond orbital, with
the smaller lobes of negative amplitude clearly visible in t
back-bond regions. These results clearly illustrate how
Wannier functions can provide useful intuitive understand
about the formation of chemical bonds.

B. GaAs

In GaAs the lower valence band is never degenerate w
the other~top! three valence bands, and thus several po
bilities arise:~a! We can treat the four bands as a group,
was done for silicon, obtaining solutions that are very simi
to the Si case, except for the loss of inversion symme

r

FIG. 1. Maximally localized Wannier function in Si, for th
83838 k-point sampling.~a! Profile along the Si-Si bond.~b!
Contour plot in the~110! plane of the bond chains. The other Wa
nier functions lie on the other three tetrahedral bonds and are
lated by tetrahedral symmetries to the one shown.
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12 858 56NICOLA MARZARI AND DAVID VANDERBILT
about the bond centers.~b! We can deal separately with th
bottom band and the top three bands; the latter would
considered as a group, while the former is a single isola
band. The solution at the minimum should resemble ato
orbitals for the more electronegative species~the As anion!,
in the form of threep orbitals and ones orbital, respectively.
~c! Finally, it might be interesting to consider the case
which the four bands are treated together, but using the
lution of the V minimization for the one-band and thre
band cases, without proceeding further with the minimi
tion. This does not correspond to a true minimum for t
four-bandV surface, but just to a stationary~saddle! point.

Starting with the case in which all the four bands a
treated as a group, we show in Table II the convergenc
the spread functional and its various contributions as a fu
tion of the density of thek-point sampling. In analogy with
the case of Si, the procedure is initialized using trial Gau
ians of width 1 Å, centered in the middle of the bonds; this
again a very good starting guess, and~for the 83838 mesh!
gives an initialVD50.1164 andVOD50.593, that are re-
duced to 0.0059 and 0.555, respectively, by the minimiza
procedure. As was the case for Si,k-point convergence is
fairly slow, even though most of it is due to the slow co
vergence of the invariant part. On the other hand, the gen
shape of the Wannier functions at the minimum is alrea
given rather accurately with coarser samplings~although the
tails are then not so easy to characterize, since in practice
Wannier functions are periodically repeated in a super
conjugate to thek-point mesh!. In particular, thek-point con-
vergence of the Wannier centers is quite rapid, as is evid
from the last column of Table II, where we show the relati
position of the centers along the Ga-As bonds. Hereb is the
distance between the Ga atom and the Wannier center, g
as a fraction of the bond length~in Si the centers were fixed
by symmetry to be in the middle of the bond,b50.5, irre-
spective of the sampling!.

In Fig. 2, we present plots showing one of these ma
mally localized Wannier functions in GaAs, for the 83838
k-point sampling. Again, at the minimumV, all four Wan-
nier functions have become identical~under the symmetry
operations of the tetrahedral group!, and they are real, excep
for an overall complex phase. The shape of the Wann
functions is again that ofsp3 hybrids combining to form
s-bond orbitals; inversion symmetry is now lost, but t
overall shape is otherwise closely similar to what was fou
in Si. The Wannier centers are still found along the bon

TABLE II. Minimized localization functionalV in GaAs, and
its decomposition into invariant, off-diagonal, and diagonal pa
for differentk-point meshes, together with the relative positionb of
the centers along the Ga-As bond~see text!. Units for theV ’s are
Å2.

k set V V I VOD VD b

13131 2.217 2.088 0.125 0.0035 0.593
23232 4.409 3.898 0.503 0.0078 0.602
43434 6.785 6.170 0.610 0.0055 0.613
63636 7.982 7.386 0.590 0.0058 0.616
83838 8.599 8.038 0.555 0.0059 0.617
12312312 9.146 8.635 0.504 0.0061 0.617
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but they have moved towards the As, at a position tha
0.617 times the Ga-As bond distance. It should be noted
these Wannier functions are also very similar to the localiz
orbitals that are found in linear-scaling approaches,61 where
orthonormality, although not imposed, becomes exactly
forced in the limit of an increasingly large localization r
gion. This example highlights the connections between
two approaches. The characterization of the maximally loc
ized Wannier functions indicates the typical localization
the orbitals that can be expected in the linear-scaling
proach. Moreover, such information ought to be extrem
valuable in constructing an intelligent initial guess at t
solution of the electronic structure problem in the case
complex or disordered systems.

As pointed out before, in GaAs we can have differe
choices for the Hilbert spaces that can be considered, so
also studied the case in which only the bottom band, or
top three, are used as an input for the the minimization p
cedure. Table III shows the spread functional and its vari
contributions for these different choices, where the bott
band is first treated as isolated; next the threep bands are
treated as a separate group; then these two solutions are

,

FIG. 2. Maximally localized Wannier function in GaAs, for th
83838 k-point sampling.~a! Profile along the Ga-As bond.~b!
Contour plot in the~110! plane of the bond chains. The other Wa
nier functions lie on the other three tetrahedral bonds and are
lated by tetrahedral symmetries to the one shown.
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to construct a four-band solution, without further minimiz
tion; and finally, this is compared with the full four-ban
minimization. In composing the results for the one-band a
three-band cases, we take the 131 and 333 unitary matri-
ces that would give the minimum solution for the one- a
three-band cases, and build from them a set of 434 block-
diagonal unitary matrices. The four-bandV that is obtained
is exactly the sum of the two initialV ’s. Nevertheless, the
bookkeeping changes:V I is reduced, with an equal and op
posite contribution reappearing inVOD. ~The VD’s sum up
exactly, as they must.! If we then minimize this~saddle-
point! solution, we recover the four-band minimum: the i
variant part~obviously! does not change,VD slightly de-
creases, with a larger reduction inVOD, in correspondence
to an increased interband mixing.

In Fig. 3, we show the contour plot for the maximal
localized one-band Wannier function in GaAs, for t
83838 k-point sampling. The function is again real, and
shows the typical characteristics of ans orbital centered
around the anion; the tetrahedral symmetry of the lattice
forms the spherical orbital, introducing contributions th
point along the two bond chains@one in the ~110! plane
plotted, and one perpendicular to that plane#. In the three-
band case, on the other hand, the Wannier functions
semble three orthogonal atomicp orbitals. It should be

TABLE III. Localization functionalV and its decomposition in
invariant, off-diagonal, and diagonal parts, for the case of Ga
~units are Å2). The bottom valence band, the top three valen
bands, and all four bands are separately included in the minim
tion. The star (* ) refers to the case in which the minimization is n
actually performed, and the solution for the one-band and th
band cases is used. Sampling is performed with a 83838 mesh of
k points.

k set V V I VOD VD

one band 1.968 1.944 0 0.0238
three bands 10.428 9.844 0.560 0.0245
four bands* 12.396 8.038 4.309 0.0483
four bands 8.599 8.038 0.555 0.0059

FIG. 3. Contour plot, in the~110! plane, of the maximally lo-
calized Wannier function in GaAs for the 83838 k-point sam-
pling when only the bottom valence band is considered.
d
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stressed that only when all the four bands are treated sim
taneously do we achieve the overall maximum localizati
This reinforces the picture in which the maximally localize
orbitals correspond to the most natural ‘‘chemical bonds’’
the system.

C. Molecular C 2H 4

We have also studied the case of the ethylene mole
~C2H4!, in order to make the connection with some stand
chemistry concepts, and to highlight the relation of our fo
malism ~derived from ak-space representation of extend
Bloch orbitals! to the case of an isolated system as discus
in Sec. IV C 4. First of all, the molecule is modeled in pe
odic boundary conditions, in a supercell that is large enou
to make the interaction with the periodic images negligib
Consequently, the band dispersion becomes also neglig
andG sampling is all that is needed for total energies, forc
and densities. However, the spread functional is expecte
converge slightly slower withk-point sampling, as discusse
in Sec. IV C 4. We thus tested severalk-point meshes. For
the singlek-point case, the mesh in reciprocal space is t
formed by theG point and all its periodical images, i.e., th
reciprocal lattice vectors; our formalism remains equally a
plicable to such a case. One should bear in mind that if
supercell is not cubic, appropriate weight factors have to
added in the calculation of the derivatives~see Appendix B!.

We show in Table IV the coordinates for the C and
atoms at the structural minimum, together with the Wann
centers. In this molecule, there are six occupied vale
eigenstates, the lowest five being of C—H or C—C
s-bonding character, and the top~frontier! orbital being of
C—C p-bonding character. If we treat the lowest five bon
as a composite group, we find as expected that the min
zation ofV leads tos-bond orbitals located on each of th
C—H or C—C bonds. However, treating all six bands t
gether, we find that the C—C p-bonding orbital mixes
strongly with the C—C s-bonding orbital to give two Wan-
nier functions that are symmetrically disposed above and
low the x-y plane. Contour plots for the resulting C—H and

s
e
a-

e-

TABLE IV. Coordinates~in Å! of the atoms and of the six
Wannier centers in the ethylene molecule.

Species x y z

H 21.235 0.936 0.000
H 1.235 20.936 0.000
H 1.235 0.936 0.000
H 21.235 20.936 0.000
C 0.660 0.000 0.000
C 20.660 0.000 0.000

WF r̄ x r̄ y r̄ z

1 21.049 0.622 0.000
2 1.049 20.622 0.000
3 1.049 0.622 0.000
4 21.049 20.622 0.000
5 0.000 0.000 0.327
6 0.000 0.000 20.327
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12 860 56NICOLA MARZARI AND DAVID VANDERBILT
CvC Wannier functions are shown in Fig. 4, and the loc
tions of the Wannier centers are reported in Table IV. T
picture that emerges from this ‘‘natural’’ symmetry breaki
of the planar geometry is just the Lewis picture of the CvC
double bond.

In our calculations we have used a cubic supercell of s
7 Å; this gives to each band a dispersion that is alw
smaller than 0.02 eV, and that originates from the interac
with the superperiodic images. Increasing thek-point sam-
pling has negligible effects on the equilibrium positions
the C and H atoms and on the location of the Wannier c
ters. But it does still affect the localization functional, whic
displays a slower convergence with respect to the numbe
k points used~although much faster than was the case for
or GaAs!. The results are summarized in Table V, where
show theV contributions for the maximally localized Wan
nier functions with increasingk-point sampling. It is readily
seen that the slow convergence is coming mostly from
invariant part of the functional; a finerk-point mesh provides
both a more detailed sampling of the Brillouin Zone and
more accurate calculation of the gradients.

FIG. 4. Contour plots for the maximally localized Wanni
functions in ethylene, C2H4. ~a! One of the four C—H Wannier
functions, shown in thex-y plane.~b! One of the two CvC Wan-
nier functions, shown inx-z plane.
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D. LiCl

It is also interesting to look at a more ionic system,
understand the effect of electronegativity and band gap
the location and localization of the Wannier functions. W
have studied rocksalt LiCl, treating all four valence ban
~roughly Cl 3s and 3p) as a unit, and again using a
83838 k-point sampling.

One could expect the Wannier functions to localize mu
more strongly around the anion than was the case for Ga
and indeed this is what we find. However, we also find t
the Wannier functions can reduceV further by mixing to
form sp3 hybrids, sitting on the vertices of a tetrahedro
centered around the Cl atom, with each center at a dista
of 0.449 Å from the Cl~the Li-Cl distance being 2.57 Å!. We
anticipated that these hybrids might prefer to align along
$111, 1̄1̄ 1, 1̄1 1̄, 1 1̄ 1̄% or $1 1 1̄, 1 1̄1, 1̄11, 1̄1̄ 1̄% sets of
directions; if this were the case, the choice between the
sets~two degenerate global minima ofV! would constitute a
kind of unphysical or ‘‘anomalous’’ symmetry breakin
from cubic to tetrahedral. Instead, we find thatV is, at least
to our machine precision, rotationally invariant with respe
to the orientation of thesp3 hybrids, just as would be the
case for an isolated Cl2 ion in free space. This implies tha
the tetrahedron of the Wannier centers around each Cl a
is free to rotate without any discernible decrease of locali
tion.

Finally, consistent with the idea that a larger gap is link
to a higher degree of localization, we find a totalV54.159
Å2, with V I53.354,VOD50.805 andVD51.231025 Å2.

VII. DISCUSSION

We have discussed a technique for obtaining a set of w
localized Wannier functions for a given band or compos
set of bands in a crystalline solid. We have in mind seve
kinds of applications for this method.

First, we believe that this approach may help to obt
chemical intuition about the nature of chemical bonds in s
ids, and to characterize trends in bonding properties wit
classes of solids. As emphasized in the introduction,
Wannier functions defined here are the natural generaliza
of the concept of ‘‘localized molecular orbitals’’21–26 to the
case of solids. As illustrated in the examples of GaAs a
ethylene~C2H 4) above, the determination of the Wanni
functions can give chemical intuition into the nature of t
bond orbitals of the material, including the spontaneous sy
metry breaking that occurs in the Lewis picture of a dou
or triple bond. We also suspect that it may be instructive
generate, characterize and plot the Wannier functions ac
a series of compounds, e.g., for II–VI semiconductors as
varies from wide- to narrow-gap members, or in cubic p

TABLE V. The functionalV and its decomposition, with in-
creasingk-point sampling, for ethylene~units are Å2).

k set V V I VOD VD

13131 4.041 3.657 0.384 0
23232 4.503 4.124 0.380 631027

33333 4.600 4.222 0.377 331027
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56 12 861MAXIMALLY LOCALIZED GENERALIZED WANNIER . . .
ovskites of varying composition. Moreover, as emphasi
by Hierse and Stechel,10 the Wannier functions may be tran
ferable to a considerable degree for similar bonds in differ
chemical systems~for example, for C—H or C—C bonds in
a variety of hydrocarbons!. It should be noted, however, tha
this is even more likely to be true for nonorthogon
Wannier-like functions,10 as opposed to the orthogonal on
studied here.

Second, it is possible that the Wannier functions m
prove suitable as a basis for use in constructing theorie
interacting or strongly correlated electron systems. For
ample, it might be possible to build good approximate c
related wave functions from sums of Slater determinants
the Wannier functions. For this purpose, one would clea
need to choose a set of bands that includes some low-l
unoccupied states of the one-particle mean-field Ham
tonian. Similarly, it might be possible to build accura
model Hamiltonians for magnetic systems, or for transp
properties of metals.~Again, for metals it would appear nec
essary to choose a composite group of bands that brac
the Fermi level, and to specify the occupation as a kind
density matrix in the Wannier indices.!

Third, the present scheme might prove useful for pred
ing the suitability of linear-scaling methods for differe
kinds of insulating materials. Since the linear-scali
methods5 depend strongly on the localization properties
the Wannier functions~or, closely related, the density ma
trix!, the present scheme might be a simple and useful wa
characterize the degree of localization for a given target
terial. This information might then help predict whether t
material is a good candidate for a linear-scaling method;
if so, what type of linear-scaling method is likely to wor
best, and what real-space cutoff parameter is likely to
required.

Finally, an important feature of the present approach
that it generates a list of the locations of the Wannier cent
This information alone can often be of crucial importance.
fact, we envisage a number of interesting applications
which one essentially throws away all other informati
about the Wannier functions, keeping only their locatio
For example, the shift of the Wannier center away from
bond center might serve as a kind of measure of bond io
ity. Also, the vector sum of the Wannier centers immediat
gives the bulk electronic polarizationP; all three Cartesian
components ofP can thus be determined simultaneously u
ing a conventionalk mesh, instead of constructing separa
specialk-point strings to compute each separate Cartes
component ofP as is needed otherwise.15

But more importantly, the information on the locations
the Wannier functions may open the possibility of calcul
ing properties that cannot otherwise be obtained, espec
for distorted, defective, or disordered systems. For exam
it becomes possible not only to calculate the Born~dynami-
cal! effective chargeZ* , but also to decompose it into dis
placements of individual neighboring Wannier centers.
illustrate this idea, we have carried out a calculation o
cubic supercell of GaAs containing 64 atoms (G-only
k-point sampling!, in which all atoms are in their equilibrium
positions except for one Ga atom that is displaced by
Å along the@111# direction. Observing the consequent d
placement of the Wannier centers from their bulk crystall
d
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positions, we find a totalZGa* of 2.04, in good agreement with
the established theoretical value of 1.99 as calculated
linear-response methods.66 Moreover, in arriving at the tota
electronic ZGa* ,el520.96, we find contributions of21.91,
10.65, and10.30 from the groups of four first-neighbor, 1
second-neighbor, and remaining further-neighbor Wann
centers, respectively. It is interesting to note that inclusion
nearest-neighbor contributions alone would thus significan
overestimate the magnitude ofZGa* ,el , and that the second
neighbor Wannier centers move in the opposite direction
the Ga atom motion. If we repeat the calculation displac
one As atom, we obtain a totalZAs* of 22.07 ~the acoustic
sum rule67 is only approximately satisfied with a finit
k-point sampling!. The total electronicZAs* ,el5-7.07 has now
contributions of21.74,24.63, and20.71 from the groups
of four first-neighbor, 12 second-neighbor, and remain
further-neighbor Wannier centers, respectively.

In fact, the pattern of displacements of the Wannier c
ters can be regarded as defining a kind of coarse-gra
representation of the polarization field,P(r ). To illustrate
this idea more directly, we have carried out a calculation
bulk GaAs in which a long-wavelength transverse opti
~TO! phonon has been frozen in. We take the wave vec
q5(p/4a)( x̂1 ŷ) (a is the lattice parameter! and relative
displacementsj(r )5j0sin(q–r ) ẑ in a 16-atom supercell
composed of eight unit cells repeated in the~110! direction.
We assign a displacement amplitudej050.01a to the Ga
sublattice, and2j0 MGa/MAs to the As sublattice (MGa and
MAs are the masses of the two species; the center of m
doesn’t move!. Observing the resulting displacements of t
Wannier centers, we can obtain a picture on how the lo
polarization changes from cell to cell~say, by summing all
the four Wannier centers surrounding one As atom!; fitting
these to the same formP(r )5P0sin(q•r ) ẑ, we obtain a
P050.249, and, via the acoustic sum rule (ZGa* ,el

1ZAs* ,el528), we get ZGa* ,el521.52 and ZAs* ,el526.48.
These results are only in fair agreement with the bulk valu
the discrepancies might be due to the finite size of our
percell, or to not having used the proper eigenvector for
phonon mode considered. However, the main point of t
demonstration is that, given the calculation on the super
containing the frozen TO phonon, there is no other way t
the transverse component of the polarization field could h
been obtained. Since the mode is transverse,P(r ) cannot be
determined from the charge density; sinceqÞ0, the Berry-
phase approach does not apply; and since the displaceme
finite, the linear-response approach is not directly applica
However, the present scheme allows a direct finite-differe
calculation of the transverse polarization field, a quantity t
was previously unavailable.

It would be interesting to apply this kind of analysis
supercell simulations of amorphous systems such asa-H 2O
or a-GaAs. Once again, while only the longitudinal part
P„r … can be determined from the charge density, a sim
determination of both the longitudinal and transverse co
ponents is possible with access to the displacements of
Wannier centers, thus leading to a more complete theor
the dielectric properties of such systems. This informat
might be used to assist the approach of Ref. 51, in which
infrared absorption spectrum of an amorphous system is
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tracted from a molecular-dynamics simulation. As a limit
test, we have carried out calculations for a 64-atom super
of crystalline Si with random displacements typical
;1000 K, and find that the calculation of the displaced Wa
nier centers is straightforward.

Finally, we conclude by pointing out that our work ope
numerous possibilities for further development and fut
study. On a practical level, it might be useful to explore t
use of more accurate, higher-order finite-difference formu
for ¹k ~see Appendix B! to see whether convergence wi
respect tok-point sampling can be improved. It might b
interesting to apply our analysis within the semiempiric
tight-binding context, although it should be noted that mat
elements ofx, y, andz ~and, forV I , also of r 2) would be
needed, in addition to the Hamiltonian and overlap ma
elements. Going beyond the scope of the present wor
might be interesting to explore other localization criter
e.g., the maximization of the Coulomb self-interaction of t
Wannier functions. It would also be of great interest to d
velop a corresponding theory of maximally localizednonor-
thogonalWannier-like functions.~While the direct connec-
tion to the polarization properties would be lost, there wo
be important implications for some linear-scaling alg
rithms.! Finally, there are many questions of a mathemati
character that deserve further study. For example, is it p
sible to prove that our Wannier functions~those that mini-
mize V) have exponential decay, even in the general n
centrosymmetric multiband case? Are they always real
conjectured in Sec. V B? And are there further results t
can be derived regarding the interrelations between the m
ric tensor, the Berry connection, and the Berry curvature
discussed in Appendix C? We hope that our work will stim
late some investigations of these questions.
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APPENDIX A: MINIMIZATION OF SPREAD
FUNCTIONAL IN REAL SPACE

In Sec. III above, the problem of finding the optimal
localized Wannier functions for a periodic system was f
mulated directly in real space. In this Appendix, we brie
reformulate the problem for the case of a finite system~clus-
ter, molecule, etc.!, and sketch how the minimization of th
functional can be performed in this case. This provide
complementary perspective to thek-space procedure dis
cussed in the main text.

We change notationuRn&→u i & and now refer to thei as
‘‘localized orbitals’’ rather than ‘‘Wannier functions,’’ bu
their meaning is the same: they are a set of orthonor
orbitals spanning the Hamiltonian eigenstates in an ene
range of interest~e.g., for the occupied valence states o
molecule or cluster!.

Following the approach of Sec. III, we decompo
V5( i@^r

2& i2 r̄ i
2# into an invariant partV I5(atr@PraQra#
ell

-
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~where P5( i u i &^ i u and Q512P) and a remainder
Ṽ5(a( iÞ j u^ i ur au j &u2. Defining matrices Xi j 5^ i uxu j &,
XD,i j 5Xi j d i j , X85X2XD , and similarly forY and Z, this
can be rewritten

Ṽ5tr@X821Y821Z82#. ~A1!

Thus if X, Y, andZ could be simultaneously diagonalize
then Ṽ could be minimized to zero, but for noncommutin
matrices this is not possible. In a sense, our job is to perfo
the optimal approximate simultaneous codiagonalization
the three Hermitian matricesX, Y, andZ by a single unitary
transformation. We are not aware of a formal solution
this problem, but a steepest-descent numerical solutio
fairly straightforward. Since tr@X8XD#50, etc.,

dV52 tr@X8dX1Y8dY1Z8dZ#. ~A2!

We consider an infinitesimal unitary transformatio
u i &→u i &1( jWji u j & ~where dW is anti-Hermitian!, from
which dX5@X,dW#, etc. Inserting in Eq.~A2! and using
tr†A@B,C#‡5tr†C@A,B#‡ and @X8,X#5@X8,XD#, we obtain
dV5tr@dWG#, where

G52 $@X8,XD#1@Y8,YD#1@Z8,ZD#%, ~A3!

so that the desired gradient isdV/dW5G as given above.
The minimization can then be carried out using steepest
scents following the general approach outlined in Sec. IV
More sophisticated but related methods are discussed in
26.

If this approach is applied to a finite system having
crystalline interior, the solutions in the interior are expect
to correspond precisely with the maximally localized Wa
nier functions as determined using thek-space methods o
the main text. In the vicinity of surfaces or defects, or f
disordered materials, the solutions will essentially cor
spond to the ‘‘generalized Wannier functions’’ discussed
previous authors.27,55–57

APPENDIX B: FINITE-DIFFERENCE FORMULAS
FOR k-SPACE GRIDS

We assume that the Brillouin zone has been discreti
into a uniform Monkhorst-Pack mesh.65 Let b be a vector
connecting ak point to one of its near neighbors, and letZ be
the number of such neighbors to be included in the fin
difference formulas. We seek the simplest possible fin
difference formula for¹k , i.e., the one involving the small
est possibleZ. When the Bravais lattice point group is cubi
it will only be necessary to include the first shell ofZ56, 8,
or 12 k neighbors for simple cubic, bcc, or fcck-space
meshes, respectively. Otherwise, further shells must be
cluded until it is possible to satisfy the condition

(
b

wbbabb5dab ~B1!

by an appropriate choice of a weightwb associated with each
shell ubu5b. For the three kinds of cubic mesh, Eq.~B1! is
satisfied with wb53/Zb2 ~single shell!. Taking next the
slightly more complicated case of an orthorhombic lattic
one can letb run over the two nearest neighbors in ea
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Cartesian direction (Z56), with wb51/2bx
2 for the two

neighbors at6bxx̂, etc. Even in the worst case of minim
~triclinic! symmetry, only six pairs of neighbors (Z512)
should be needed, as the freedom to choose six wei
should allow one to satisfy the six independent conditio
comprising Eq.~B1!.

Now, if f (k) is a smooth function ofk, its gradient can be
expressed as

¹ f ~k!5(
b

wbb@ f ~k1b!2 f ~k!#. ~B2!

We can check the correctness of this finite-difference f
mula by applying it to the case of a linear functio
f (k)5 f 01g•k, for which we find ¹a f (k)
5(bwb(bbagbbb5ga . In a similar way,

u¹ f ~k!u25(
b

wb@ f ~k1b!2 f ~k!#2. ~B3!

We note that improved accuracy andk-set convergence
might be obtained by utilizing improved, higher-order finit
difference formulas involving more shells of neighborin
k-points, but we have not explored this possibility here.

APPENDIX C: GEOMETRIC PROPERTIES AND
COMPLEXITY OF ELECTRON BANDS

Consider a manifold ofJ orthonormal statesucn(l)&,
n51, . . . ,J, depending on a continuousd-dimensional pa-
rameterl. Alternatively, one can view these as represent
the projectionP(l)5(nucn(l)&^cn(l)u. For the applica-
tion to electron bands in crystals, we identifyl→k and
cn(l)→unk . Here, we investigate the geometric propert
of such a manifold, generalizing the single-state (J51) re-
sults of Refs. 42–44 to the multistate case.

One can define two kinds of intrinsic geometric prop
ties: ageometric distanceand ageometric phase. We con-
sider the former first. The geometric distanceD12 between
two pointsl1 andl2 is here taken to be

D12
2 5tr@P1Q2#5 1

2 iP12P2i2, ~C1!

where Q(l)512P(l). In the case of a single state, th
becomesD12

2 512u^c1uc2&u2, which for small separations i
consistent with the slightly different definitio
D12

2 5222u^c1uc2&u of Ref. 42. Considering the distance fo
infinitesimal separations, one can define a Riemann
metric,42

Dl,l1dl
2 5(

ab
gabdladlb . ~C2!

Introducing the notationcn,a5dcn /dla , etc., and making
use of

05^cnucm,a&1^cn,aucm&, ~C3!

05^cnucm,ab&1^cn,abucm&12 Rê cn,aucm,b&, ~C4!

which follow from the fact that thecn remain orthonormal a
first and second order indl, the metricgab becomes, after
some manipulation,
ts
s

-

g

s

-

n

gab5Re(
n

^cn,aucn,b&2(
mn

^cn,aucm&^cmucn,b&, ~C5!

which reduces in the single-band case to the expressio
Pati.42

From Eq.~C1! it is obvious that the distance, and thus t
metric, are gauge-invariant quantities. These are there
intrinsic properties of the manifold. One way of thinkin
about the metric is to observe that for any given path inl
space, the line integral ofg1/2 along the path provides a
measure of the total ‘‘quantum distance’’ along the pa
intuitively, it is a measure of the amount of change of ch
acter of the states as one traverses the path. The phy
meaning of this distance for the case of temporal evolut
of quantum states is discussed in Refs. 42–44.

The second type of geometric object that can be define
a ‘‘geometric phase’’ or ‘‘Berry phase.’’45 Here, one is in-
terested in considering closed paths inl space, and relating
the phase~or, for the multistate case, the unitary rotatio!
induced by adiabatic~‘‘parallel’’ ! transport along the path
The multistate~‘‘non-Abelian’’ ! case has been discussed
Wilczek and Zee46, Mead,47 and Resta.20 One can define a
~non-gauge-invariant! Berry connection

Aa,nm5 i ^cnucm,a& ~C6!

and a~gauge-covariant! Berry curvature

Bab
nm52]aAb,nm1]bAa,nm1 i @Aa ,Ab#nm . ~C7!

The invariants of the latter, such as

trBab52 Im(
n

^cn,aucn,b&, ~C8!

@see Eq.~3.29! of Ref. 20# are thus gauge invariant.~We
shall use the notation ‘‘tr’’ and ‘‘Tr’’ to denote electronic
and Cartesian traces, respectively.!

There is a tantalizing similarity between the metricgab ,
Eq. ~C5!, and the quantum trace of the Berry curvature, E
~C8!. In fact, defining the gauge-invariant quantity

Fab5(
n

^cn,auQucn,b& ~C9!

where againQ512P, and using Eq.~C3! to show that the
second term in Eq.~C5! is intrinsically real, we obtain sim-
ply gab5ReFab and trBab52 ImFab . This suggests tha
there may be some deep connections between the
quantities.42–44In the case where the statescn are eigenstates
of a HamiltonianH(l), one moreover has20

Fab5 (
n51

J

(
m5J11

`
^cnuHaucm&^cmuHbucn&

~En2Em!2 , ~C10!

whereHa5dH(l)/dla .
We now return to the case of electron bands in cryst

l→k andcn(l)→unk , and discuss the geometric properti
induced by the band projection operatorP„k…. Note thatg, A,
andB have units ofl 2, l , andl 2, respectively. Again focusing
first on the metric, and comparing Eq.~34! with the defini-
tions ~C1! and ~C2!, we find
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V I5
1

N(
k,b

(
ab

wbgabbabb ~C11!

or, using Eq.~B1! and restoring the continuum limit,

V I5
V

~2p!3E
BZ

dk Trg~k…, ~C12!

where the integral is over the Brillouin zone. Thus, the
variant part of the spread functional is nothing other than
Brillouin-zone average of the trace of the metric!

It may be interesting to see whether other global prop
ties of the metric might be given some physical interpre
tion. In particular, we define a dimensionless and gau
invariant quantity,

C5E
BZ

dk det1/2g~k!. ~C13!

We shall call this the ‘‘complexity’’ of the bands. Math
ematically, it is really nothing other than the volume of t
Brillouin zone as measured according to the metricg. How-
ever, we have called it the ‘‘complexity’’ because it me
sures the variation of the character of the band projec
operatorP(k… throughout the Brillouin zone. Everything sa
here applies to any isolated band or composite group
bands, but we have in mind primarily the case where all
occupied valence bands in an insulator are considered
composite group. In this case, and assuming that one is
interested in quantities~such as total energies and force!
that can be expressed as a trace over the bands, the com
ity might thus be expected to reflect~and even predict! the
number ofk points needed for an accurate sampling of
Brillouin zone. We have not tested this idea numerically,
this would clearly be an interesting avenue for future exp
ration.

Turning now to phase properties, we note that a fin
different representation of the Berry connection is

Aa,mn5 i(
b

wbba@Mmn
~k,b!2dmn#. ~C14!

Restoring the continuum limit ink space, we can write

r̄ n5
V

~2p!3E
BZ

dkAnn~k!, ~C15!

and more generally,
,

-
e

r-
-
-

n

of
e

a
ly

lex-

e
t
-

-

^0mur uRn&5
V

~2p!3E
BZ

dkAmn~k!e2 ik•R. ~C16!

The right-hand side is justAmn(R), the Fourier coefficient of
the Berry curvature. Eq.~C15! is just the expression for the
position of the Wannier center, which contributes to the el
tronic polarization.3,15,17,20Moreover,

ṼD5(
n

V

~2p!3E
BZ

dkuAnn~k!2 r̄ nu2, ~C17!

ṼOD5 (
mÞn

V

~2p!3E
BZ

dkuAmn~k!u2. ~C18!

Eqs. ~C17!–~C18! show that the noninvariant parts of th
spread functional are also conveniently written in terms
the Berry connection. If the above equations are reexpres
in terms of the Fourier coefficientsAmn(R), Eqs. ~19! and
~20! are immediately recovered.

In the single-band case, we showed in Sec. IV C 2 that
minimum value ofṼ could be related to the transverse pa
of the Berry connection, which in turn is determined by t
gauge-invariant Berry curvature. In the multiband case,
Berry curvatureBab

mn(k) is no longer gauge invariant, and
is not obvious whether it is possible to make a correspond
decomposition. Nevertheless, one can derive similar co
spondences as those above forA. So,

Bab
mn~k!52 i ^um,auQuun,b&1 i ^um,buQuun,a&, ~C19!

Bab
mn~R!52 i ^umur aQrb2r bQrauun&. ~C20!

Making use ofr aQrb2r bQra5@PraP,PrbP#, one finds

i@PraP,PrbP#ic
25(

R
(
mn

uBab
mn~R!u2

5
V

~2p!3E
BZ

dkiBab~k!i2. ~C21!

Each form above is manifestly gauge invariant and posit
definite. Thus, it can be seen that the Berry curvature w
vanish if and only if the band-projected position operato
PxP, PyP, and PzP commute with one another; as dis
cussed following Eq.~17!, this is also just the condition tha
Ṽ vanishes at the minimum.
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