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Dynamical magnetic charges and linear magnetoelectricity
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Magnetoelectric (ME) materials are of fundamental interest and have been investigated for their broad potential
for technological applications. The search for, and eventually the theoretical design of, materials with large ME
couplings present challenging issues. First-principles methods have only recently been developed to calculate
the full ME response tensor α including both electronic and ionic (i.e., lattice-mediated) contributions. The latter
is proportional to both the Born dynamical electric charge Ze and its analog, the dynamical magnetic charge
Zm. Here we present a theoretical study of the magnetic charge Zm and the mechanisms that could enhance it.
Using first-principles density functional methods, we calculate the atomic Zm tensors in Cr2O3, a prototypical
magnetoelectric, and in KITPite, a fictitious material that has previously been reported to show a strong ME
response arising from exchange striction effects. Our results confirm that in Cr2O3, the Zm values and resulting
ME responses arise only from spin-orbit coupling (SOC) and are therefore rather weak. In KITPite, by contrast,
the exchange striction acting on the noncollinear spin structure induces large Zm values that persist even when
SOC is completely absent.
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I. INTRODUCTION

There has been a recent resurgence of research on the
magnetoelectric (ME) effect, which describes the coupling
between electricity and magnetism [1]. The linear ME effect
is defined as

αβν = ∂Pβ

∂Hν

∣∣∣∣
E

= μ0
∂Mν

∂Eβ

∣∣∣∣
H

, (1)

where the polarization P is linearly induced by an external
magnetic field H, or the magnetization is linearly generated
by an applied electric field E . Here indices β and ν denote
the Cartesian directions and μ0 is the vacuum permeability.
This coupling between electricity and magnetism is of fun-
damental interest and shows broad potential for technological
applications.

The history of research on the ME effect dates back
to the 1960s when the magnetic symmetry started to be
emphasized. It was first realized by Landau and Lifshitz
that the ME response is only allowed in media without
time-reversal symmetry or inversion symmetry [2]. In 1959,
Dzyaloshinskii predicted that Cr2O3 should be a ME crystal
[3] based on its magnetic point group, and experiments
successfully measured the linear-induced magnetization by
an external electric field [4,5] and the inverse effect [6].
The early theoretical studies and explanations for the ME
effect were based on phenomenological models [7–10] that
typically do not distinguish carefully between microscopic
mechanisms. The recent rapid development of first-principles
methods [11–13] has now allowed the underlying mechanisms
in different materials to be classified and investigated.

The linear ME effect can be decoupled into three contribu-
tions, namely, electronic (frozen-ion), ionic (lattice-mediated),
and strain-mediated responses [14]. Each term can be further
subdivided into spin and orbital contributions. The early
ab initio studies were focused on the spin-lattice [11] and
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spin-electronic [12] terms. First-principles methods have only
recently been developed to calculate the full ME response
tensor α, including both spin and orbital contributions [13].
As the symmetry condition for the strain-mediated term is
more restrictive, this term is absent in most bulk materials.

Previous studies have shown that the spin-lattice term is
dominant in many materials, as, for example, in Cr2O3 [13].
Íñiguez has shown [11] that the lattice contribution can be
written as a product of the Born charge, the force-constant
inverse, and the dynamical magnetic charge, which is the
magnetic analog of the dynamical Born charge. This dynamical
magnetic charge is defined as

Zm
mν = �0

∂Mν

∂um

∣∣∣∣
E,H,η

. (2)

Here �0 is the volume of the unit cell containing N atoms, and
um denotes a periodicity-preserving sublattice displacement,
where m is a composite label running from 1 to 3N to represent
the atom and its displacement direction. The magnetic charge
tensor Zm plays an important role in various lattice-mediated
magnetic responses and contributes to the Lyddane-Sachs-
Teller relationship in magnetoelectric materials [15,16], but
the mechanisms that give rise to it are not yet well understood.
In particular, one route to optimizing the magnetoelectric
coupling is clearly to enhance Zm, but it is not obvious how to
do so.

In this work, we use first-principles density functional
methods to study the dynamical magnetic charges in two
materials and explore the different mechanisms responsible for
them in these two cases. We first study the magnetic charges
in Cr2O3, which are driven by the spin-orbital coupling (SOC)
mechanism. Then we study a fictitious structure, “KITPite,”
which was reported to have a large spin-lattice ME coupling
according to a previous theory [17]. The structure of KITPite is
such that the superexchange interactions between Mn moments
are frustrated, leading to a 120◦ noncollinear spin structure.
Our study shows that the Zm values, which are orders of
magnitude stronger than in Cr2O3, are responsible for the
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strong ME coupling. We find that this enhancement is present
even when SOC is completely absent, thus confirming that it
arises from exchange striction acting on the noncollinear spins,
in contrast to the case of Cr2O3 where Zm is driven only by
SOC effects.

The paper is organized as follows. In Sec. II A we introduce
the formalism that describes how the dynamical magnetic
charge tensor enters into the lattice contributions to the
magnetic, ME, and piezomagnetic responses. In Sec. II B, we
analyze the structure and the magnetic symmetry of Cr2O3 and
KITPite. The computational details are described in Sec. II C.
In Sec. III, we present and discuss the computed magnetic
charge tensors for Cr2O3 and KITPite. Finally, Sec. IV
provides a summary.

II. PRELIMINARIES

A. Formalism

Here, following Wojdel and Íñiguez [19], we generalize
the formalism of Wu, Vanderbilt and Hamann [18] (WVH) to
include the magnetic field, and use this systematic treatment
to derive the ionic contribution of the ME coupling and other
magnetic properties.

For an insulating system with N atoms in a unit cell,
we consider four kinds of perturbation: (i) a homogeneous
electric field E , whose indices β,γ run over {x,y,z};
(ii) a homogeneous magnetic field H , whose indices ν,ω

also run over {x,y,z}; (iii) a homogeneous strain η, with
Voigt indices i,j = {1 . . . 6}; and (iv) internal displacements
u, indexed by composite labels m,n (atom and displacement
direction) running over 1, . . . ,3N . In this work we consider
only internal displacements that preserve the bulk periodicity,
corresponding to zone-center phonon modes.

The magnetoelectric enthalpy density is defined as

E(u,η,E,H) = 1

� 0

[
E

(0)
cell − �(E · P + μ0H · M)

]
, (3)

where E
(0)
cell is the the zero-field energy per cell, and �0

and � are the undeformed and deformed cell volumes,
respectively. E(u,η,E,H) can be expanded around the zero-
field equilibrium structure as

E = E0 + Amum + Ajηj + AβEβ + AνHν

+ 1
2Bmnumun + 1

2Bjkηjηk + 1
2Bβγ EβEγ

+ 1
2BνωHνHω + Bmjumηj + BmβumEβ

+BmνumHν + BβjEβηj + BνjHνηj + BβνEβHν, (4)

where summation over repeated indices is implied. The coeffi-
cients of the first-order terms correspond to the atomic forces
Fm = −�0Am, the stress tensor σj = Aj , the spontaneous
polarization P S

β = −Aβ , and the spontaneous magnetization

MS
ν = −μ−1

0 Aν . For the equilibrium structure, the atomic
forces and the stress tensor vanish. The diagonal second-order
coefficients provide the force-constant matrix Kmn = �0Bmn,
the frozen-ion elastic tensor C̄jk = Bjk , the frozen-ion electric
susceptibility χ̄ e

βγ = −ε−1
0 Bβγ , and the frozen-ion magnetic

susceptibility χ̄m
νω = −μ−1

0 Bνω, where the bar on a quantity
indicates a purely electronic response computed at fixed inter-

nal coordinates of the atoms. The remaining terms correspond
to off-diagonal responses, namely, the force-response internal-
strain tensor 
mj = −�0Bmj , the frozen-ion piezoelectric
tensor ēβj = −Bβj , the frozen-ion piezomagnetic tensor h̄νj =
−μ−1

0 Bνj , the frozen-ion magnetoelectric tensor ᾱβν = −Bβν ,
the atomic Born charges

Ze
mβ = �0

∂Pβ

∂um

∣∣∣∣
E,H,η

= μ−1
0

∂Fm

∂Eβ

∣∣∣∣
H,η

= −�0Bmβ , (5)

and the atomic magnetic charges

Zm
mν = �0

∂Mν

∂um

∣∣∣∣
E,H,η

= μ−1
0

∂Fm

∂Hν

∣∣∣∣
E,η

= −�0μ
−1
0 Bmν . (6)

Static physical responses arise not only from the electronic
part (barred quantities), but also from the ionic contribution
associated with the change of the equilibrium internal displace-
ments um with fields or strain. The relaxed-ion magnetoelectric
enthalpy is

Ẽ(η,E,H) = min
u

E(u,η,E,H) , (7)

and the minimization is accomplished by substituting

um = −(B−1)mn(Bnjηj + BnβEβ + BnνHν) (8)

into Eq. (4) to obtain the total relaxed-ion response (including
both electronic and ionic parts). The total relaxed-ion electric
susceptibility, magnetic susceptibility, and elastic, piezoelec-
tric, piezomagnetic, and magnetoelectric tensors are then

χ e
βγ = − ε−1

0

∂2Ẽ

∂Eβ∂Eγ

∣∣∣∣
H,η

=χ̄ e
βγ + �−1

0 ε−1
0 Ze

mβ(K−1)mnZ
e
nγ ,

(9)

χm
νω = − μ−1

0

∂2Ẽ

∂Hν∂Hω

∣∣∣∣
E,η

=χ̄m
νω + �−1

0 μ0Z
m
mν(K−1)mnZ

m
nω ,

(10)

Cjk = ∂2Ẽ

∂ηj ∂ηk

∣∣∣∣
E,H

= C̄jk − �−1
0 
mj (K−1)mn
nj , (11)

eβj = − ∂2Ẽ

∂Eβ∂ηj

∣∣∣∣
H

= ēβj + �−1
0 Ze

mβ(K−1)mn
nj , (12)

hνj = − ∂2Ẽ

∂Hν∂ηj

∣∣∣∣
E

= h̄νj + �−1
0 Zm

mν(K−1)mn
nj , (13)

αβν = − ∂2Ẽ

∂Eβ∂Hν

∣∣∣∣
η

= ᾱβν + �−1
0 μ0Z

e
mβ(K−1)mnZ

m
nν . (14)

The six lattice-mediated responses in Eqs. (9)–(14) are all
made up of four fundamental tensors: the Born charge tensor
Ze, the magnetic charge tensor Zm, the internal strain tensor

, and the inverse force-constant matrix K−1. The manner
in which these six lattice responses are computed from the
four fundamental tensors is illustrated in Fig. 1, which depicts
the linear-response connections between elastic, electric, and
magnetic degrees of freedom.
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FIG. 1. (Color online) Sketch showing how the six lattice-
mediated responses indicated by solid circles (orange) are each built
up from the four elementary tensors indicated by open circles: the
Born charge Ze (yellow), magnetic charge Zm (blue), internal strain

 (green), and force-constant inverse K−1 (magenta). Each lattice-
mediated response is given by the product of the three elementary
tensors connected to it, as indicated explicitly in Eqs. (9)–(14).

If the crystal symmetry is low enough that piezoelectric
or piezomagnetic effects are present, then the strain degrees
of freedom can similarly be eliminated by minimizing the
magnetoelectric enthalpy with respect to them, leading to
additional strain-relaxation contributions to χ e, χm, and/or
α. We do not consider these contributions in the present work
because such terms are absent by symmetry in the materials
under consideration here.

The above derivations are carried out in the (E,H) frame,
which is consistent with the usual experimental conventions.
In the context of first-principles calculations, however, it is
more natural to work in the (E,B) frame, as E and B are
directly related to the scalar and vector potentials φ and A.
The magnetoelectric tensor α has different units in these two
frames. In the (E,H) frame, α is defined through Eq. (14)
so that the units are s/m. In the (E,B) frame, α is instead
defined as

αEB
βν = ∂Mν

∂Eβ

∣∣∣∣
B

= ∂Pβ

∂Bν

∣∣∣∣
E

(15)

and carries units of inverse ohm, the same as for
√

ε0/μ0,
the inverse of the impedance of free space. The ME tensors
in these two frames are related by αEH = (μα)EB, where
μ is the magnetic permeability. The electric and magnetic
dynamical charges in the two frames are related by (Ze)EH =
(Ze + αμZm)EB and (Zm)EH = (μZm/μ0)EB.

For nonferromagnetic materials we have μ ≈ μ0, so that
the Zm values are essentially the same in the two frames. The
same is also true for Ze, since the product (αμZm)EB is at least
5 orders of magnitude smaller than Ze in most magnetoelectric
materials. In this work we report our results in the more
conventional (E,H) frame, even though the computations are
carried out in the (E,B) frame.

Cr

O

(a) (b)

FIG. 2. (Color online) Structure of Cr2O3. (a) In the rhombohe-
dral primitive cell, four Cr atoms align along the rhombohedral axis
with AFM magnetic moments shown by (blue) arrows. (b) Each Cr
atom is at the center of a distorted oxygen octahedron.

B. Structure and symmetry

1. Cr2O3

Cr2O3 adopts the corundum structure with two formula
units per rhombohedral primitive cell, as shown in Fig. 2(a).
Each Cr atom is at the center of a distorted oxygen octahedron
as shown in Fig. 2(b). It is an antiferromagnetic (AFM)
insulator up to the Néel temperature TN = 307 K. The AFM
phase has the magnetic space group R3̄′c′, and the spin
direction on the Cr atoms alternates along the rhombohedral
axis. The magnetic symmetry allows a nonzero ME tensor with
two independent components α⊥ = αxx = αyy and α‖ = αzz.
Another feature of this magnetic group is that all the improper
rotations are coupled to the time-reversal operator and vise
versa, so that pseudovectors and ordinary vectors transform
in the same way, implying that the magnetic charge Zm and
the Born charge Ze have the same tensor forms. The threefold
symmetry on each Cr atom restricts its tensor to have the form
shown in Fig. 3(a). The symmetry is lower on the O atoms; for

(a) (b) (c)

(d)

equal component
equal magnitude with opposite sign 

FIG. 3. Symmetry pattern of the Born and magnetic charge
tensors for (a) the Cr atom in Cr2O3, (b) the O atom in Cr2O3, and the
O2 atom in CaAlMn3O7, (c) the Ca, Al, and O1 atoms in CaAlMn3O7,
and (d) the Mn and O3 atoms in CaAlMn3O7. The elements indicated
by an asterisk vanish in the absence of SOC for Zm in CaAlMn3O7.
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FIG. 4. (Color online) Planar view of the CaAlMn3O7 (KITPite)
structure. The broad arrows (blue) on the Mn atoms represent the
magnetic moment directions in the absence of electric or magnetic
fields. Small (black) arrows indicate the atomic forces induced by an
external magnetic field applied in the ŷ direction.

the one lying on the twofold rotation axis along x̂, for example,
the charge tensor takes the form shown in Fig. 3(b).

2. KITPite

The fictitious “KITPite” structure with chemical formula
CaAlMn3O7 is kagome-like with 120◦ in-plane AFM spin
ordering, as shown in Fig. 4. The unit cell includes two
formula units made by stacking two MnO layers with 180◦
rotations between layers. Each Mn atom is surrounded by an
oxygen bipyramid and the O atoms are in three nonequivalent
Wyckoff positions: O1 are in the voids of the Mn triangles; O2

are the apical ions located between the two MnO layers (not
shown in the planar view); and O3 form the MnO hexagons.
The magnetic space group is m63/m′m′c′; this has the same
symmetry feature as Cr2O3, namely that all the improper
rotations and time-reversal symmetries are coupled together,
so that the Born charges and the magnetic charges follow the
same symmetry restrictions. The charge tensors for Ca, Al, and
O1 atoms have the symmetry pattern shown in Fig. 3(c), and
the Mn and O3 atoms have the charge tensor form of Fig. 3(d).
For the apical O2 atoms, the five independent components in
the charge tensor can be written in the form of Fig. 3(b) when
the on-site twofold axis is along the x̂ direction.

The elements marked by asterisks in Fig. 3 are those that
vanish for Zm in CaAlMn3O7 when SOC is neglected. The
system of magnetic moments is exactly coplanar in the absence
of SOC, and will remain so even after the application of any
first-order nonmagnetic perturbation. Thus spin components
along ẑ cannot be induced, and it follows that the elements
in the third column all vanish in all atomic Zm tensors in
CaAlMn3O7 when SOC is neglected.

C. First-principles methods

The first-principles calculations for Cr2O3 are per-
formed with the QUANTUM ESPRESSO [20] package

using the generalized-gradient approximation parametrized
by the Perdew-Burke-Ernzerhof functional [21]. We employ
Troullier-Martins norm-conserving pseudopotentials [22] with
SOC included and Cr 3s and 3p states incorporated in the
valence. The wave functions are expanded in a plane-wave
basis with cutoff energy 150 Ry, and a 4 × 4 × 4 Monkhorst-
Pack k-point mesh is used for the self-consistent-field loop.
In the Berry-phase polarization calculation [23], a 4 × 4 × 5
k-point sampling is found to be sufficient. In order to calculate
magnetic charges, Born effective charges, and the �-point
force-constant matrix, the finite-difference method is used by
displacing each atomic sublattice in each Cartesian direction
and computing the total magnetization, the Berry-phase
polarization, and the Hellmann-Feynman forces. The orbital
magnetization is calculated using the modern theory of orbital
magnetization [24–26].

The calculations for the fictitious KITPite material are
carried out with plane-wave density functional theory im-
plemented in VASP [27]. Projector augmented wave (PAW)
pseudopotentials [28] with a 400-eV energy cutoff are suffi-
cient in the noncollinear magnetization computation without
SOC. For the exchange-correlation functional we use the
rotationally invariant LSDA + U functional [29], with Hub-
bard U = 5.5 eV and J = 2.0 eV on the d orbitals of the
Mn atoms [30]. The Born effective charge tensor and the
�-point force-constant matrix are obtained by linear-response
methods. The dynamical magnetic charges are computed by
applying a uniform Zeeman field in the crystal and computing
the resulting forces [12]. A 4 × 4 × 4 Monkhorst-Pack k-point
mesh is used in the calculations.

III. RESULTS

A. Cr2O3

The Cr2O3 ground-state structural parameters predicted by
our first-principles calculations are in good agreement with
experiment, as shown in Table I. A group-theory analysis
of the long-wavelength phonons shows that the infrared (IR)
active phonon modes, which couple to the electromagnetic
excitations, are the longitudinally active A2u modes and the
transversely active doubly degenerated Eu modes,

�IR = 2A2u + 4Eu , (16)

where the acoustic modes have been excluded. The IR-active
mode frequencies shown in Table II are computed using linear-
response methods, and the results are in good agreement with
experiment.

TABLE I. Structural parameters of Cr2O3 from first-principles
calculation and experiments: rhombohedral lattice constant a, lattice
angle α, and Wyckoff positions for Cr(4c) and O(6e).

Wyckoff position

a (Å) α (deg) Cr O

This work 5.386 54.3 0.1546 0.0617
Expt. (Ref. [33]) 5.358 55.0 0.1528 0.0566
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TABLE II. Frequencies (cm−1) of zone-center IR-active phonon
modes of Cr2O3 from first-principles calculations and experiments.
The two A2u modes are IR-active along z; the four Eu modes are
IR-active in the x-y plane (doubly degenerate).

A2u modes Eu modes

This work 388 522 297 427 510 610
Expt. (Ref. [31]) 402 533 305 440 538 609

The main results for the magnetic charge tensors of Cr2O3

are reported both in the atomic basis and in the IR-active
mode basis in Tables III and IV. The spin contributions are
dominant in the transverse direction but much weaker in
the longitudinal direction. This is to be expected from the
nearly collinear spin order of Cr2O3, considering that the
magnitudes of the magnetic moments are quite stiff while
their orientations are relatively free to rotate. The main effect
in the longitudinal direction is from the orbital-magnetization
contribution. Incidentally, we also find that the longitudinal
components of the magnetic charge for Cr atoms are very
sensitive to the lattice constant of Cr2O3, especially the Cr-O
distance in the longitudinal direction. Thus it is essential to
choose a proper exchange-correlation functional to mimic the
experimental ground-state structure.

The Born charge tensors for Cr and O are computed to be

Ze(Cr) =
⎛
⎝

3.02 −0.30 0
0.30 3.02 0

0 0 3.18

⎞
⎠e ,

Ze(O) =
⎛
⎝

−2.36 0 0
0 −1.66 −1.00
0 −0.88 −2.12

⎞
⎠e .

While the symmetry constraints on the nonzero elements are
the same as for Zm, the pattern is quite different. For example,
the diagonal elements are of similar magnitude for Ze but not
for Zm.

The lattice-mediated magnetic and electric responses for
Cr2O3 computed from Eqs. (9)–(14) are summarized in the
bottom panel of Table IV. Our computational results are in rea-
sonable agreement with the experimental room-temperature
lattice-mediated χ e

‖ = 4.96 and χ e
⊥ = 3.60 obtained from IR

reflectance measurements [31]. In contrast, the experimentally
measured longitudinal and transverse magnetic susceptibility
at low temperature [32] are on the order of ∼10−3, which is
about 5 orders of magnitude larger than the results obtained

TABLE III. Magnetic charges Zm (10−2μB/Å) for Cr2O3 in the
atomic basis. The magnetic charge tensors for Cr and O atoms take
the forms shown in Figs. 3(a) and 3(b).

Spin Orbital Spin Orbital

Zm
xx(Cr) 5.88 0.25 Zm

yy(O) −1.95 −0.38

Zm
xy(Cr) −5.69 0.02 Zm

yz(O) 0.00 1.12

Zm
zz(Cr) 0.02 0.23 Zm

zy(O) −1.10 −0.72

Zm
xx(O) −5.92 0.06 Zm

zz(O) −0.02 −0.15

TABLE IV. Top: Mode decomposition of the Born charges Ze,
and of the spin and orbital contributions to the magnetic charges Zm,
in Cr2O3. Cn are the eigenvalues of the force-constant matrix. Bottom:
Total A2u-mode (longitudinal) and Eu-mode (transverse) elements of
the lattice-mediated electric susceptibility χ e, magnetic susceptibility
χm, and the spin and orbital pars of the ME constant α.

A2u modes Eu modes

Cn (eV/Å
2
) 10.5 22.9 10.2 16.0 20.2 30.9

Ze (|e|) 1.15 8.50 0.55 0.39 3.71 7.07

Zm
spin (10−2μB/Å) 0.02 0.05 −0.76 −3.97 16.14 10.55

Zm
orb (10−2μB/Å) 2.74 −0.59 0.66 −0.80 −0.29 1.06

Latt. χ e 6.2 4.37

Latt. χm 0.05 × 10−8 1.28 × 10−8

αspin (ps/m) 0.0024 0.633

αorb (ps/m) 0.0097 0.025

from Eq. (10). This difference undoubtedly arises from the fact
that the experimental χm is dominated by the electronic (i.e.,
frozen-ion) contribution χ̄m that is not included in Table IV.
The magnetoelectric response α‖ and α⊥ both agree closely
with previous theory, which is in reasonable agreement with
experiment [11,13].

B. KITPite

When we relax KITPite CaAlMn3O7 in the assumed
63/m′m′c′ structure, the unit cell has a volume of 311.05 Å

3

with a c/a ratio of 0.998. The Wyckoff coordinates for the Mn
atoms (6h) and O3 atoms (6g) are 0.5216 and 0.1871. Other
atoms are in high-symmetry Wyckoff positions. The IR-active
modes are

�IR = 6A2u + 9E1u, (17)

excluding the acoustic modes. The A2u modes do not con-
tribute to the magnetic response when spin-orbit interaction is
absent in CaAlMn3O7, because the longitudinal components
of the magnetic charges Zm are zero.

The results for the magnetic charge tensors are reported
in the atomic basis and the IR-active mode basis in Tables V
and VI, respectively. The calculated force-constant eigenval-
ues and Born charges Ze are also listed in Table VI. The
Born charges in KITPite and Cr2O3 are all close to the atomic

TABLE V. Magnetic charges Zm (10−2μB/Å) for CaAlMn3O7

(KITPite) in the atomic basis (spin only). The magnetic charge tensors
for Ca, Al, and O1 are of the form of Fig. 3(c); those for Mn and O3

are of the form of Fig. 3(d); and that for O2 is of the form of Fig. 3(b).

Zm (10−2μB/Å)

Zm
xx(Ca) −43.46 Zm

xx(O2) −39.15

Zm
xx(Al) −24.63 Zm

yy(O2) 1.23

Zm
xx(Mn) 341.53 Zm

zy(O2) −37.62

Zm
yy(Mn) −171.46 Zm

xx(O3) −56.09

Zm
xx(O1) 66.98 Zm

yy(O3) −75.23
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TABLE VI. The Born charges Ze and the magnetic charges Zm

for the IR-active A2u modes in CaAlMn3O7. Cn are the eigenvalues
of the force-constant matrix.

Cn (eV/Å
2
) Ze (|e|) Zm

spin (10−2μB/Å)

−2.4 3.7 539.7
−1.1 4.7 17.2
2.8 4.3 −0.6
7.1 2.4 266.4
11.6 5.1 −107.8
12.0 2.4 −74.5
35.3 7.9 −15.9
46.7 2.2 34.8
55.1 4.6 −325.7

valence charge values. As the KITPite structure is fictitious and
two E1u modes are unstable in the high-symmetry structure,
we will focus on the results for the magnetic charges and omit
any discussion of the the magnetic and dielectric responses.

The magnetic charges in the KITPite structure are found to
be much larger than for Cr2O3. For the transition-metal ion,
the magnetic charge of Mn in KITPite is ∼50 times larger than
for Cr in Cr2O3. The magnetic charges in Cr2O3 are driven by
SOC, which acts as an antisymmetric exchange field. Thus
the weakness of the SOC on the Cr atoms implies that the
magnetic charges and magnetic responses are small in Cr2O3.
In the KITPite structure, we deliberately exclude spin-orbit
interaction, so the magnetic charges are purely induced by
the spin frustration and the superexchange between Mn-O-Mn
atoms. This exchange striction mechanism causes the magnetic
charges in CaAlMn3O7 to be dozens of times larger than the
SOC-driven responses in Cr2O3.

Since the orbital magnetization is strongly quenched in
most 3d transition metals, we expect the orbital contribution
to the Zm tensors in CaAlMn3O7 to be comparable with those
in Cr2O3, i.e., on the order of 10−2 μB/Å. Since this is ∼2
orders of magnitude smaller than the typical spin contribution
in CaAlMn3O7, we have not included it in our calculation.
The main point of our study of KITPite CaAlMn3O7 has been
to demonstrate that exchange-striction effects can give rise to
large Zm values based on a mechanism that does not involve
SOC at all.

IV. SUMMARY

In summary, we have begun by presenting a systematic
formulation of the role played by the dynamic magnetic
charge tensor Zm in the lattice magnetic, magnetoelectric, and
piezomagnetic responses of crystalline solids. We have then
used first-principles density functional methods to compute
the atomic Zm tensors for two prototypical materials, namely,
Cr2O3, a well-studied magnetoelectric material, and fictitious
KITPite, which displays a very large lattice ME effect. We
find that the physics is quite different in the two cases, with
mechanisms based on SOC giving only small Zm values in
the collinear antiferromagnet Cr2O3, while exchange-striction
effects induce very large Zm values in noncollinear KITPite.

Our calculations are part of a broader effort to identify
mechanisms that could induce large magnetic charge values.
They help to reinforce a picture in which SOC effects give only
weak contributions, at least in 3d transition-metal compounds,
whereas exchange striction can induce much larger effects in
materials in which spin frustration gives rise to a noncollinear
spin structure. In this respect, the conclusions parallel those
that have emerged with respect to the polarization in mul-
tiferroics and magnetically-induced improper ferroelectrics,
where exchange striction, when present, typically produces
much larger effects than SOC [34].

Our work points to some possible future directions for ex-
ploration. One obvious direction is to identify experimentally
known materials in which exchange striction gives rise to large
Zm values. In such systems, lattice-mediated effects might
even contribute significantly to the magnetic susceptibility;
while such contributions are normally neglected for χm, we
note that Zm appears to the second power in Eq. (10), so
this contribution might be significant, especially in soft-mode
systems. It might also be interesting to explore the role of these
magnetic charges in the phenomenology of electromagnons
[35]. Finally, we point out that unlike Ze, Zm remains well
defined even in metals; while magnetoelectric effects do not
exist in this case, it would still be interesting to explore the
consequences of large Zm values in such systems.
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