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Electric displacement as the fundamental variable
in electronic-structure calculations
Massimiliano Stengel1*, Nicola A. Spaldin1 and David Vanderbilt2

Finite-field calculations in periodic insulators are technically and conceptually challenging, owing to fundamental problems
in defining polarization in extended solids. Although significant progress has been made recently with the establishment of
techniques to fix the electric field E or the macroscopic polarization P in first-principles calculations, both methods lack the
ease of use and conceptual clarity of standard zero-field calculations. Here we develop a new formalism, in which the electric
displacement D, rather than E or P, is the fundamental electrical variable. Fixing D has the intuitive interpretation of imposing
open-circuit electrical boundary conditions, which is particularly useful in studying ferroelectric systems. Furthermore, the
analogy to open-circuit capacitors suggests an appealing reformulation in terms of free charges and potentials, which
dramatically simplifies the treatment of stresses and strains. Using PbTiO3 as an example, we show that our technique enables
full control over the electrical variables within the density functional formalism.

The development of the modern theory of polarization1 has
fuelled exciting progress in the theory of the ferroelectric
state. Many properties that could previously be inferred only

at a very qualitative level can now be computed with quantum
mechanical accuracy within first-principles density functional
theory. Early ab initio studies focused on bulk ferroelectric
crystals, elucidating the delicate balance between covalency and
electrostatics that gives rise to ferroelectricity. Over time, these
methods were extended to treat the effects of external parameters
such as strains or electric fields2,3. Of particular note is the
recent introduction of a method for performing calculations at
fixed macroscopic polarization P4. The ability to compute crystal
properties from first principles as a function of P provides an
intuitive link to Landau–Devonshire and related semiempirical
theories in which P serves as order parameter.

Despite its obvious appeal, however, the constrained-P method
has found limited practical application so far for several reasons.
First, fixing P does not correspond to experimentally realizable
electrical boundary conditions (Fig. 1). Second, in an inhomoge-
neous heterostructure, the local polarization can vary from one
layer to another, and its average is therefore best regarded as a
derived, not a fundamental, quantity. Finally, the procedure used
to constrain P in the electronic minimization is relatively involved,
hampering its applicability to large systems, where computational
efficiency is crucial. In the following we show that considering
D as the fundamental electrical variable overcomes these physical
limitations, and that constraining D rather than P leads to a
simpler implementation.

Formalism
We consider a periodic insulating crystal defined by three primitive
translation vectors ai, withΩ the unit cell volume, andwe introduce
the new functional

U (D,v)= EKS(v)+
Ω

8π
[D−4πP(v)]2 (1)

U (D,v) depends directly on an external vector parameter D,
and indirectly on the internal (ionic and electronic) coordinates
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v through the Kohn–Sham energy EKS and the Berry-phase
polarization P (ref. 1). (For the moment we fix the lattice
vectors; strains will be discussed shortly.) The minimum of U at
fixed D is given by

∂U
∂v

∣∣∣
D
=
∂EKS

∂v
−Ω (D−4πP) ·

∂P
∂v
= 0

Comparing with the fixed-E approach of refs 2,3 in which the
electric enthalpy F is given by

F(E,v)= EKS(v)−Ω E ·P(v) (2)

we see that
∂F
∂v

∣∣∣
E
=
∂U
∂v

∣∣∣
D

(3)

provided that we set E = D − 4πP. We thus discover that
D = E+ 4πP is the macroscopic electric displacement field. The
functional in equation (1) takes the form U = EKS + (Ω/8π)E2,
which is the correct expression for the internal energy of a periodic
crystal when a uniform external field is present (details are given
in Supplementary Information, Section S2.4). Equation (1) thus
provides a framework for finding the minimum of the internal
energy U (D) with respect to all internal degrees of freedom
at specified electric displacement D. This is the essence of our
constrained-Dmethod.

As a consequence of equation (3), the method is algorithmically
very similar to a standard finite-E-field calculation2,3. In particular,
the Hellmann–Feynman forces are computed in the same way. The
only difference is that the field is updated according to E=D−4πP
on every iteration of the self-consistency (or ionic-relaxation) cycle.
This implies that the implementation and use of the constrained-D
method in an existing finite-E-field code is immediate; in our case
it required themodification of only two lines of code.

The effect of constraining D, rather than E, essentially
corresponds to the imposition of longitudinal, rather than
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Figure 1 | Electrical boundary conditions within different methods.
a, The fixed-E method corresponds to adopting closed-circuit boundary
conditions with a constant applied bias V. b, Constraining D corresponds to
a capacitor in open-circuit conditions with a fixed value of the free charge Q
on the plates. c, Constraining P does not correspond to a clear
experimental set-up.

transverse, electrical boundary conditions. For example, as we
shall see below, the phonon frequencies obtained from the
force-constant matrix computed at fixed D are the longitudinal
optical ones, whereas the usual approach yields instead the
transverse optical frequencies. Furthermore, the longitudinal
electrical boundary conditions are appropriate to the physical
realization of an open-circuit capacitor with fixed free charge on the
plates, whereas the usual approach applies to a closed-circuit one
with a fixed voltage across the plates (Fig. 1).

Stress tensor
This analogy with an open-circuit capacitor suggests an intuitive
strategy for deriving the stress tensor, a quantity that plays a
central role in piezoelectric materials. In particular, the electrode
of an isolated open-circuit capacitor cannot exchange free
charge with the environment. This suggests that the flux of
the vector field D through the three independent facets of the
primitive unit cell should remain constant under an applied
strain. These fluxes are ai × aj · D = Ω bi · D, where the bi
are duals (ai · bj = δij) differing by a factor of 2π from the
conventional reciprocal lattice vectors. We then rewrite the
functionals in terms of the ‘internal’ or ‘reduced’ variables
di = (Ω/4π) bi · D. It is also useful to define the reduced
polarization pi = Ω bi · P and the ‘dual’ reduced electric field
ε̄i = ai · E. Additional details are provided in Supplementary
Information, Section S4.

By Gauss’s law, di =−Qi, where the Qi are the free charges per
surface unit cell located on the cell face normal to bi. With these
definitions, the internal energy can be rewritten as

U ({d})= EKS+
2π
Ω

∑
ij

(
di−pi

)
gij
(
dj−pj

)
where we have introduced the metric tensor gij = ai ·aj . We then
define the fixed-{d} stress tensor as

σµν =
1
Ω

(
dU
dηµν

)
{d}

(4)

where ηµν is the strain tensor. By a Hellmann–Feynman argument
(see Supplementary Information, Section S4.3) the total derivative
in equation (4) can be replaced by a partial derivative. Using
dgij/dηµν = 2aiuajv , we find

σµν = σ
KS
µν +σ

Max
µν +σ

aug
µν

where σ KS
µν is the standard zero-field expression,

σMax
µν =

2EµEν−δµνE2

8π

is the Maxwell stress tensor (which originates from the derivative
acting on gij and Ω−1) and

σ aug
µν =−

1
Ω

∑
i

ε̄i
∂pi
∂ηµν

is the ‘augmented’ part. If the internal variables v are chosen
as reduced atomic coordinates and plane-wave coefficients in a
norm-conserving pseudopotential context, neither the ionic nor
the Berry-phase component of pi has any explicit dependence on
strain, and σ aug

µν vanishes. The name thus refers to the fact that
σ aug
µν is non-zero only in ultrasoft-pseudopotential5 and projector

augmented-wave6 contexts.
We note that, as a consequence of fixing the reduced variables di

rather than the Cartesian D, the proper treatment of piezoelectric
effects7,8 is automatically enforced. This formal simplification
allows for an enhanced flexibility in the simultaneous treatment of
electric fields and strains. For example, it is possible to introduce a
rigorous constant-pressure enthalpy by simply defining

U π(d)=min
η
[U (d,η)−πΩ] (5)

where π is the external pressure and Ω is the cell volume. We will
demonstrate the use of this strategy in the application to PbTiO3.

Legendre transformation
The transformation from variablesD to variables E can be regarded
as part of a Legendre transformation. We spell out this connection
here, working instead with reduced variables (d1,d2,d3) and
(ε̄1,ε̄2,ε̄3). First, we note that

dU
ddi
=
∂U
∂di
= ε̄i (6)

Recall that ε̄i= ai ·E, so−ε̄i is just the potential step Vi encountered
while moving along lattice vector ai, whereas Qi is just the free
charge on cell face i. Thus, when the system undergoes a small
change at fixed (ε̄1, ε̄2, ε̄3), the work done by the battery is
−
∑

iVi dQi=−
∑

i ε̄i ddi. We therefore define

F̃(ε̄1,ε̄2,ε̄3)= min
d1,d2,d3

[
U (d1,d2,d3)−

∑
i

ε̄i di
]

where the potentials ε̄i have become the new independent
variables and di are now implicit in the minimum condi-
tion. The energy functionals U ({di}) and F̃({ε̄i}) thus form a
Legendre-transformation pair.

All the gradients with respect to the internal and strain degrees
of freedom are preserved by the Legendre transformation and
need not be rederived for F̃ . The physical electrical boundary
conditions, however, have changed back to the closed-circuit case.
It is therefore natural to expect the functional F̃ to be closely
related to the fixed-E enthalpy F of equation (2). Indeed, it is
straightforward to show that

F̃ =U −
Ω

4π
E ·D= F−

Ω

8π
|E|2

At fixed strain and ε̄i, the ΩE2/8π term is constant, and thus
does not contribute to the gradients with respect to the internal
variables, consistent with equation (3). However, the stress derived
from F differs from that derived from F̃ by the Maxwell term σMax

µν ,
which is absent from F (details of the derivation are provided in
Supplementary Information, Section S4.3). Although the Maxwell
stress is typically tiny (for example, 108 Vm−1 produces a pressure
of 44.3 kPa, whereas for the same applied field our calculated
piezoelectric stress amounts to 0.54GPa in PbTiO3), for reasons
of formal consistency we encourage the use of F̃ in place of
F in future works.
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Figure 2 | Potential step and internal energy as a function of d. a, Symbols, calculated using constrained-D method, reduced electric field ε̄; solid curves,
numerical cubic spline fit to the symbols. b, Symbols, calculated using constrained-D method, internal energy U; solid curves, numerical integral of the
spline fit in a. Inset: enlargement near the minimum, also showing the magnitude of the error made if Pulay stresses are ignored (dashed curve).

Partial Legendre transformations
It is also possible to define hybrid thermodynamic functionals
through partial Legendre transformations that act on only one or
two of the three electrical degrees of freedom. Of most interest
is the case of two fixed V and one fixed Q, that is, functions
of variables (ε̄1, ε̄2,d3). The special direction is denoted by unit
vector q̂, which is along direction b3. When ε̄1 = ε̄2 = 0, this
applies to two common experimental situations: the case of an
insulating film sandwiched in the q̂ direction between parallel
electrodes in open-circuit boundary conditions, and the case of
a long-wavelength longitudinal optical phonon of wavevector q
where the q→0 limit is taken along direction q̂.

This latter case of longitudinal optical phonons exemplifies
the physical interpretation of our method and its usefulness.
Although the gradients ofU and its partially Legendre-transformed
partner are identical, the force-constant matrices, which are
second derivatives, are not. Indeed, the force-constant matrices
are found to differ by

1KIα,Jβ =
4π
Ω

(ZI ·q̂)α(ZJ ·q̂)β
q̂ ·ε∞ ·q̂

where Iα labels atom I and its displacement direction α, ZIα is the
corresponding dynamical charge and ε∞ is the purely electronic
dielectric tensor. This is readily identified as the non-analytic
contribution to the longitudinal optical–transverse optical splitting
of a phonon of small wavevector q in the theory of lattice dynamics9.
This demonstrates that the lattice-dynamical properties of a given
insulating crystal within our fixed-D method are fully consistent
with what should be expected from a change in the electrical
boundary conditions from transverse to longitudinal.

Dielectric tensor and linear response
This scheme lends itself naturally to the perturbative linear-
response analysis of the second derivatives of the internal energy
as described in ref. 8, with two important differences. First, in
our scheme the derivatives at constant D become the elementary
tensors, whereas the derivatives at constant E are ‘second-level’
quantities; this is an advantage, because using D as independent
variable is very convenient in ferroelectric systems. Second, the use
of the reduced field variables di and ε̄i in place of the macroscopic
vector fields P and E makes the discussion of strains under an
applied field muchmore rigorous and intuitive.

As an example of the relationship between constrained-ε̄
and constrained-d tensors it is useful to introduce the inverse

capacitance, γ =C−1, in matrix form as

γij =
d2U
ddiddj

Incidentally, although this expression is fully general and well-
defined in the nonlinear regime, for the special case of a linear
medium we can write

U =U0+
1
2

∑
ij

γij Qi Qj

which generalizes the textbook formula U =Q2/2C to the case of
three mutually coupled capacitors. It can be shown that the same
information can be obtained within the constrained-ε̄ approach by
means of the relationship

(γ −1)ij =
d2F̃
dε̄idε̄j

The matrix γij can be thought of a ‘reduced’ representation of the
macroscopic dielectric tensor,

(ε−1)αβ =
Ω

4π

∑
i,j

γij bi,α bj,β

or equivalently

εαβ =
4π
Ω

∑
i,j

(γ −1)ij ai,α aj,β

We will consider, in addition to the total static capacitance above,
the closely related frozen-strain γ ηij and frozen-ion γ∞ij tensors.

The remainder of the response functions discussed in
ref. 8 can be similarly defined in terms of the second
derivatives of U ({d},u,η).

Applications
In the following we illustrate our method by computing the
electrical equation of state of a prototypical ferroelectric material,
PbTiO3. Starting from the relaxed cubic structure in zero field,
we calculate the equilibrium state for 10 evenly spaced values
of the reduced displacement d , ranging from d = 0.1 e to 1.0 e
(where −e is the electron charge), and relaxing all the structural
variables at each d value.

First we check the internal consistency of the formalism by
verifying that our calculated potential drop ε̄ coincides with
the numerical derivative of U with respect to d as expected
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Figure 3 |Dielectric properties. a, Calculated inverse capacitance in the
free-stress (γ , circles) and fixed strain (γ η , squares) limits. The points were
obtained by extracting the symmetric 6×6 elementary response tensors
by finite differences (steps of±0.001 were taken for each parameter) for
each value of d; the continuous curve is the result of numerical
differentiation of the splined potential. b, Evolution of γ for increasingly
larger negative pressures.

from equation (6). The comparison is shown in Fig. 2, where
the discrepancies, of order 10−6 Ha, are not even visible. The
minimum in Fig. 2b (which coincides with the zero-crossing in
(a)) at d = 0.725 e corresponds to a spontaneous polarization of
Ps=0.78Cm−2 and a tetragonal ratio c/a=1.045.

We note that this comparison is sensitive to the Pulay stress, even
in the present case where our conservative choice of the plane-wave
cutoff makes this error as small as πP = 82MPa. Ignoring such
error corresponds to applying a spurious hydrostatic pressure of
−πP, which leads to a discrepancy between the integrated potential
(dashed curve in the inset of Fig. 2) and the calculated internal
energy values. The agreement can be restored by plotting, instead
of U (circles), the correct functional, equation (5), for constant-
pressure conditions (plus symbols).

Having verified the accuracy and consistency of our method, we
now demonstrate its utility by analysing the second derivative of the
internal energy (or equivalently the first derivative of the potential)
as a function of d , which corresponds to the inverse capacitance
γ . The symbols in Fig. 3a show the linear-response values of
both γ η and γ , which are identical in the non-piezoelectric cubic
limit. The numerical derivative of the splined potential of Fig. 2a
accurately matches γ , again confirming the high numerical quality
of our calculations. Figure 3a shows that the inverse capacitance
is negative for 0< d < 0.395 (the zero-crossing point corresponds
to the inflection point of the U (d) curve of Fig. 2b, and to the
minimum of ε̄(d) of Fig. 2a). This is indicative of the fact that
cubic PbTiO3 is characterized by a ferroelectric instability, which
means that the U (d) curve has a negative curvature around the
saddle point d = 0. We suggest, therefore, that the constrained-D
inverse capacitance at d=0, although not accessible experimentally
(because it corresponds to an unstable configuration of the crystal),
is a useful indicator of the strength of the ferroelectric instability.
As such, it can play an important role in determining the critical
thickness for ferroelectricity in thin perovskite films; in particular,
a material with lower γ should be ferroelectric down to smaller
thicknesses, provided that the depolarizing effects due to the
ferroelectric/electrode interface are equally important10. Note that
in our terminology one ferroelectric can be both stronger and
less polar than another if it has a more negative γ but a smaller
spontaneous polarization |Ps|.
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Figure 4 | Lattice-dynamical and piezoelectric properties. a, Longitudinal
(filled symbols, continuous curves) and transverse (open symbols, dashed
curves) optical modes of Γ15 symmetry as a function of d at zero pressure.
Selected transverse optical frequencies for π=−4 GPa are shown as green
star symbols. b, Calculated piezoelectric coefficient as a function of
external pressure π and bias V (thick curves). Results of the
Landau–Devonshire model of refs 14 and 11 are shown as a thin dashed
curve for comparison.

Piezoelectricity
Interestingly, the free-stress γ (D) curve in Fig. 3a shows a peculiar
plateau for 0.8 < d < 1.0, indicative of a ‘softening’ of the
response of the crystal to the applied electric field. This behaviour
is surprising, as an electric field of increasing strength would
rather be expected to drive a perovskite crystal further into the
anharmonic regime, with a consequent progressive hardening
of the overall dielectric response11. To analyse this effect, we
start by observing that the evolution of the fixed-strain γ η

dielectric response as a function of d is essentially featureless.
This indicates that optical phonons alone cannot be responsible
for the effect, and volume (and/or cell-shape) relaxations are
crucially involved. To investigate this, we repeated our calculations
within a negative hydrostatic pressure by using the mixed fixed-
D, fixed-π enthalpy defined in equation (5). The results for the
free-stress γ (D), plotted in Fig. 3b, show a dramatic influence of
the external pressure on the dielectric response of the system. In
particular, the plateau in γ (D) becomes an increasingly deeper
local minimum, which crosses the γ = 0 axis for π between
−3 and −4GPa; the local minimum is approximately centred at
d= 0.925 for all values of π.

A negative γ indicates a structural instability, and structural
instabilities in ferroelectric systems are usually understood in terms
of ‘soft’ phonon modes. To see whether this picture applies here,
we plotted in Fig. 4a the zone-centre polar-mode frequencies as
a function of d . At zero pressure, the curves show no notable
irregularity, consistentwith the smooth evolution of the fixed-strain
response γ η. Remarkably, the external pressure has a negligible
influence on such frequencies, which remain practically unchanged
for the strained crystal at the same value of d , confirming our
hypothesis that the effect is essentially of piezoelectric nature.

Pursuing this idea, we combined the values of the potential
drop V (d) with the equilibrium values of out-of-plane lattice
parameter, and calculated the free-stress piezoelectric coefficient by
numerical differentiation as

h=−
dc
dV

The results, plotted in Fig. 4b, show for zero pressure a clear peak
at V ∼ 0.2V, corresponding to a value of the internal field of
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about 450MVm−1. We identify this peak with the plateau in the
inverse capacitance curve of Fig. 3a. For increasingly large negative
pressures, the piezoelectric peak becomes sharper and shifts to
smaller values of the potential; for π<−3GPa (not shown) the
piezoelectric coefficient diverges, corresponding to the crossover to
the unstable region in Fig. 3b.

These results shed light on the recent experimental
measurements of ref. 12, where a remarkable anomaly in the
piezoelectric response of lead zirconate titanate films in high
fields (E = 200–300MVm−1) was detected. Such an anomaly
was rationalized in terms of a transition to a supertetragonal
state, which previous first-principles calculations13 predicted to be
stable in PbTiO3 under an applied negative hydrostatic pressure.
However, the question remained whether the electric field might
actually produce such a transition within the experimental range
of applied fields. Our results demonstrate that the piezoelectric
coupling is indeed capable of driving such a transition, at
least under isotropic free-stress boundary conditions. (In future
work, we plan to extend these investigations by considering
epitaxial strain clamping effects.) We note that our calculated
value of the piezoelectric coefficient of PbTiO3 at zero field
and pressure (h = 82.5 pmV−1) is in excellent agreement with
previous Landau–Devonshire theories11,14, but the evolution of h
for non-zero values of the applied potential substantially differs
(see Fig. 4b). For small values of the electric field, in particular,
our ab initio results indicate that h remains roughly constant.
Then h increases significantly at higher fields, up to a value
E ∼ 450MVm−1, where it starts decreasing again. A monotonic
decrease was predicted instead by the model of ref. 11. This result,
therefore, has important implications for the tunability of the
piezoresponse of lead titanate crystals.

Summary and outlook
We have in mind several immediate applications for our method.
First and foremost, fixing D in ferroelectric capacitors by using
the methods of ref. 15 will allow for a detailed analysis of the
microscopic mechanisms determining the depolarizing field, in
both the linear and anharmonic regimes, an issue that is central to
the development of efficient ferroelectric devices. Second, imposing
constant-D electrical boundary conditions has the virtue of making
the force-constant matrix of layered heterostructures short ranged
in real space. This enables us to accurately model the polarization
and response of complex superlattices, capacitors and interfaces in
terms of the electrical properties of the elementary building blocks;
a demonstration of this strategy was recently reported in ref. 16.
Third, complex couplings between different order parameters
can now be treated with unprecedented flexibility, opening new
avenues in the theoretical study of magnetoelectric multiferroics
and improper ferroelectrics.

Methods
Our calculations are performed within the local-density approximation17 (LDA)
of density-functional theory using norm-conserving18 pseudopotentials and a
plane-wave cutoff of 150 Ryd. Angular-momentum channels up to l = 2 are
included in all pseudopotentials. The reference states (the numbers in brackets
indicate the core radius in bohr) of the isolated neutral atom used for the
generation of the pseudopotentials are 2s (1.4), 2p (1.4) and 3d (1.4) for O, 6s (2.4),
6p (2.4) and 5d (2.0) for Pb and 3s (1.2), 3p (1.3) and 3d (1.3) for Ti. The local
angular-momentum channel is l = 2 for O, l = 0 for Pb and Ti. The tetragonal
PbTiO3 unit cell contains one formula unit, and a 6×6×6 Monkhorst–Pack19 grid
is used to sample the Brillouin zone. The finite electric field is applied through

a Wannier-based real-space technique15, which converges quickly as a function
of k-point mesh resolution20; indeed, tests made with finer meshes showed no
differences within numerical accuracy. We obtain an equilibrium lattice constant
of a= 3.879Å for cubic paraelectric PbTiO3, in line with values previously reported
in the literature. Owing to the tetragonal symmetry, the state of the system is fully
determined by six parameters: the electric displacement d , the cell parameters
a and c , and three internal coordinates describing relative displacements along
z . We set a stringent accuracy threshold of 10−5 Ha/bohr for atomic forces and
10−7 Ha/bohr3 for stresses.
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