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Chapter 2

First-Principles Theory of Flexoelectricity
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David Vanderbilt
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In this chapter, we provide an overview of the current first-principles
perspective on flexoelectric effects in crystalline solids. We base our
theoretical formalism on the long-wave expansion of the electrical
response of a crystal to an acoustic phonon perturbation. In particular,
we recover the known expression for the piezoelectric tensor from the
response at first order in wave-vector q, and then obtain the flexoelectric
tensor by extending the formalism to second order in q. We put
special emphasis on the issue of surface effects, which we first analyze
heuristically, and then treat more carefully by presenting a general
theory of the microscopic response to an arbitrary inhomogeneous strain.
We demonstrate our approach by presenting a full calculation of the
flexoelectric response of a SrTiO3 film, where we point out an unusually
strong dependence of the bending-induced open-circuit voltage on the
choice of surface termination. Finally, we briefly discuss some remaining
open issues concerning the methodology and some promising areas for
future research.
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1. Introduction

First-principles electronic structure calculations have played an
increasingly important role in our understanding of the properties
of materials and nanostructures in recent decades. The phrase “first
principles” is generally used in the condensed-matter community to
convey the notion that the calculations are free of adjustable param-
eters, taking as input only some list of atoms, their atomic numbers,
and some initial guesses at their coordinates in the unit cell. One then
solves the Schrödinger equation for the electrons in some approxi-
mation, computes the relaxed atomic coordinates, and calculates the
desired properties of the crystal. In the condensed-matter community
this is typically done in the framework of density-functional theory
(DFT),1 as shall be assumed below, but Hartree–Fock or other
quantum-chemical methods can also be used.

While the accuracy and efficiency of DFT methods have improved
over the years, of equal importance has been the increasing range
of quantities that can be computed. In the context of dielectric
properties, the implementation of linear-response theory for phonon
and electric-field perturbations in the 1980s and 1990s opened
up the calculation of phonon frequencies, dynamical charges, and
both electronic and lattice contributions to the dielectric constant.2

While there was initially some doubt about whether the piezo-
electric response was a bulk property at all, a seminal paper of
Martin laid this question to rest,3 and the computation of the
piezoelectric tensor is now a standard feature of most DFT codes
as well. Strangely, although many of the above properties can be
computed as derivatives of the electric polarization P, a proper
definition of the polarization P itself proved more difficult; the
physics was clarified, and practical methods for computing it,
were developed only in the mid-1990s with the appearance of the
“modern theory of polarization.”4–6 Related methods for computing
the orbital magnetization of ferromagnets and the properties of
crystals in finite electric fields have been developed since the
2000’s.7
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The flexoelectric tensor has been among the few physical prop-
erties to have resisted a proper first-principles formulation even until
today. The theory of flexoelectricity was pioneered in the 1980s by
Tagantsev.8,9 However, because it encodes a response to a strain
gradient, rather than just a strain, and because a strain gradient is
inconsistent with ordinary cell-periodic boundary conditions, meth-
ods based on Bloch’s theorem cannot be straightforwardly applied
in the first-principles context. A serious attack on this problem
did not begin until 2010, when Hong and collaborators presented
the results of calculations on supercell configurations containing
strain gradients.10 Subsequent papers of Resta11 and Hong and
Vanderbilt12 clarified aspects of the electronic contribution to the
flexoelectric response.

More recently, Stengel13 and Hong and Vanderbilt14 tackled the
problem in a systematic way, and working from slightly different
perspectives, arrived consistently at a nearly complete framework
for defining, and eventually computing, the flexoelectric tensors fully
from first-principles. Some components of the flexoelectric tensor
that can be expressed only in terms of bulk current responses, as
opposed to charge responses, still require care in their interpretation
and await the development of efficient methods for calculating them.
However, we can expect these difficulties to be cleared up soon, so we
can look forward to a new era in which first-principles calculations of
flexoelectric responses can flourish and contribute to a fast-evolving
experimental field. The purpose of this chapter is to outline the
physical principles underlying these advances in the understanding
and computation of flexoelectric responses, and to summarize a few
of the preliminary results that have been presented in the literature
to date.

2. Theory and Methods

2.1. Strain, Strain Gradients, and Responses

We begin by establishing our notation. In continuum mechanics, a
deformation can be expressed as a three-dimensional (3D) vector
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field, uα(r), describing the displacement of a material point from its
reference position at r to its current location r′,a

r′α(r) = rα + uα(r).

The deformation gradient is defined as the gradient of uα taken in
the reference configuration,

ε̃αβ(r) = uα,β(r) =
∂uα(r)
∂rβ

. (1)

ε̃αβ(r) is often indicated in the literature as “unsymmetrized strain
tensor”, as it generally contains a proper strain plus a rotation. By
symmetrizing its indices one can remove the rotational component,
thus obtaining the symmetrized strain tensor

εαβ =
1
2
(uα,β + uβ,α).

This εαβ is a convenient measure of local strain, as it only depends
on relative displacements of two adjacent material points, and not on
their absolute translation or rotation with respect to some reference
configuration.

In this work, we shall be primarily concerned with the effects
of a spatially inhomogeneous strain. The third-rank strain gradient
tensor can be defined in two different ways, both important for the
derivations that follow. The first (type-I) form consists in the gradient
of the unsymmetrized strain,

ηα,βγ(r) =
∂ε̃αβ(r)
∂rγ

=
∂2uα(r)
∂rβ∂rγ

. (2)

Note that ηα,βγ , manifestly invariant upon β ↔ γ exchange,
corresponds to the ναβγ tensor of Ref. [12], and to the symbol
∂εαβ/∂rγ of Ref. [8]. Alternatively, the strain gradient tensor can

a Since we are exclusively interested in linear fexoelectricity here, we shall assume
a regime of small deformations henceforth.   
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be defined (type-II) as the gradient of the symmetric strain, εαβ,

εαβ,γ(r) =
∂εαβ(r)
∂rγ

,

invariant upon α ↔ β exchange. It is straightforward to verify that
the two tensors contain exactly the same number of independent
entries, and that a one-to-one relationship can be established to
express the former as a function of the latter and vice versa,

ηα,βγ = εαβ,γ + εγα,β − εβγ,α. (3)

The piezoelectric and flexoelectric tensors describe, respectively,
the macroscopic polarization response to a uniform strain and to a
strain gradient. In type-I form, these are

eαβγ =
dPα

dεβγ
, (4)

µI
αβ,γλ =

dPα

dηβ,γλ
. (5)

While the type-I form is more convenient to derive and calculate, the
type-II representation is often preferred in applications. The type-II
flexoelectric tensor is defined as

µII
αλ,βγ =

∂Pα

∂εβγ,λ
. (6)

Note that µI and µII are both symmetric under the last two indices,
and are related to each other via equation (3) according to

µII
αλ,βγ = µI

αβ,γλ + µI
αγ,λβ − µI

αλ,βγ , (7)

µI
αβ,γλ =

1
2
(
µII

αλ,βγ + µII
αγ,βλ

)
. (8)

2.2. Long-Wave Approach

A macroscopic strain gradient breaks the translational symmetry of
the crystal lattice. For this reason, the response to such a perturba-
tion cannot be straightforwardly represented in periodic boundary
conditions. This makes the theoretical study of flexoelectricity more   
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challenging than other forms of electromechanical coupling such
as piezoelectricity. To circumvent this difficulty, we shall base our
analysis on the study of long-wavelength acoustic phonons. These
perturbations, while generally incommensurate with the crystal
lattice, can be conveniently described in terms of functions that are
lattice-periodic, and therefore are formally and computationally very
advantageous.2

Consider a crystal lattice spanned by the real-space translation
vectors Rl and by the basis vectors τκ, in such a way that Rlκ =
Rl + τκ indicates the location of the atom of sublattice κ and cell
l. In full generality, the atomic displacements along the Cartesian
direction α associated with a phonon eigenmode of wave-vector q
can be written as

uκα(l, t) = uq
καe

iq·Rlκ−iωt, (9)

where uq
κα (independent of either l or t) is an eigenvector of the

dynamical matrix at q, and ω is the frequency.
A convenient description of arbitrary mechanical deformations

can be established by choosing an acoustic phonon branch, and by
performing a long-wave (small q) expansion of its eigenvector in the
vicinity of the Γ point. Provided that the long-range electrostatic
fields are adequately screened (see Section 2.3 for a discussion), the
aforementioned expansion can be written as

uq
κα = Uα

(
δαβ + iqγΓκ

αβγ − qγqλN
κ
αβγλ + · · · ) , (10)

where U is a Cartesian vector, δαβ is the Kronecker delta, and Γκ
αβγ

and Nκ
αβγλ are third- and fourth-order tensors, respectively. (The

dots stand for higher-order terms, which are irrelevant in the context
of the phenomena described here.) At order zero in q the phonon
eigenmode is a rigid translation of the whole lattice along U (note
the absence of a sublattice index), while the first- and second-order
terms describe the internal-strain response of the lattice to a uniform
strain or to a macroscopic strain gradient, respectively.

Of course, to obtain the relevant electromechanical coupling
coefficients, the sole knowledge of the lattice distortions is not suffi-
cient — one needs to establish a link between atomic displacements   
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and macroscopic polarization. While in a simplified point-charge
model such a link is straightforward, in the case of a more realistic
quantum-mechanical description of a solid things are significantly
more involved, as one needs to understand how the electronic
wavefunctions, and not only the nuclei, respond to a macroscopic
deformation. If the deformation is sufficiently slow, which is the case
of the phenomena described in this chapter, the electronic cloud
responds adiabatically to atomic motion by generating a microscopic
current density (i.e. the quantum-mechanical probability current).
For example, if we displace by hand one atomic sublattice as

uκβ(l, t) = λ(t)eiq·Rlκ , (11)

the microscopic current density that is linearly induced by such a
perturbation can be written asb

J(r, t) = λ̇(t)Pq
κβ(r)eiq·r. (12)

The function Pq
κβ(r) is the microscopic polarization response; its cell

average,

P
q
κβ =

1
Ω

∫
cell

d3rPq
κβ(r), (13)

where Ω is the cell volume, describes the contribution of atomic
motion to the macroscopic polarization, which is the quantity we
are ultimately interested in.

To go from here to the electromechanical tensors we need one
more step, i.e. the small-q expansion of P

q
κβ. Again expanding in

powers of q and keeping terms up to second order,c

Pq
κβ = P(0)

κβ − iqγP
(1,γ)
κβ − qγqλ

2
P(2,γλ)

κβ + · · · . (14)

b Recall that, in classical electrostatics, the density of bound currents J and the
microscopic polarization P are related by J = ∂P/∂t.
c Note the difference in sign convention between equations (10) and (14). In the
former case, the choice of the sign was uniquely determined by the interpretation
of Γ and N as internal-strain response tensors. In the latter case, the adopted
convention allows one to identify the P(n) tensors with the real-space moments
of the current-density response.13,14   
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The zeroth order term is the macroscopic polarization response to
a rigid translation of the sublattice κ along the direction β. This
corresponds precisely to the definition of the Born dynamical charge
tensor Z∗,

P
(0)
ακβ =

Z∗
κ,αβ

Ω
. (15)

The remaining P-tensors can be regarded as higher-order counter-
parts of the Born charges. (Physically they are directly related to the
moments of the current density induced by the displacement of an
isolated atom.13,14)

Multiplying the lattice-polarization coupling tensors with the
phonon eigendisplacements, we can collect terms order-by-order in q.
The zero-order term (rigid translation) vanishes due to the acoustic
sum rule. At first order in q, we obtain the explicit expression for
the piezoelectric tensor15

eαβγ = −
∑

κ

P
(1,γ)
α,κβ +

Z∗
κ,αρ

Ω
Γκ

ρβλ, (16)

where the first and second terms are the electronic (frozen-ion) and
lattice-mediated terms respectively.d Collecting the terms at second
order in q gives the flexoelectric response, which is again a sum

µI
αβ,γλ = µ̄I

αβ,γλ + µI,mix
αβ,γλ + µI,latt

αβ,γλ, (17)

of electronic and lattice terms

µ̄I
αβ,γλ =

1
2

∑
κ

P
(2,γλ)
α,κβ , (18)

µI,mix
αβ,γλ = −1

2

(
Γκ

ρβγP
(1,λ)
α,κρ + Γκ

ρβλP
(1,γ)
α,κρ

)
, (19)

µI,latt
αβ,γλ =

Z∗
κ,αρ

Ω
Nκ

ρβγλ, (20)

d The unsymmetrized strain is ε̃βγ(r) = iUβqγeiq·r; this can be replaced with the
symmetrized strain tensor after observing that both terms on the right-hand side
are invariant with respect to βγ exchange.   
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where the bar symbol on the first term indicates a purely electronic
response and ‘mix’ and ‘latt’ refer to “mixed” and “lattice-mediated”
contributions, respectively. While the piezoelectric and flexoelectric
responses have been developed in parallel until now, we will hence-
forth concentrate on the latter, referring the reader to Refs. [13,
14] for the detailed treatment of the piezoelectric response. The
corresponding type-II flexoelectric responses are

µII
αλ,βγ = µ̄II

αλ,βγ + µII,mix
αλ,βγ + µII,latt

αλ,βγ , (21)

where

µ̄II
αλ,βγ =

1
2

∑
κ

(
P

(2,γλ)
α,κβ + P

(2,λβ)
α,κγ − P

(2,βγ)
α,κλ

)
, (22)

µII,mix
αλ,βγ = −Γκ

ρβγP
(1,λ)
α,κρ , (23)

µII,latt
αλ,βγ =

Z∗
κ,αρ

Ω
(
Nκ

ρβ,λγ +Nκ
ργ,λβ −Nκ

ρλ,βγ

)
. (24)

For later convenience we rewrite equation (24) as

µII,latt
αλ,βγ =

Z∗
κ,αρ

Ω
Lκ

ρλ,βγ , (25)

where Lκ
ρλ,βγ (the type-II counterpart of the type-I internal-strain

tensor N) is the quantity in parentheses on the right-hand side of
equation (24).

To summarize, according to Eq. (9) a long-wavelength sound
wave is comprised of a lattice-periodic distortion pattern uq

κα

modulated by a time- and space-dependent complex phase fac-
tor. At zero order in q the deformation can be described as
purely “elastic”, but at higher orders (i.e. when moving away
from the zone center), internal relaxations of the basis atoms in
the primitive cell occur, as described by the tensors Γ and N
(or L) at first and second orders in q, respectively. These are
related to how the crystal locally responds to a macroscopic strain
(first order, “piezo”) or strain gradient (second order, “flexo”).
The reader is referred to Refs. [13, 14] for the derivation of
explicit expressions for these tensors, but we shall highlight the   
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main conceptual issues associated with them in Section 2.4. Each
consecutive order in equation (10) gives rise to a corresponding
term in the expressions for the flexoelectric tensor in equations (17)
and (21).

Regarding the purely electronic term, µ̄, which is associated with
the purely elastic part (order-zero in q, also referred to as “frozen
ion deformation”), we defer its detailed discussion to Section 2.5. It
can be shown that the “mixed” µII,mix

αλ,βγ term involving Γκ
ρβγ is active

only in crystals that are characterized by Raman-active phonons,14

which is not the case for simple systems such as cubic rocksalt or
perovskite crystals. (Again, we refer the reader to Refs. [13, 14] for
the explicit discussion of this term.) By contrast, the µII,latt

αλ,βγ term
is present in any insulator with IR-active phonons; as this term is
very important in practical applications of the flexoelectric effect,
we shall discuss it shortly in Section 2.4. First, however, we shall
briefly comment on an important issue that is relevant to the above
discussion, concerning the treatment of the macroscopic electric fields
in the long-wave phonon analysis.

2.3. Macroscopic Electric Fields

Depending on their polarity, long-wave phonons in a crystalline
insulator generally produce macroscopic electric fields. These are due
to the charge perturbation that is generated by the lattice distortion,
and have a non-analytic behavior in the vicinity of the Γ point.
For example, for a monochromatic perturbation such as that of
equation (11), at the lowest order in q the macroscopic electric field
tends to a direction-dependent constant,

Eq→0
κβ ∼ − q

ε0Ω
(q · Z∗)κβ

q · ε̄r · q , (26)

where Eq
κβ is defined in analogy with equation (13) and ε̄r is the

purely electronic relative permittivity tensor. The main physical
consequence of this is the well-known frequency splitting between lon-
gitudinal optical (LO) and transverse optical (TO) phonons in polar
crystals. In particular, due to the contribution of equation (26) to the   
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dynamical matrix, the LO dispersion curves behave non-analytically
already at zero order in q; that is, the eigenvalue and eigenvector
associated with an LO branch generally depends on the direction
along which one approaches Γ. Such a non-analiticity propagates
directly to the electronic and lattice response functions described in
the previous section, and needs to be adequately treated in order to
be able to apply the Taylor expansions described in equations (10)
and (14).e

There are several ways to approach this problem. For example,
the theory of Ref. [14] was developed for purely transverse and
longitudinal phonons separately, leading to flexoelectric coefficients
defined at fixed E and D (electric displacement field) respectively.
Here, we take the approach of removing the macroscopic E-fieldsf in
a physically meaningful way by assuming, following Martin,3 that a
very low density of free carriers is present in the insulating crystal,
and that these are allowed to redistribute adiabatically in response
to a phonon perturbation. In particular, within the Thomas–Fermi
approximation, we write the free-carrier density as

ρfree(r) = −ε0k2
TFV (r), (27)

where V (r) is as usual the electrostatic potential, and we suppose
that the Fermi wave-vector kTF is much smaller than any reciprocal
lattice vector of the crystal. In such a regime, the ground-state charge
density and wavefunctions are essentially unaffected by the additional
screening provided by the free-electron gas. Conversely, in the long-
wave limit, the presence of the free carriers drastically alters the

e The response to an acoustic phonon in a non-piezoelectric insulator is
non-analytic only at second order in q, so the situation appears here, at first
sight, less serious than in the case of optical phonons. Recall, however, that the
flexoelectric tensor is precisely an O(q2) property, and therefore it is directly
affected by such issues.
f It is desirable to remove the macroscopic fields not only for practical reasons,
i.e. to make the aforementioned Taylor expansions possible, but also because
electromechanical tensors are traditionally defined in short-circuit electrical
boundary conditions.   
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electrostatics; for example, the field of equation (26) becomes13

Eq→0
κβ ∼ − q

ε0Ω
(q · Z∗)κβ

k2
TF + q · ε̄r · q . (28)

Such a modification has the following effects:

• The macroscopic electric fields, and hence all the response prop-
erties of the crystal, become analytic functions of q.

• The macroscopic electric fields vanish at zero and first order in q,
and also at second order in q provided that we are considering an
acoustic phonon branch.

• Both the piezoelectric and flexoelectric tensors calculated in
the presence of the free carrier gas are independent of kTF,
and therefore can be unambiguously interpreted as the short-
circuit versions of the corresponding electromechanical response
functions.

In the first-principles calculations, this is done in practice by simply
suppressing the G = 0 contribution to the electrostatic energy when
computing the self-consistent linear response; this has the same effect
as introducing a low-density electron gas as described above.

Based on the above discussion, it would be tempting to conclude
that the flexoelectric tensor, like the piezoelectric tensor, is well
defined under short-circuit electrical boundary conditions. In writing
down equation (27), however, we assumed a particular type of
carriers, namely electrons (not holes), and moreover that the band
edge for those carriers, the conduction-band minimum (CBM),
tracks with the macroscopic electrostatic potential of the crystal.
In general, however, the CBM energy may shift relative to the
local macroscopic potential as a result of a strain gradient, via the
so-called deformation-potential effect. Thus, we can obtain a different
flexoelectric tensor depending on what band feature (CBM or other)
we choose as the energy reference. We shall come back to this point
in Section 2.5.1.

For a given energy reference, the bulk flexoelectric tensor µ is
well defined in short-circuit (fixed E) boundary conditions. If fixed
D boundary conditions are imposed along a specific direction q̂,   
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the induced electric field (defined as the tilt of the corresponding
reference potential) can be then easily calculated asg

∆Ebulk = − q
ε0

qαµ
II
αλ,βγεβγ,λ

q · εr · q . (29)

Note that equation (29) cannot be written in tensorial form, except
for the simplest case of crystals with cubic symmetry, where the
denominator reduces to a direction-independent constant.

2.4. Lattice Response

To gain some insight into the nature of the lattice-mediated flexoelec-
tric effect it is necessary to understand, in broad terms, the physics
behind the internal-strain response (as described by the tensors N
or L) to a strain gradient deformation. To that end, suppose that we
perform a computational experiment where we statically freeze in a
lattice distortion that corresponds to an acoustich phonon truncated
to first order in q, i.e. to the uniform-strain level,

ul
κα =

(
δαβ + iqγΓκ

αβγ

)
Uβe

iq·Rlκ . (30)

(In the simplest crystal structures, where the Γ tensor identically
vanishes, this corresponds to a purely elastic wave.) As we have
perturbed the crystal from its equilibrium configuration, each atom
in the lattice (identified, as usual, by a cell index l and a basis
index κ) will experience a restoring force f l

κα. If the amplitude of
the deformation is small (linear-response regime), such forces can be
described, as usual, by a lattice-periodic (i.e. l-independent) function
that is modulated by a complex phase with the same wave-vector q as
the perturbation. For small q, it can be shown that the magnitude
of the induced forces scales as O(q2) (first-order terms cannot be
present, as we have assumed that uniform-strain effects are already

g Strictly speaking, this is the contribution from bulk effects; one cannot exclude
surface contributions to the internal field, as we shall see in the later sections.
h We assume that the long-range Coulomb fields have been removed; see
Section 2.3 for details.   
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included), and can be written as

f l
κα ∼ −qγqλUβT

κ
αβ,γλe

iq·Rlκ . (31)

Here T κ
αβ,γλ is, by construction, the type-I flexoelectric force-response

tensor. (The detailed derivation can be found in Refs. [13, 14].)
Now one would be tempted, in close analogy to the piezoelectric

case, to define the internal-strain response tensor N by means of the
following linear system of equations,

Φ(0)
κακ′ρN

κ′
ρβ,γλ

?= T κ
αβ,γλ, (32)

where Φ(0)
κακ′ρ is the zone-center force-constant matrix.i Unfortu-

nately, the above system is generally not solvable: the sublattice- (κ-)
sum of the T-tensor does not vanish, and the Φ(0) matrix is singular.
(It is always characterized by three null eigenvalues, corresponding to
rigid translations of the crystal as a whole.) As negative as it sounds,
this is nonetheless an important result: it tells us that the internal-
strain response to a static strain-gradient deformation is generally
ill-defined. (We shall see later on that there are notable exceptions
to this statement, though.)

To understand what went wrong, let us start all over again,
but instead of considering a static (frozen-in) deformation, take a
dynamical one, i.e. a phonon mode. By performing a long-wave
expansion of the equations of motion one obtains,13,14 for the second-
order eigendisplacements,

Φ(0)
κακ′ρN

κ′
ρβ,γλ = T κ

αβ,γλ − mκ

M

∑
κ′
T κ′

αβ,γλ, (33)

where mκ are atomic masses and M =
∑

κmk. Equation (33) is in
all respect analogous to equation (32), except for the additional term
that appears on the right-hand side (rhs) of the latter. It is trivial
to check that the sublattice sum of the rhs now correctly vanishes,

i Φ(0) is the q → 0 limit of the matrix Φq
κακ′ρ, which is essentially a dynamical

matrix with the mass prefactors set to unity. As for other quantities, Φ(0) is defined
at vanishing macroscopic electric field, i.e. closed-circuit boundary conditions,
appropriate for computing transverse optical phonon frequencies.   
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providing us with well-defined values (modulo a rigid translation)
for the N-tensor components. This confirms our earlier suspicions
that, unlike piezoelectricity, flexoelectricity is a genuinely dynamical
effect: only in a sound wave are the internal strains well defined,
and these internal strains depend explicitly on atomic masses. In
retrospect, this conclusion is not entirely surprising. A uniform strain
can always be generated and sustained by applying an appropriate
distribution of external loads to the surface of the sample. This is
not the case for a strain gradient: in general, a uniform force field
applied to each material point of the sample is necessary to generate a
given component of εβγ,λ. Such a uniform force can be, e.g. generated
by a gravitational field14 or, as in the above example of the sound
wave, by the acceleration of each material point during its periodic
oscillation.13 In either case, the result directly depends on the atomic
masses.

To gain further insight into the physical nature of the mass-
dependent term in equation (33), it is useful to write the same
equation in type-II form,

Φ(0)
κακ′ρL

κ′
ρλ,βγ = Cκ

αλ,βγ − mκ

M
ΩCαλ,βγ . (34)

Here, Cκ is the type-II flexoelectric force-response tensor, linked to
T via the usual permutation of indices,

Cκ
αλ,βγ = T κ

αβ,γλ + T κ
αγ,λβ − T κ

αλ,βγ (35)

and Cαλ,βγ is the macroscopic elastic tensor. To write equation (34),
we have made use of the result∑

κ

Cκ
αλ,βγ = ΩCαλ,βγ , (36)

which directly relates flexoelectricity to elasticity.13 To justify such
a sum rule recall that, in the context of linear elasticity, the stress
tensor σαβ (which we allow to be inhomogeneous in space) is directly
related to the elastic and strain tensors via

σαβ(r) = Cαβγλεγλ(r). (37)
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Recall also that the divergence of the stress tensor integrated over a
finite region of space yields the net force acting on the corresponding
volume element of the material,

fα =
∫
Ω

d3r∇βσαβ(r). (38)

By assuming that the crystal is homogeneous (i.e. that the elastic
tensor is a constant), and by assuming that the deformation varies
slowly over the volume of a primitive cell, we have∑

κ

fκ
α(r) = ΩCαβγλεγλ,β(r). (39)

Assuming that the force on individual atoms is exclusively produced
by strain-gradient effects (which is justified, as the relaxations due
to the local strain are already included), we can replace fκ

α with the
definition of the flexoelectric force-response tensor, and easily recover
equation (36). Thus, in a hand-waving way, one can say that the
type-II flexoelectric force-response tensor is a “sublattice-resolved”
version of the macroscopic elastic coefficients.

The dynamical nature of the flexoelectric tensor is worrisome if
we are to use this theory to rationalize typical experiments — these
are typically performed statically. As we shall see in the following,
this is not a real issue. If a material is at static equilibrium there
might be non-vanishing stress fields due to the application of external
loads; nevertheless, the force acting on a material point must vanish
everywhere in space. This leads to the following condition on the
strain-gradient field, ∑

βγλ

Cαλ,βγεβγ,λ(r) = 0. (40)

This means that two or more strain-gradient components will typi-
cally be present in any inhomogeneous strain field, in such a way that
their respective net forces mutually cancel. By using equation (40)
it is straightforward to see that the mass dependence disappears
from the resulting polarization field (as obtained by multiplying the
flexoelectric tensor by the local strain-gradient tensor), confirming
the internal consistency of the theory.   
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The important message here is that, at the static level, we
can define a number of effective flexoelectric coefficients; each of
them will correspond to a linearly independent set of strain-gradient
components that satisfies equation (40). (An explicit example is
provided in Section 3.) It is easy to see that the number of such
effective static coefficients is always smaller than the number of
independent components of the µ-tensor. This means that the latter
contains, in fact, more information than is actually needed to predict
the outcome of a static measurement. This also means that, in
order to determine the full flexoelectric tensor, one cannot rely
on static experiments only; additional dynamical data need to be
combined with the static results.16 The resulting values of the tensor
components are always inherently dynamic quantities, even if static
data are, in part, used to compute them.

2.5. Electronic Response

While the lattice-mediated response has a straightforward physical
interpretation (i.e. in terms of a polar distortion of the basis
atoms that is induced by the macroscopic strain gradient), the
purely electronic response (given by the tensor µ̄II

αλ,βγ) is far less
intuitive, and therefore deserves a separate discussion. First, recall
that µ̄II

αλ,βγ is defined in terms of the second-order P-tensor, P (2,γλ)
α,κβ .

To understand the physical meaning of the latter, consider the
microscopic current density Jα(r) that is adiabatically induced when
displacing an isolated atom (l, κ) with velocity u̇l

κβ in the Cartesian
direction β,12,13

Pα,κβ(r) =
∂Jα(r + Rlκ)

∂u̇l
κβ

. (41)

Provided that the macroscopic electric fields have been appropriately
screened,13 one can introduce14 the moments of the vector field
Pα,κβ(r) at an arbitrary order n,

J
(n,γ1...γn)
α,κβ =

∫
d3rPα,κβ(r)rγ1 . . . rγn . (42)
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Then, one can show13 that the resulting J-tensors coincide with the
P -tensors of the same order apart from a trivial factor of volume,

J
(n,γ1...γn)
α,κβ = ΩP (n,γ1...γn)

α,κβ . (43)

This result tells us that the “frozen-ion” (in the sense specified in
Ref. [12]) contributions to the piezoelectric and flexoelectric tensors
are given in terms of the first and second moments of the current-
density response to atomic displacements, respectively.

Direct calculation of the P -tensors is technically challenging at
the time of writing — the required current-density response functions
are presently not available in the existing implementations of DFPT.
To avoid this complication altogether, Resta11 proposed to determine
the frozen-ion flexoelectric tensor via the sole knowledge of the
charge-density response to an acoustic phonon, in close analogy
with Martin’s classic treatment of the piezoelectric problem.3 In
particular, for an elemental crystal (this result was later generalized
to arbitrary crystals by Hong and Vanderbilt12) Resta demonstrated
that the longitudinal component of the response to a longitudinal
strain gradient is given by

µq̂ =
1

6Ω
Q

(3)
q̂ . (44)

Here q̂ indicates the spatial direction of interest, and Q(3) indicates
the corresponding third moment of the charge-density response to
atomic displacement (dynamical octupole).

To derive this result in the context of the formalism of Section 2.2,
it is useful to introduce the charge-density response to the monochro-
matic lattice perturbation of equation (11),

ρqκβ = −iqγρ(1,γ)
κβ − qγqλ

2
ρ

(2,γλ)
κβ + i

qγqλqδ
6

ρ
(3,γλδ)
κβ + · · · , (45)

where the overline symbol implies cell averaging as in equation (13),
and we have pushed the expansion up to third order in q. (The
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zero-order term vanishes because of the condition of charge conser-
vation.) The ρ tensors are trivially related via

ρ
(n,γ1...γn)
κβ =

1
Ω
Q

(n,γ1...γn)
κβ , (46)

to the moments

Q
(n,γ1...γn)
κβ =

∫
d3r fκβ(r)rγ1 . . . rγn (47)

of the charge-density response function fκβ(r),j defined as the change
in charge density resulting from a single ionic displacement κβ. One
can also show that the P-tensors and ρ-tensors are related by13

ρ
(n,γ1...γN )
κβ =

∑
l

P
(n−1,γ1...[γl]...γn)
γl,κβ (n ≥ 1), (48)

where the symbol [γl] indicates the absence of the element l in the
list. Then one immediately has, for n = 3,

J
(2,γλ)
α,κβ + J

(2,αγ)
λ,κβ + J

(2,λα)
γ,κβ = Q

(3,αγλ)
κβ . (49)

By applying equations (18) and (49) to the case of a longitudinal
strain gradient oriented along q̂, one easily recovers equation (44).

Unfortunately, it is not possible to invert equation (49) and
extract all components of the J(2)-tensor from the octupolar response
tensor, Q(3). (The fact that J(2) contains more information than
Q(3) can be already appreciated by counting the maximum number
of independent entries in either tensor: 54 in the former, 30 in the
latter.14) Therefore, working only with the charge-density response
at the bulk level is not a viable route to achieving full information
over the frozen-ion (electronic) flexoelectric tensor, µ̄.

Such a limitation can be circumvented, at least in cubic crystals,
by considering a more general class of deformations that cannot be
straightforwardly described as bulk acoustic phonons. For example,
as we shall see in the next section, the open-circuit internal field that

j The function f is, in all respects, analogous to that introduced by Martin in his
seminal work on piezoelectricity.3
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is linearly induced by bending a free-standing slab is a bulk property
of the material. Since the electric field is uniquely determined
by the induced charge density this gives us, in principle, access
to the transverse component of the electronic flexoelectric tensor
without the need for calculating the polarization response. A bending
deformation can be conveniently simulated (although at the price of a
significantly higher computational cost) by adopting a slab geometry,
and by performing a long-wave analysis analogous to that described
here to the corresponding slab supercell.

A formal derivation clarifying whether such a procedure does
indeed yield the same transverse flexoelectric component as the
P-response theory is still missing, due to subtleties at both the
conceptual and technical levels. We shall refer to these issues again
in the discussion following equation (101). In the remainder of the
chapter we shall disregard such issues, and provisionally assume that
this relationship holds, i.e. that the bending-induced open-circuit
(OC in equation (50)) E-field and the corresponding component of
the flexoelectric tensor are related by

∂EOC
x

∂εyy,x
= −µ

II
xx,yy

ε0ε̄r
, (50)

[for a beam bent as in Fig. 6(b)], where ε̄r is the (isotropic) relative
permittivity of the material. We shall use equation (50) from now on,
whenever necessary, to resolve the aforementioned indeterminacy in
the transverse components of µ̄.

Note that this issue does not apply to the simpler case of the
piezoelectric response. In fact, one can write that

J
(1,γ)
αβ + J

(1,α)
γβ = Q

(2,αγ)
β . (51)

(Recall that the basis sum of the J(1) tensors essentially coincides
with the frozen-ion piezoelectric tensor, and that Q(2) is the dynam-
ical quadrupole tensor.) The above equation can be readily inverted,

J
(1,γ)
αβ =

1
2

[
Q

(2,αγ)
β +Q(2,αβ)

γ −Q(2,βγ)
α

]
, (52)
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which provides an alternative derivation of Martin’s theory3 of
piezoelectricity. For completeness, it is useful to mention that, at
order zero, the relationship between J- and Q-tensors is even more
direct,

J
(0)
α,κβ = Q

(1,α)
κβ = Z∗

κ,αβ, (53)

where Z∗
κ is the Born effective charge tensor associated with the κ

sublattice. Thus, both J(n) and Q(n+1) can be regarded as higher-
order generalizations of the dynamical charge concept, although
starting from n=2 (which is relevant for flexoelectricity) the former
quantities generally carry more information than the latter ones.

2.5.1. Spherical term, pseudopotential dependence,

and the non-interacting spherical-atom paradox

As an illustration of the above derivations, it is useful in this context
to work out a simple toy model that can be solved analytically; this
will be also useful to point out some unconventional aspects of the
flexoelectric response that have no counterpart in earlier theories
of electromechanical effects in solids. We consider a rocksalt ionic
crystal such as NaCl or MgO, and suppose that a longitudinal strain
gradient develops along the (100) direction. Here we shall focus on
electronic effects only, so that the atomic x coordinates undergo
displacements that are a predetermined quadratic function of x with
no further relaxations. For the time being we shall also assume that
the crystal is perfectly ionic, i.e. that its electronic charge density
can be approximated by a superposition of spherical closed-shell ions
whose shape is not altered by changes in bond distances, etc. With
the above assumptions in mind, one can perform an average of the
electrostatic potential in the yz planes, and express the result as a
one-dimensional (1D) function of x. The atomic planes will appear as
a periodic arrangement of potential wells (each well corresponding to
a single charge-neutral monolayer), whose shape will reflect the radial
distribution of electrons in the constituent ionic species. For the
present purposes, the fine details of the potential wells are irrelevant;   
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the only important quantity will be

K = −e
∞∫

−∞
V ML(x) dx, (54)

where V ML(x) is the yz-averaged electric (Hartree) potential VML(r)
generated by one monolayer, and −eV ML(x) is the corresponding
electron potential energy. Thus, for purposes of illustration we can
represent the potential-energy wells as non-overlapping rectangular
dips of area |K|, whose shape is fixed and independent of the
surrounding neighbors, as sketched in Fig. 1(a). As the wells are all
identical and their separations are uniform in the undistorted crystal,
the macroscopic electron potential energy obtained by convoluting
the corresponding microscopic function with an appropriate low-
pass filter,17 shown as a dashed line in Fig. 1(a), is constant. After
freezing in the strain gradient deformation pattern, as shown in
Fig. 1(b), the interlayer distance increases linearly along the chosen
axis, leading to a constant slope in the macroscopic electrostatic
potential and, hence, to a uniform electric field throughout the bulk
crystal. This result points to a non-zero flexoelectric coefficient of
purely electronic origin, since we explicitly neglected possible internal
strains.

E

E=0
(a)

(b)

Figure 1. Simplified sketch of the planar-averaged electron potential energy,
−eV (x) (black curves) for (a) an undistorted crystal, and (b) a crystal with
a uniform longitudinal strain gradient. The dashed lines show the macroscopic
averages of the aforementioned functions.   
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There are several important questions that naturally arise at
this stage. The first obvious one is whether (and if yes, how)
the outcome of Fig. 1 can be rationalized in the context of the
theory developed in this chapter. A second and less obvious issue
arises in pseudopotential-based first-principles calculations, where
one may wonder whether and how the results depend on choice of
pseudopotential. The third question concerns the physical nature of
the electric field that we describe in Fig. 1(b). Does it, for example,
produce a direct force on charged particles such as electron and hole
carriers and ionic cores?

To answer the first question, it suffices to suppose that the
electrostatic potential wells are generated by a regular lattice of
spherical charge distributions. To make things simple, consider a
monatomic lattice, as for a rare-gas solid, that we construct by
periodically repeating a spherical charge distribution ρ0(r). We
assume that the volume of the unit cell Ω(r) depends smoothly on
space as a result of an inhomogeneous macroscopic deformation. One
can show (see Supplementary Note 1 of Ref. [15]) that the resulting
macroscopically averaged (in 3D) electric potential is given by

V (r) = − 1
6ε0Ω(r)

∫
d3s s2ρ0(s) = − 1

6ε0Ω(r)
OL, (55)

where OL = 4π
∫
ds s4 ρ0(s) is the isotropic quadrupole momentk of

the static charge distribution ρ0(r). Equivalently, it is the longitudi-
nal component OL =

∑
κQ

(3,xxx)
κx of the dynamical octupole tensor

defined in equation (47), as follows from straightforward algebra.
In the linear regime (small deformations) we have

Ω(r) � Ω(1 + det [ε(r)]), (56)

which leads to the variation in the macroscopic electrostatic potential
induced by the deformation,

∆V (r) =
1

6ε0Ω
det [ε(r)]OL. (57)

k That is, the trace of the 3×3 second-moment tensor.   
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Assuming that the crystal has cubic symmetry and making use
of equation (50), this yields, after some algebra, two of the three
independent components of the flexoelectric tensor

µ̄II
αα,ββ =

OL

6Ω
. (58)

(In the case of a biatomic ionic crystal one simply needs to replace OL

with the sublattice sum of the dynamical octupoles of the individual
atoms.) By using the relationship between J-tensors and Q-tensors
discussed earlier in this section, it is not difficult to deduce that the
third component, µ̄II

αβ,αβ with α �= β, must be zero. Summarizing the
above, the three independent components (longitudinal, transverse
and shear) in a rigid-sphere crystal read as

µ̄II
xx,xx =

OL

6Ω
, µ̄II

xx,yy =
OL

6Ω
, µ̄II

xy,xy = 0. (59)

This demonstrates that the effect illustrated in Fig. 1 is indeed a
natural consequence of the theory developed in this chapter.

We now turn to the second question, concerning the use of pseu-
dopotentials in first-principles calculations, as discussed in Ref. [12].
One aspect of the pseudopotential approximation is the replacement
of the all-electron charge density ρAE(r) by a pseudo charge density
ρPS(r) in the core region of the atom. Since these charge densities are
essentially rigid and spherically symmetric, the above considerations
apply to them. As a result, to compensate for the use of the
pseudopotential, one should add a “rigid core correction”

ORCC
L,κ = 4π

∫
ds s4

[
ρAE

κ (r) − ρPS
κ (r)

]
, (60)

to the longitudinal dynamic octopole of each atom κ to recover
the all-electron result. This propagates into a change ∆Q(3,xxx)

κx =
3∆Q(3,xyy)

κx = ORCC
L,κ , and to a change of µ̄II

xx,xx and µ̄II
xx,yy (but not

µ̄II
xy,xy) by

∑
κO

RCC
L,κ /6Ω.l

l Recall that we work in the framework of equation (50), i.e. we extract the
flexoelectric tensor components from the induced electrostatic potential, rather
than from the polarization response.   
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This rigid-core correction is not small, and is not independent of
the details of pseudopotential construction. Therefore, two different
calculations of the bulk flexoelectric response cannot be directly
compared unless this correction has been applied in both cases.
Nevertheless, as long as the same pseudopotential is consistently used
in the calculation, predictions of physical, experimentally measurable
quantities should not be affected by this correction. In particular, we
shall see in Section (2.6) than ORCC

L,κ makes an equal and opposite
contribution to the surface contribution. Because of this cancelation,
the total (bulk and surface) flexovoltage response [see equation (61)]
can be computed without the need for including this correction.

The third question, regarding the physical nature of the resulting
electric field, requires taking a closer look at some earlier works on the
theory of absolute deformation potentials.18,19 (These can be regarded
as the foundation of the modern theory of flexoelectricity, even if they
were aimed at addressing a slightly different physical problem.) In a
nutshell, if we wish to draw a band diagram of a crystal subjected
to a strain-gradient deformation, knowledge of the macroscopic
electrostatic field is not sufficient. Indeed, the relative location of the
valence-band maximum or conduction-band minimum with respect
to the electrostatic reference is itself a function of the local strain
(via the so-called band-structure term), which implies that each band
will “see” a different electric field, see Fig. 2. This means that one
band edge may be perfectly flat, and the corresponding carriers feel
no force whatsoever, even while the other band edge and/or the
mean electrostatic potential can be strongly tilted.m In fact, even
a metal subjected to a strain gradient will generally have a non-
zero internal macroscopic electric field arising from a gradient in the
mean electrostatic potential, although no current will flow. Thus,
one should be careful not to interpret the macroscopic electric field
produced by the flexoelectric effect in a longitudinal acoustic wave
as a “real” physical field; it is just the tilt of some arbitrary reference

m The tilt of the mean electrostatic potential will also depend on choice of
pseudopotentials when these are employed, but the tilt of the valence and
conduction band edges will not.   
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−

Figure 2. Sketch of valence bands and conduction bands for a slab with a strain
gradient across its width. Dashed line indicates the macroscopic electron potential
energy V (x) = −eφ(x). Hole carriers feel no force because the VB maximum is
flat, while electron carriers feel a force to the right, both of which are contrary to
naive expectations based on the electric field pointing to the right in the interior
of the slab.

energy that may have little to do with the phenomenon of interest
in a given specific case. Just as for the notion of a “flexoelectric
field”, care must be used when speaking of “short-circuit” and “open-
circuit” electrical boundary conditions, as these are ambiguous in the
non-periodic strain-gradient world.

In light of the above arguments, it is legitimate to wonder whether
the bulk flexoelectric effect is experimentally measurable at all. In
fact, there are good reasons to believe that the tilt of the mean
electrostatic potential does not provide a realistic description of the
response — at least no more realistic than other reference energies
(e.g. the conduction band bottom, or the valence band top, or the
Fermi level). First, as we have argued above, the present theory yields
a finite open-circuit “flexoelectric field” even in a metal, which is
physically inconsistent. Second, if we go back to the example of the
non-interacting spherical atoms, there are apparent inconsistencies as
well: Since we have assumed that each potential well is independent
of its environment, its motion cannot, in principle, be detected by
an electrode that is placed at the far-away surface of the sample —
and yet, the bulk flexoelectric coefficients do not vanish. We have,   
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therefore, a sort of paradoxical situation, where the presence of a
macroscopic electric field inside the material is indisputable, but at
the same time there cannot be any open-circuit voltage, because of
the hypothesis of rigid potential wells (which excludes long-range
effects). To resolve these paradoxes, and place the present theory
in the right context regarding experimental measurements, it is
necessary to account for surface effects. We shall see how to do this
in Section 2.6.

2.6. Surface Effects

Knowing whether a given physical property is sensitive to the details
of the sample surfaces is a matter of central importance in condensed
matter theory. In the majority of cases (e.g. piezoelectricity), surfaces
typically start to matter only at small length scales, where they
are responsible for deviations in the measured property from the
corresponding bulk value. There are situations, however, where such
a sensitivity to the crystal termination persists up to the macroscopic
scale; flexoelectricity belongs to this category. In the present section,
we shall elaborate on this statement from a heuristic point of view,
which is anyway sufficient to illustrate the most relevant physical
ideas. A more formal discussion, based on a microscopic theory
of the response to deformations, will be presented in Sections 2.7
and 2.8.

In order to calculate the flexoelectric response of a finite object
such as a slab it is appropriate to consider, rather than the induced
macroscopic polarization, the open-circuit voltage ∆V produced
by the deformation.n We shall only focus, in the following, on
contributions that tend to a finite constant in the limit of infinite
thickness t, and introduce the flexovoltage coefficient,

ϕxλ,βγ = lim
t→∞

1
t

∂∆V
∂εβγ,λ

. (61)

n We indicate here by ∆V the total potential step that builds up, as a consequence
of the mechanical deformation, between the two vacuum regions located at either
side of the slab.   
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Recall that εβγ,λ = ∂εβγ/∂rλ is the gradient of the symmetric strain
tensor along the Cartesian direction rλ, and x indicates the direction
normal to the surface.o For simplicity, here we shall also restrict our
analysis to strain gradients of the type εαα,x, i.e. a diagonal (either
longitudinal or transverse) component of the symmetric strain tensor
that is linearly growing across the slab thickness. (These are sufficient
to describe the bending of a free-standing slab; a more general
analysis, including the shear component, is deferred to Section 2.8.)
We shall write the flexovoltage coefficient as a sum of bulk and
surface-specific contributions,

ϕxx,αα = ϕbulk
xx,αα + ϕsurf

xx,αα, (62)

whose explicit forms will be derived in the following paragraphs.

2.6.1. Electronic surface response

First let us consider only the purely electronic (frozen-ion) response.
Strain gradients of the type εαα,x are governed by equation (50);
in our present notation this implies that the (open-circuit) uniform
electric field that builds up in the interior of the slab as a consequence
of the deformation is uniquely given in terms of the bulk flexoelectric
coefficient of the material and its macroscopic dielectric constant by

∂Eslab
x

∂εαα,x

∣∣∣∣
frozen−ion

= − µ̄
II
xx,αα

ε0ε̄r
. (63)

Here ε0 and εr are the vacuum and relative permittivities, respec-
tively, while µII is the type-II flexoelectric tensor; as before, we use
the bar symbol to distinguish frozen-ion quantities from fully relaxed
ones. Since the electric field is minus the derivative of the potential,
the bulk internal field contribution to the overall open-circuit voltage

o In spite of its notation, ϕxλ,βγ should not be thought as a tensor. First, the
surface contribution depends on the specific details of the crystal termination,
and is therefore not a simple function of the surface plane orientation. Second,
the bulk contribution is defined in fixed-D boundary conditions and therefore
it has a non-analytic behavior [see equation (29)] in all materials except those
characterized by cubic crystal symmetry.   
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is then proportional to t, leading to a finite contribution to the overall
flexovoltage coefficient that we identify with ϕ̄bulk,

ϕ̄bulk
xx,αα = −∂E

slab
x

∂εαα,x

∣∣∣∣
frozen−ion

=
µ̄II

xx,αα

ε0ε̄r
. (64)

The surface contribution ϕsurf in equation (62) originates from
the fact that a surface can always be characterized by a potential
offset φ between the macroscopic potential just inside and just
outside the surface, and that this offset is different for the two
surfaces in the presence of a strain gradient. Consider first the
case of a uniform strain εαα applied to a slab of thickness t, as
shown in Figs. 3(a) and (b). The figure shows the derivative of the
macroscopic electric field (Panel a) and electron potential energy
(Panel b) with respect to the applied uniform strain εαα, and ϕsurf is
the corresponding derivative of the potential offset φ. The variation
of φ with strain can be regarded as resulting from the fact that
the surface, by virtue of its lack of inversion symmetry, is locally
piezoelectric.p For the slab as a whole, however, a uniform strain
does not produce a net voltage, since the induced potential offsets
on either side of the slab cancel each other, consistent with the fact
that the overall slab is non-piezoelectric.

In the case of a strain-gradient deformation, on the other hand,
the local strains at the opposite surfaces are opposite in sign, and do
not cancel out, as illustrated in Figs. 3(c) and (d). The slab is taken
to extend over −t/2 < x < t/2 with local strain εαα(x) = xεαα,x,
reaching values of εαα = ±(t/2)εαα,x at the two surfaces. The figure
shows the derivative of the field (Panel c) and potential (Panel d)
with respect to (εαα,xt). This means that the induced potential offsets
at the two opposite surfaces have the same sign and add up in a
flexoelectric experiment, leading to a surface contribution of the form

ϕ̄surf
xx,αα =

∂φ

∂εαα

∣∣∣∣
frozen−ion

. (65)

p In another language, we are basically describing a strain dependence of the
surface work function, although technically the latter is referenced to the valence
band maximum rather than the average potential in the subsurface region.   
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(a) (c)

(b) (d)

Figure 3. (a) and (b): Linear response of the electric field (a) and the electric
potential (b) to a uniform strain applied to a film of thickness t. The function
EU (where U indicates “uniform”) can be regarded as representing a surface
piezoelectric response (surface dipole layer appearing in response to strain). (c)
and (d): Linear response of the field (c) and the potential (d) in the case of a
strain gradient. The sketch shows the derivative with respect to (εαα,xt) for a
strain variation εαα(x) = xεαα,x in a slab extending from −t/2 < x < t/2. The
field response contains two contributions. The first is given by EU, appropriately
scaled by the linearly varying local strain. Note that the induced surface dipoles,
schematically illustrated by arrows, now point in the same direction. The other
is given by genuine strain-gradient effects contained in EG, which essentially
reflects the bulk flexovoltage response. The resulting potential response in (d)
thus consists in a macroscopic internal field plus a surface dipole contribution.

The total flexovoltage coefficient then reads as

ϕ̄xx,αα =
µ̄II

xx,αα

ε0ε̄r
+ ϕ̄surf

xx,αα. (66)

The above derivation allows us to solve the paradoxes that we
mentioned at the end of the previous section. First, recall that we
encountered some difficulties in giving a physical interpretation to the
“internal electric field” that is induced by a strain gradient, as such a
field depends on the reference energy (i.e. Bloch electrons in different
eigenstates do not experience the same electrical force). This issue is
easily solved by observing that the surface potential offset φ suffers   
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from the same ambiguity as the bulk flexoelectric field; we defined
it relative to the macroscopically averaged electrostatic potential
under the surface, but we could have used the valence or conduction
band edge instead. It is easy to see that the respective ambiguities
contained in the surface and bulk terms exactly cancel, yielding an
overall flexovoltage coefficient that is uniquely defined. Next, we
have observed that there is an apparent physical inconsistency in
the rigid-spherical-atom model, in that there should be no overall
voltage response to a strain gradient, and yet the bulk flexoelectric
coefficient does not vanish. It is easy to see that, once the surface
contribution is taken into account, the total flexovoltage response of
a slab made of non-interacting spherical atom is zero as it should be.
Indeed, when such a slab is subjected to a uniform strain, its surface
potential voltage response is

ϕ̄surf
xx,xx = ϕ̄surf

xx,yy = − OL

6ε0Ω
, (67)

since a positive longitudinal or transverse strain increases the spacing
between the atomic spheres and thereby reduces the surface potential
offset. But, using equations (58) and (64) (and the fact that ε̄r = 1
for this model), this is exactly −ϕ̄bulk

xx,αα, leading to the claimed
cancelation in equation (66). This cancelation also explains why the
replacement of the all-electron by the pseudo core charge density
in the context of pseudopotential calculations has no effect on
the total flexovoltage response, so that the rigid-core correction of
equation (60) can be neglected, as was claimed in Section 2.5.1.

Note that the spherical atom model, in spite of its simplicity,
is crucial to understand how flexoelectricity works in real materials.
As we shall see in the results section, there generally tends to be
a large cancelation between surface and bulk contributions to the
flexoelectric effect. This happens because, even in covalently-bonded
materials, the electronic charge distribution that is dragged along
by each atom during its motion is largely constituted by a spherical
shell, with comparatively smaller aspherical components. Spherical
objects do not contribute to the overall flexovoltage coefficient of a
slab, hence the aforementioned cancelation.   
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This gives a measure of the importance of the surface contribu-
tion — only when it is correctly taken into account together with
the bulk term we obtain a meaningful physical quantity. Therefore,
asking whether the surface contribution is “large or small” compared
to the bulk effect is a poorly formulated question; the two must
always go hand in hand. Instead, a more physically meaningful
question is “How strong is the dependence of the surface contribution
on its atomic and electronic structure?”

Based on these considerations, one can attempt to give an answer
to a long-standing question that has been somewhat controversial in
recent years: “Is flexoelectricity a bulk property?” As we said above,
if by “flexoelectricity” we refer to the result of a typical flexoelectric
experiment (i.e. where the induced current upon bending a short-
circuited slab is measured), the answer is no. Conversely, if by the
same name we call the current flowing through the bulk of the
material while well-defined internal electrical boundary conditions
are imposed, then the answer is yes. The problem is that the internal
electrical boundary conditions depend on the externally-applied ones
in a way that is surface-dependent, and unlike in the case of most
known material properties, such a dependence persists in the limit
of a macroscopically thick sample. All in all, in the present context
we would rather stay away from the traditional rigid classification
into bulk properties and surface properties, as flexoelectricity, strictly
speaking, does not belong cleanly to either category.

2.6.2. Lattice surface response

We now discuss how the above conclusions need to be modified
when full ionic relaxations are incorporated — these are, of course,
of the utmost importance for a realistic description of the flexo-
electric effect. Essentially, the above conclusion still hold, except
for two important details: (i) the frozen-ion quantities (flexoelectric
coefficient, dielectric constant, surface potential response) need to
be replaced with their relaxed-ion counterparts; (ii) an effective
deformation, given by an appropriate linear combination of, e.g. a
longitudinal and transverse strain gradient, need to be considered in
place of the individual tensor components.   
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To illustrate the implications of (i) and (ii) in a practical
situation, it is useful to work out the explicit formulas for the
simplest case of an unsupported slab subjected to bending.q Linear
elasticity dictates that a transverse strain gradient (corresponding
to a “frozen-ion” bending deformation) at static equilibrium must
be accompanied by a longitudinal strain gradient, which for most
materials will have opposite sign compared to the transverse one.
In fact, the top layers of the slab (“top” here means furthest from
the bending center) are under tensile strain, and this typically
induces a longitudinal contraction of such layers, whose magnitude
is related to the Poisson’s ratio of the material. Conversely, the
bottom layers are transversely compressed, and will therefore expand
longitudinally by an equal amount. This means that, to calculate the
static flexovoltage coefficient of a bent slab, we need to consider the
“effective” deformation

εyy,x = εeff,x; εxx,x = −νεeff,x, (68)

rather than the individual strain-gradient tensor components, where

ν =
Cxx,yy

Cxx,xx
(69)

is uniquely given by the elastic constants of the bulk material.
Consequently, when the ions are relaxed, we shall be concerned
with an effective flexovoltage coefficient reflecting the aforementioned
mechanical equilibrium condition,

ϕxx,eff =
µII

xx,eff

ε0εr
+

∂φ

∂εeff
, (70)

where

εyy = εeff ; εxx = −νεeff (71)

refers to an analogous linear combination of the uniform strain
components.

q We shall exclusively focus, for the time being, on the plate-bending regime,
where any deformation (e.g. anticlastic bending) along the main bending axis is
forbidden. More general situations will be considered in the later sections.   
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The fact that, even at the level of the surface contribution, we
have an effective response to a combined transverse and longitudinal
strain is fully consistent with the behavior of an unsupported slab
subjected to uniform in-plane tension. In such a situation, the
relaxation will affect not only the surface atoms, but will also extend
to the entire slab, leading to a contraction in the 3D proportional to
the bulk coefficient ν. Thus, for a free film in a relaxed-ion context, it
is only meaningful to consider the response of the surface potential
offset φ to εeff , and not to the individual εyy or εxx components;
the former is precisely the quantity that enters the total flexovoltage
coefficient in equation (70).

Of course, one generally needs to consider more realistic mechan-
ical boundary conditions than that of a free-standing film. In such
cases, some of the specifics of the above example are no longer valid
(e.g. the absence of surface loads). Still, the points (i) and (ii) are
applicable to the most general case.

2.7. Electronic and Lattice Response Revisited:

Curvilinear Coordinates

In the early sections of this chapter we have described a fundamental
theory of the bulk flexoelectric effect, based on a first-principles
quantum-mechanical description of the insulating crystal. Later, in
Section 2.6 we have argued, based on heuristic arguments, that there
are important surface contributions to the flexoelectric response of
a finite sample, and that these need to be accounted for when
discussing experimental results. Here, we shall put the derivations of
Section 2.6 on firmer theoretical grounds by developing an alternative
approach. In particular, we shall clarify how to describe the micro-
scopic charge and current responses to an arbitrary inhomogeneous
strain field in terms of cell-periodic response functions. Such a
formalism is necessary in order to treat, in full generality, the
response of a finite (and hence, spatially inhomogeneous) body
to a deformation. As we shall see later, this will be useful not
only for the formal derivation of the surface contributions to the
flexoelectric effect in finite samples, but also for the practical   
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calculation of the transverse bulk components of the flexoelectric
tensor. (Recall that such components are presently difficult to access
at the bulk level.) Given its rather technical character, and the fact
that the most relevant physical results have already been presented
in Section 2.6, this section and the following can be skipped on a first
reading.

2.7.1. A simple 1D example

In order to establish a microscopic theory of deformations, the first
issue one needs to address concerns the proper representation of the
scalar and vector fields that describe the physical property of interest
(e.g. atomic positions, electronic charge density, etc.). To appreciate
the nature of the problem, it is useful to analyze the charge-density
response of a simple lattice to a macroscopic deformation. Consider
a 1D chain of equally spaced atoms, which we represent as a regular
array of Gaussian charge distributions as in Fig. 4(a). Its unperturbed
charge density is

ρ(x) =
∑

n

ρ0(x−Rn), ρ0(x) =
1

σ
√
π
e−x2/σ2

, (72)

where Rn = na is an integer multiple of the lattice parameter a.
Now, we apply a uniform expansion to the chain by displacing each
atom by

un = εRn, (73)

and we look at how the charge density responds to such a pertur-
bation. In the linear limit (small lambda) we obtain the response
function ∂ρ(x)/∂ε that is plotted as the black curve in Fig. 4(b). The
form of ∂ρ(x)/∂ε is manifestly problematic: such a function grows
linearly when moving away from the origin, i.e. it is clearly non-
periodic, which contrasts with the fact the system remains periodic
after the application of the perturbation. Moreover, it introduces
an undesirable dependence of the result on the arbitrary location of
the coordinate origin. Such issues become even more severe when   
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Figure 4. (a) Unperturbed charge density of model 1D crystal composed of
Gaussian charge packets. (b) Change of charge density in linear response to a
uniform strain (solid line) or strain gradient (dashed line).

considering a strain-gradient perturbation of the type

un =
η

2
R2

n. (74)

The charge density response, plotted as the dashed curve in Fig. 4(b),
now grows quadratically with the value of the unperturbed atomic
position, and extracting any relevant physical information from such
a function appears difficult.

The solution of the above problems comes from the realization
that the fixed laboratory frame is a poor choice of coordinate
system if we wish to represent the response to a macroscopic
elastic deformation. In such a frame, the boundary atoms in a large
crystallite have to move very far from their original location even if
the applied strain is small; if we naively take the difference in the
charge density from the original to the current state we obtain a   
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result that has little physical meaning, and most likely will strongly
deviate from the linear regime that we have in mind. A viable
alternative is to treat an elastic deformation as a deformation of
space, rather than an atomic displacement pattern. This implies
applying a coordinate transformation that exactly reproduces the
macroscopic elastic deformation.r From this viewpoint, the atoms
do not explicitly move from their original location, although they do
move with respect to the laboratory frame because the coordinate
system itself is changing.

To be explicit, consider a distortion r′ = r + u(r) that maps
point r in the original periodic crystal into point r′ of the distorted
crystal, and such that a nucleus at Rlκ would be carried to R′

lκ =
Rlκ + u(Rlκ) if one neglects the additional internal displacements
arising from the lattice effects described in Section 2.4. If the initial
charge density ρ0(r) were also carried along by this distortion, the
new charge density would be

ρref(r′) = ρ0(r) det−1(h), (75)

where the Jacobian factor involving hαβ = ∂r′α/∂rβ = δαβ +∂uα/∂rβ
is needed to reflect the dilution or concentration of charge density.
In fact, the actual charge density ρ(r′) has to be computed from
the appropriate physical laws (e.g. first-principles DFT calculations),
so it will not be equal to ρref(r′). However, we may hope that
the difference ρ(r′) − ρref(r′) is small, and we want to express
this difference in terms of the original spatial variable r. This is
conveniently done by defining

ρ̂(r) = ρ(r′) det(h), (76)

so that our small quantity is ∆ρ̂(r) = ρ̂(r) − ρ0(r). Note that
ρ̂(r) describes the actual charge density after the deformation, but
transformed back to the original coordinate system; the hat symbol is

r Recall that a deformation of a continuum is a 3D–3D mapping of each material
point to its perturbed location, i.e. it has the exact same mathematical form as
a coordinate transformation.   
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Figure 5. (a) Same as in Fig. 4(a). (b) Change in charge density, when expressed
in transformed coordinates, for a uniform strain (solid black line) or a strain
gradient (dashed dark gray line). The latter, while not periodic, can be expressed
as a sum of black and light gray contributions (the latter was magnified by a
factor of 50), as explained in the text.

used henceforth to highlight quantities that describe the transformed
system from the curvilinear-coordinate point of view.

In Fig. 5, we again perform the same analysis as in Fig. 4,
illustrating how the use of coordinate transformations effectively
solves the problems that we pointed out earlier. Figure 5(a) shows the
same charge density at rest. As before, in this model we assume that
the actual charge densities shift rigidly with the nuclei. In Fig. 5(b)
we plot as the black solid curve the induced density ∂ρ̂(x)/∂ε for a
uniform strain. The response is now periodic and much smaller in
magnitude than before (note the scale change). We shall denote this
response function as ρU(x), where ‘U’ indicates a ‘uniform’ strain.
The response to a strain gradient, shown as the dashed curve, is   
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still not periodic, although it now has a milder dependence on the
spatial coordinate, growing only linearly rather than quadratically
with x. Remarkably, however, we can write this response as a linear
combination of two cell-periodic functions,

∂ρ̂(x)
∂η

= xρU(x) + ρG(x), (77)

where ρU(x) is the same as above (response to uniform strain), and
ρG(x) is a new quantity, reflecting the genuine strain-gradient effects
(shown as a thick light gray curve in the figure, where it has been
magnified by a factor of 50 to better illustrate its functional form).
Since we are considering a uniform strain gradient above, we have
ε(x) = xη, so that we can write

∆ρ̂(x) = ε(x)ρU(x) +
dε(x)
dx

ρG(x) + · · · . (78)

In other words, we have achieved a closed expression for the induced
charge density ∆ρ̂(x) that depends only on proper measures of the
local deformation, with the only hypothesis that the local strain ε(x)
varies slowly on the scale of the interatomic spacings.

Several questions naturally arise from the above discussion. First,
how general is such an analysis? For our illustrative example above
we have used a trivially simple system, and a single (longitudinal)
strain (or strain gradient) type, so it is legitimate to wonder whether
the same procedure is applicable to a full first-principles simulation in
3D. Second, what do we do with ∆ρ̂(x) once we have calculated it?
To make the discussion relevant for flexoelectricity it is necessary
to trace a direct link between ∆ρ̂(x) and measurable electrical
quantities, such as the macroscopic polarization in short-circuit, or
the induced voltage in open circuit. We shall address both questions
in the remainder of this section.

2.7.2. General formalism in 3D

Regarding the general applicability of the coordinate transformation
method, there are several conceivable ways to proceed. One could, for
example, directly incorporate the curvilinear-coordinates formalism   
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at the level of the Kohn–Sham equations (borrowing from the
adaptive coordinate scheme of Gygi20) and, in a similar spirit as in
Ref. [21], directly perform the perturbation expansion with respect
to the metric tensor and its gradients. Alternatively — and we
shall follow this latter strategy throughout this chapter — one
can go back to the phonon analysis that we have introduced in
Section 2.2, this time focusing on the microscopic charge-density
response functions; the challenge here lies in converting these to the
curvilinear representation outlined in this section. We thus consider
a deformation

r′β(r) = rβ + Uβe
iq·r, (79)

which generates a simple frozen phonon

ul
κβ = Uβe

iq·Rlκ . (80)

For the moment we neglect the internal displacements leading to the
lattice response of Section 2.4, so that equation (80) is equivalent to
equations (9) and (10) with the q-dependent terms neglected, but
they will be restored shortly in Section 2.7.4.

In the linear limit, the charge density responds as

ρ(r) = ρ0(r) + ρqβ(r) eiq·r, (81)

where the cell-periodic part ρqβ(r) gets modulated by the same phase
factor as in equation (79). Inserting this in equation (76) gives

ρ̂(r) =
(
ρ0(r′) + Uβρ

q
β(r′)eiq·r

′)(
1 + iqγUγe

iq·r′
)
, (82)

where the last term in parentheses is the value of det(h) resulting
from equation (79). We now expand the cell-periodic response
function up to second order in q,

ρqβ(r) = ρ
(0)
β (r) − iqγρ

(1,γ)
β (r) − qγqλ

2
ρ

(2,γλ)
β (r). (83)

Since we are only collecting terms to first order in U in equation (82),
we can ignore the distinction between r and r′ in the cross terms,   
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but for the direct term we have

ρ0(r′) = ρ0(r + Ueiq·r) = ρ0(r) − Uβρ
(0)
β (r)eiq·r, (84)

where we have used that ∂βρ0(r) = −ρ(0)
β (r). Collecting all the terms

linear in U, we obtain

∆ρ̂(r) = Uβe
iq·r
[
iqβρ(r) − iqγρ

(1,γ)
β (r) − qγqλ

2
ρ

(2,γλ)
β (r)

]
. (85)

The ρ(0) terms have now canceled, as expected from the fact that the
coordinate transformation has removed the translational part from
the response.

After observing that the unsymmetrized strain and strain gradi-
ent are related to partial derivatives of the displacement field,

ε̃βγ(r) = iqγUβe
iq·r, (86)

ηβ,γλ(r) = −qγqλUβe
iq·r, (87)

we can readily write

∆ρ̂(r) = ε̃βγ(r)
[
δβγρ(r) − ρ

(1,γ)
β (r)

]
+
ηβ,γλ(r)

2
ρ

(2,γλ)
β (r). (88)

Finally, one can replace ε̃βγ with the symmetrized counterpart, εβγ

(the quantity in the square brackets is invariant upon βγ exchange13),
and replace ηβ,γλ with the type-II strain gradient tensor εβγ,λ.
This leads to an expression that is in all respects analogous to
equation (78),

∆ρ̂(r) = εβγ(r)ρU
βγ(r) +

∂εβγ(r)
∂rλ

ρG
βγ,λ(r), (89)

where the uniform (U) and gradient (G) terms are defined as follows,

ρU
βγ(r) = δβγρ(r) − ρ

(1,γ)
β (r), (90)

ρG
βγ,λ(r) =

1
2

[
ρ

(2,γλ)
β (r) + ρ(2,λβ)

γ (r) − ρ
(2,βγ)
λ (r)

]
. (91)

This result formalizes and generalizes the arguments of the first
part of this section: it shows that the microscopic charge density
response to an arbitrary inhomogeneous deformation can indeed   
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be computed (and rigorously expressed in terms of well-defined
response quantities) in a first-principles context, and for an arbitrary
combination of the relevant 3D deformation tensor components.

As a side note, one can show that the quantity ρU
βγ(r) essentially

coincides (apart from a trivial scaling factor) with the first-order
charge-density as defined by Hamann et al.21 within their linear-
response theory of strain based on the metric tensor. It will be
interesting in the near future to draw even closer connections between
the two formalisms, which bear several similarities at the conceptual
level.

2.7.3. Microscopic polarization response

In the above derivations we have focused on the charge-density
response of the system to an inhomogeneous deformation, but we
could have worked just as well with the microscopic polarization
response instead. This quantity is well defined only for infinitesimal
transformations, otherwise it depends on the specific path followed by
the system during its evolution; this is not an issue here, since we are
exclusively interested in the linear-response regime. The microscopic
polarization P(r) is related to the adiabatic current-density response
of the system to a time-dependent perturbation. Thus, in order to
construct an appropriate definition of this quantity in a generic
curvilinear frame, we need first to examine the transformation laws
of the current-density field J(r). To this end, let r′ = r+ u(r, t) be a
generic time-dependent coordinate transformation, which we suppose
to coincide, as usual, with the displacement field associated with the
mechanical deformation of the sample. (We suppose now that such
a deformation happens slowly over a finite interval of time.) In a
curvilinear framework the four-current, defined as Jµ = (ρ, j1, j2, j3),
transforms as

J̄µ =
∂x̄µ

∂xα
Jα det−1

[
∂x̄β

∂xγ

]
, (92)

where xµ = (t, x1, x2, x3) is the coordinate four-vector and the barred
(unbarred) symbols refer to the deformed (original) frame. We work   
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here in the non-relativistic limit with t̄ = t which implies that t̄ does
not depend on r, so that

ρ̄ = ρdet−1(h), (93)

J̄i =
(
ρ
∂ui

∂t
+ hijJj

)
det−1(h). (94)

(Latin indices refer to the 3D Cartesian space.) This leads to the
definitions

ρ̂ = ρ̄ det(h), (95)

Ĵi = (h−1)ij

[
J̄j − ρ̄

∂uj

∂t

]
det(h). (96)

The above expression for the curvilinear-frame charge density ρ̂

coincides with that postulated earlier in equation (76), showing that
this definition is, in fact, dictated by the fundamental transformation
laws of a scalar density field. Equation (96), on the other hand,
gives the desired expression for the curvilinear-frame current density
Ĵi, which we will use in the following to derive the microscopic
polarization response to an acoustic phonon perturbation.

As in the former case of the charge density response, we consider
a monochromatic acoustic phonon as in equation (79), again without
internal cell relaxations. This time, however, we allow the amplitude
of the displacement to depend on time,

r′ = r + u(r, t), uβ(r, t) = Uβ(t) eiq·r. (97)

(Henceforth we shall go back to using Greek indices for 3D space
coordinates, as we did in the previous sections.) In the adiabatic
limit, one has

J(r, t) = U̇β(t)
∂P(r)
∂Uβ

,

and, after dropping all terms that are quadratic in either Uβ or U̇β

[this implies setting hij = δij in equation (96)],

Ĵ(r, t) = U̇β(t)
∂P(r)
∂Uβ

− U̇(t)ρ0(r).
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Now, the microscopic polarization response can be written, as usual,
as a cell-periodic part times a phase, P(r) = Uβ e

iq·r Pq
β(r), which

immediately leads to

P̂α(r) = Uβe
iq·r
[
Pq

α,β(r) − δαβρ0(r)
]
. (98)

By following the same steps as for the case of the charge-density
response, we now proceed to expand Pq

α,β(r) in powers of q,

Pq
β(r) = P(0)

β (r) − iqγP
(1,γ)
β (r) − qγqλ

2
P(2,γλ)

β (r). (99)

From translational invariance, it is then easy to show that the zeroth-
order term

P
(0)
α,β(r) = δαβρ0(r), (100)

exactly cancels with the last term involving ρ0 in equation (98).
Eventually, we arrive at a provisional result for the linearly induced
polarization currents in the curvilinear frame of the deformed body
in the form

∆P̂α = εβγ(r)PU
α,βγ(r) +

∂εβγ(r)
∂rλ

PG
αλ,βγ(r), (101)

where the cell-periodic vector fields PU,G are

PU
α,βγ(r) = −P (1,γ)

α,β (r), (102)

PG
αλ,βγ(r) =

1
2

[
P

(2,γλ)
α,β (r) + P (2,λβ)

α,γ (r) − P
(2,βγ)
α,λ (r)

]
. (103)

To arrive at this equation, however, we have had to assume that
the currents generated by a global rotation are the same as those
obtained by rigidly rotating a classical charge density that is equal to
the true quantum-mechanical one. This assumption, which is implicit
in equation (50), was used to conclude that P (1,β)

α,γ (r) = P
(1,γ)
α,β (r), and

hence to replace the unsymmetrized (ε̃) with the symmetrized (ε)
strain tensor (see Section V.C of Ref. [13]). While such an assumption
was indeed valid in the charge-density case, it is not obvious that it is   
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justifiable in the present case of the microscopic polarization current.
Discussing this point in detail would take us far from the scope of
the present chapter; nevertheless, the reader is warned that there
are still some unresolved formal issues in the theory of the current-
density response.

Regardless of such issues, one can show that the functions ∆ρ̂
and ∆P̂ enjoy the fundamental relationship

∇̂ · ∆P̂(r) = −∆ρ̂(r), (104)

where ∇̂ · Â indicates the divergence of the vector field Â in
the curvilinear frame. (The hat is used to emphasize that the
differentiation is with respect to r rather than r′.) This reflects
a well-known fact, which is important in the specific context of
flexoelectricity: the induced charge density can be readily deduced
from the polarization, but not the other way around. As a matter of
fact, taking the divergence annihilates the solenoidal part of the ∆P̂-
field, which does contribute to the bulk flexoelectric tensor. (Recall
the relationship between dynamical octupoles and second moments
of the current-density response: the additional information contained
in the latter can indeed be ascribed to divergenceless polarization
currents that arise in response to an atomic displacement.)

2.7.4. Atomic relaxations

We now return to the inclusion of the internal atomic relaxations,
and describe how they can be conveniently incorporated in the
aforementioned theory; the practical implications regarding surface
effects will be discussed in Section 2.8.

The first important observation is that, given a strain field
εβγ(r, t) that depends slowly on space and time, the internal-strain
tensors that were introduced in Section 2.2 can readily be identified
with the microscopic lattice response of the crystal in the curvilinear
frame of the deformed body,

ul
κα(t) = εβγ(Rlκ, t)Γκ

αβγ +
∂εβγ(Rlκ, t)

∂rλ
Lκ

αλ,βγ + · · · (105)
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In particular, for a macroscopic strain gradient, the above relation-
ship reduces to

∂ul
κα

∂εβγ,λ
= Rlκλ Γκ

αβγ + Lκ
αλ,βγ . (106)

Next, it is easy to show that equation (101) still holds, provided
that we replace the purely electronic response functions with their
relaxed-ion counterparts,

PU
α,βγ(x) = P̄U

α,βγ(x) + P (0)
α,κρ(x)Γ

κ
ρβγ , (107)

PG
αλ,βγ(x) = P̄G

αλ,βγ(x) − P (1,λ)
α,κρ (x)Γκ

ρβγ + P (0)
α,κρ(x)L

κ
ρλ,βγ . (108)

(We have used the bar symbol here to denote the purely electronic
PU,G response functions and thereby distinguish them from the fully
relaxed quantities.) This formally extends the microscopic linear-
response theory discussed in this section to the relaxed-ion case.

2.7.5. Electrostatics in a curved space

Having established a convenient form for the microscopic charge and
polarization response functions, we still need to figure out how to use
them, e.g. how to calculate the voltage response V (r). This requires
some attention, given the fact that we are no longer working in the
Cartesian frame of the laboratory. In particular, one needs to replace
Gauss’s law with its “curvilinear” generalization22,23

∇̂ · (ε̂ · Ê) = ρ̂, (109)

where the vacuum permittivity has been replaced with the tensor

ε̂ = ε0 det (h)g−1, (110)

the hat on ∇̂ is again a reminder that the gradient is in the curvilinear
frame, g = h · hT is the metric of the deformation, and

Êα(r) = hαβEβ(r′) (111)   
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is the transformed electric field.s As ∇̂V (r) = −Ê(r), the above
strategy allows one to compute the induced electrostatic potential
from the induced polarization (or charge density).t

In the linear limit of small deformations, one has

ε0∇̂ · (∆Ê + ∆Emet) = ∆ρ̂(r), (112)

where ∆Ê(r) = −∇̂[∆V (r)] is minus the (curvilinear) gradient of
the induced electrostatic potential, ∆V , and ∆Emet, coming from
the linearization of ε̂, reads as

∆Emet
α (r) = εβγ(r) [δβγEα(r) − δαβEγ(r) − δγαEβ(r)], (113)

where Eγ(r) is the electric field in the unperturbed system. The
choice of notation ∆Emet is meant to suggest a “metric contribution
to the curvilinear-frame electric field”, but this is somewhat problem-
atic as it is not an irrotational field. Alternatively, ε0∆Emet could be
regarded as a “metric contribution” to the polarization, since one
can rewrite equation (112) in terms of ∆P as

ε0∇̂ · ∆Ê = −∇̂ · (∆P + ε0∆Emet
)
. (114)

However, this is not entirely satisfactory either, as ∆Emet does not
really originate from the displacement of charged particles. It is
probably most appropriate to interpret ε0∆Emet as a displacement
current arising from the effective change of permittivity associated
with the deformation of the reference frame.

In any case, equation (112) shows that the induced potential
∆V (r) contains, in addition to contributions from the rearrangement

s One can arrive at equation (109) by observing that, in a curvilinear frame,
Poisson’s equation reads as

√
g−1 ∂µ

`√
ggµν∂νV

´
= −ρ/ε0 where g = det (g) =

det2 (h), i.e. the Laplacian must be replaced with the Laplace–Beltrami operator.
Then, by defining ρ̂ =

√
gρ, Êν = −∂νV , and ε̂µν = ε0

√
ggµν , one immediately

recovers Eq. (109).
t It is interesting to note the close connection between the curvilinear-frame
electrical quantities (Ê and P̂) described here and the reduced electrical variables
(respectively ε̄α and pα) of Ref. [24], where a linear mapping was implicitly used
to connect lattice and Cartesian coordinates.   
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of the electron cloud occurring during the deformation (these are
contained in ∆ρ̂), also a term that depends on the local variation of
the metric at fixed charge density. We shall come back to this point
in the discussion of surface contributions to the flexoelectric effect
in Section 2.8. Note that, by construction, the microscopic electric-
field response to an arbitrary deformation enjoys an analogous
representation as the charge density response,

∆Êα(r) = εβγ(r)EU
α,βγ(r) +

∂εβγ(r)
∂rλ

EG
αλ,βγ(r), (115)

where both EU and EG are lattice-periodic functions whose explicit
expressions can be readily derived from equation (112).

2.7.6. Treatment of the macroscopic electric fields

Equation (112) specifies ∆Ê(r) modulo an r-independent integration
constant, ∆Ê whose value is fixed by the electrical boundary
conditions (EBC) of the problem. The electronic response functions
are typically defined (and calculated) by assuming ∆Ê = 0, i.e. short-
circuit (SC) EBCs, but any other EBC choice can be recovered if
the charge-density (and/or polarization) response to a macroscopic
electric field is known.u For example, in the case of the polarization
one can write

∆P̂α(r) = ∆P̂ SC
α (r) + ∆ÊβP

Eβ
α (r), (116)

where P
Eβ
α (r) = ∂Pα(r)/∂Eβ is the microscopic P response to

an applied field along β.25 The contribution of the macroscopic
field can be readily incorporated into the strain-gradient term (PG

in this case), as the macroscopic electric-field response in a non-
piezoelectric crystal vanishes at the uniform-strain level. Therefore,
equations (89), (101), and (115) remain valid in arbitrary EBC.

u Note that ∆Ê is first order in the perturbation, and therefore its contribution
to the electronic response functions is only due to the microscopic dielectric
properties of the unperturbed system.   
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2.8. Surface Effects in Curvilinear Coordinates

Recall that, in order to quantify the flexoelectric response of a free-
standing slab, we have introduced the flexovoltage coefficient ϕxλ,βγ .
Here, we shall demonstrate how this quantity can be rigorously
derived in the context of the microscopic theory developed in the
previous section. To express ϕxλ,βγ in terms of well-defined response
functions of the system, we shall follow the strategy of Section 2.7,
now specializing to the case of a supercell geometry. As before,
we shall derive the microscopic response of the system (charge
density, polarization, and atomic displacements) to a strain-gradient
deformation via a long-wave analysis of its acoustic phonons. With
the help of a coordinate transformation to the curvilinear frame of the
perturbed body, one can express such microscopic response functions
in terms of “proper” measures of the local deformation, i.e. in a
translationally and rotationally invariant form,

∆f̂(r) = εβγ(r)fU
βγ(r) +

∂εβγ(r)
∂rλ

fG
βγ,λ(r) + · · · . (117)

Here f̂ can stand for the charge density (ρ̂), polarization (P̂) or
electric field (Ê) expressed in the curvilinear frame. Note that the
cell-periodic functions fU and fG, referring respectively to uniform
and gradient terms, are characterized by an oscillatory behavior
on the scale of an interatomic distance, due to the discreteness
of the atomic lattice. As it is customary in the space-resolved
analysis of many other physical properties (e.g. dielectric response),
we shall assume in the following (unless otherwise specified) that
such oscillations have been filtered out by means of an appropriate
nanosmoothing17,26 technique.

2.8.1. Surface polarization and metric

To illustrate the above arguments in the present context, consider
a symmetrically terminated slab of a cubic material (we assume
that the surfaces are parallel to the yz plane), and perturb it with
a strain-gradient deformation. We assume for the moment that
the ionic coordinates simply follow the deformation; we shall lift   
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(a)                                 (b)                                     (c)

Figure 6. Schematic representation of the three types of strain gradient
described in the text. (a) Longitudinal, εxx,x. (b) Transverse, εyy,x. (c) Shear,
εxy,y. The x and y axes correspond to the horizontal and vertical directions in
the figure respectively. (Adapted from Ref. [27].)

this limitation in the next subsection. In order to calculate the
flexovoltage coefficient of the slab, we shall first derive the electric
field E(r) induced by the deformation under open-circuit electrical
boundary conditions. Then, by performing a line integral of E(r)
across the slab thickness, one can readily obtain the desired value of
ϕαλ,βγ . To calculate E(r) we need, in turn, two basic ingredients:
the microscopic polarization response, ∆P(r), and the “metric”
contribution to the polarization, ∆Emet. Regarding the former, after
nanosmoothing PU,G are functions of x only, and we can write

∂P̂α(r)
∂εβγ,λ

∣∣∣∣∣
frozen−ion

= rλP̄
U
α,βγ(x) + P̄G

αλ,βγ(x). (118)

The two response functions PU
α,βγ(x) and PG

αλ,βγ(x) have the physical
meaning of a local piezoelectric and flexoelectric coefficient, respec-
tively. Note that PU

α,βγ(x) differs from zero only in the vicinity of the
surface, as the bulk material is non-piezoelectric. The metric term,
on the other hand, reads as

∂Emet
α (r)

∂εβγ,λ
= rλ [δβγEα(x) − δαβEγ(x) − δγαEβ(x)] . (119)

This quantity, just like PU, is active only at the surface: the electric
field of the undistorted slab is non-zero (and directed perpendicular   
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to the surface plane) only in a small region where the crystal lattice
is perturbed by the truncation of the bonding network.

The details of the derivation differ, from now on, depending
on the specific type of flexovoltage response that one wishes to
calculate. It can be shown that, given the symmetry of the slab,
there are only three types of strain-gradient deformation that yield
a net open-circuit voltage in a cubic material: a variation of εxx

with x (longitudinal), εyy with x (transverse), or εxy with y (shear),
which are responsible for the flexovoltages ϕxx,xx, ϕxx,yy, and ϕxy,xy

respectively, in the notation of equation (61).

Longitudinal and transverse cases. In these two cases (which we
shall indicate as xx, αα), the system remains periodic in-plane, and
the problem becomes essentially 1D. We have, in particular,

∂P̂x(x)
∂εαα,x

∣∣∣∣∣
FI

= xP̄U
x,αα(x) + P̄G

xx,αα(x), (120)

∂Emet
x (x)

∂εαα,x
= xEx(x)(1 − 2δαx), (121)

(where FI is shorthand for ‘frozen-ion’). The polarization response
functions PU and xPU + PG are schematically illustrated for the
transverse case in Figs. 7(a) and (c) respectively. Given that both
vector fields are irrotational and vanish at infinity, one can safely
simplify equation (114) by removing the divergence sign on both
sides to get

∂Êx(x)
∂εαα,x

∣∣∣∣∣
FI

= − 1
ε0

[
xP̄U

x,αα(x) + P̄G
xx,αα(x)

]− xEx(x)(1 − 2δαx).

(122)

The frozen-ion flexovoltage coefficient of equation (61) can then be
calculated by writing the open-circuit potential associated with the
above field as

∆V = −
+∞∫

−∞
dx
[
xEU

x,αα(x) +EG
xx,αα(x)

]
, (123)
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(a)

(b)

(c)

(d)

Figure 7. Schematic representation of the polarization fields induced by different
macroscopic deformations of a slab of thickness t, drawn in the undistorted
reference frame. The x coordinate is vertical here. Left panels (a–b) illustrate
uniform strains; right panels (c–d) refer to uniform strain gradients. Top (a, c) are
transverse deformations (the situation is qualitatively identical in the longitudinal
case, not shown), bottom (b, d) are shear patterns. The surface region and
corresponding polarization field are indicated by light gray shading and black
arrows. White arrows on a dark gray background refer to the bulk region. The
dashed black frames indicate the type of deformation in each case. (Adapted from
Ref. [15].)

where

EU
x,αα(x) = − 1

ε0
P̄U

x,αα(x) − Ex(x)(1 − 2δαx), (124)

EG
xx,αα(x) = − 1

ε0
P̄G

xx,αα(x). (125)

The above functions enjoy a number of useful properties:

(i) EU
x,αα(x) vanishes everywhere except for a small region near the

surface at x ∼ ±t/2.
(ii) EU

x,αα(x − t/2) = −EU
x,αα(−x + t/2) is antisymmetric, and

independent of t for a sufficiently thick slab.   
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(iii) EG
xx,αα(x) corresponds to minus the bulk flexocoupling coeffi-

cient in the slab interior,

EG
xx,αα(x ∼ 0) = −ϕ̄bulk

xx,αα = −µ
bulk
xx,αα

ε0ε̄r
,

and only deviates from this value in a small region near the
surface;

(iv) EG
xx,αα(x − t/2) = EG

xx,αα(−x + t/2) is symmetric, and again
independent of t for a sufficiently thick slab.

Based on these observations, in the limit of large slab thickness one
can approximate equation (123) as

∆V ∼ −t
+∞∫
0

dxEU
x,αα(x) + tϕ̄bulk

xx,αα. (126)

(We assume that x = 0 is the center of the slab and x = +∞ is
deep in the vacuum region.) As the integral in the last equation is
independent of t, we can readily write

ϕ̄xx,αα = −
+∞∫
0

dxEU
x,αα(x) + ϕ̄bulk

xx,αα, (127)

whence we obtain

ϕ̄surf
xx,αα = −

+∞∫
0

dxEU
x,αα(x). (128)

The last equation states that the surface contribution to the flexo-
voltage response of a slab corresponds to minus the line integral of the
induced electric field upon application of a uniform strain. The latter
is, of course, the electrostatic potential offset response to uniform
strain, ∂φ/∂εαα, that we already discussed in Section 2.6. We have,
therefore, rigorously demonstrated that the flexovoltage response
of the slab indeed contains both bulk and surface contributions,
and that their nature is correctly described by equation (66). Note
that the derivations presented here, in addition to corroborating the   
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arguments of Section 2.6, allow us to make one step further and split
ϕ̄surf

xx,αα into a polarization current and a metric term,

∂φ

∂εαα
=

1
ε0

+∞∫
0

dxPU
x,αα(x) + (2δαx − 1)φ0. (129)

In the last term on the right, φ0 = − ∫ +∞
0 dxEx(x) is the potential

offset before the perturbation.
In summary, in the present case (longitudinal or transverse strain

gradient) the induced electric field in the interior of the film is a
bulk property of the material — it is given by the flexoelectric
coefficient divided by the macroscopic dielectric constant. The
surface contribution, on the other hand, acts as an induced potential
offset that grows linearly with slab thickness, and therefore scales
similarly to the bulk contribution, as illustrated in Fig. 3.

Shear case. The case of a shear deformation (xy, xy) is qualitatively
different from the former two cases.v Here, we have

∂P̂α(r)
∂εxy,y

∣∣∣∣∣
FI

= δαyyP
U
y,xy(x) + PG

αy,xy(x), (130)

∂Emet
α (r)
∂εxy,y

= −δαyyEx(x). (131)

Figures 7(b) and (d) illustrate the polarization fields that are linearly
induced by shear deformations. By taking the divergence of the
above vector fields, we can write the curvilinear Poisson’s equation,
equation (114), as a function of x only,w

ε0
∂Êxy,xy(x)

∂x
= −P̄U

y,xy(x) −
∂P̄G

xy,xy(x)
∂x

+ ε0Ex(x). (132)

v We mention this case for completeness, as it is not relevant for an unsupported
slab after full atomic relaxation, provided that we consider a region that lies far
(compared to the thickness, t) from the edges and/or the mechanical loading
points. We shall come back to this issue in Section 2.8.2.
w Note that the partial derivatives along y of both PU and PG vanish identically,
as these nanosmoothed functions are periodic in plane, and therefore only depend
on x.   
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[We have used the short-hand notation Êxy,xy(x) = ∂Êx(x)/∂εxy,y .]
Assuming that the field vanishes inside the slab,x we can then
calculate the macroscopic electric field in the vacuum region,

ε0
∂Êx(x = +∞)

∂εxy,y

∣∣∣∣∣
FI,SC

= σsurf
xy,xy + σbulk

xy,xy + σmet
xy,xy. (133)

(SC stands for ‘short-circuit.’) The three quantities on the right-hand
side have the physical dimension of a surface charge density and are
given by

σbulk
xy,xy = µ̄bulk

xy,xy, (134)

σsurf
xy,xy = −

+∞∫
0

dx P̄U
y,xy(x), (135)

σmet
xy,xy = ε0

+∞∫
0

dxEx(x) = −ε0φ0. (136)

In order to derive the flexocoupling coefficient, we need to switch
to open-circuit boundary conditions by imposing an external electric
field that exactly cancels the above vacuum field. We obtain

ϕ̄xy,xy =
1
ε0ε̄r


µ̄II

xx,αα −
+∞∫
0

dxPU
y,xy(x) − ε0φ0


. (137)

The total surface contribution coming from both the polarization
currents and from the metric is thus

ϕ̄surf
xy,xy =

1
ε0ε̄r


−

+∞∫
0

dxPU
y,xy(x) − ε0φ0


. (138)

Note that, in contrast with the transverse and longitudinal cases,
the internal electric field is no longer a bulk property here; the

x This is the natural choice for the electrical boundary conditions when considering
shear strain gradients — recall that they directly relate to transverse acoustic
phonons.   
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surface terms contained in ϕ̄surf
xy,xy manifest themselves as surface

charge densities that tend to a constant in the limit of large slab
thickness t, rather than dipole densities that grow linearly with t.
(In either case, the surface contribution to the flexovoltage response
of the slab scales similarly to the bulk term for increasing t.) These,
unlike in the previous two cases, need to be divided by the bulk
permittivity, as the bulk material dielectrically screens the additional
electric field produced by surface effects.

Spherical atom model. The formalism that we have developed
in this section allows us to complete the solution of the toy model
that we described at the end of Section 2.6, consisting of a finite
slab made of a lattice of rigid (and non-interacting) closed-shell
atoms. The solutions for all the contributions to the flexovoltage
response, now including the shear case and the aforementioned
separation of the surface term into polarization charge and metric
terms, are schematically illustrated in Fig. 8. (The details of the
derivations can be found in the Supplementary Notes of Ref. [15].)
As expected, in all cases the net voltage vanishes, consistent with
the physical expectations (a rigid displacement of spherical charge
distributions cannot lead to a long-range electrical perturbation).
By the same token, the pseudopotential rigid-core correction of
equation (60) has no effect on the net flexovoltage. Note, however,
that the bulk, surface-metric and surface-polarization terms cancel
each other in a non-trivial way depending on the strain-gradient
component, indicating that a consistent treatment of all three terms
is crucially important for having a physically meaningful solution.

2.8.2. Atomic relaxations

The contribution of atomic relaxations to the flexovoltage coefficient
of a bent slab has been extensively treated in Section 2.6.2. It is easy
to show that, by using the formalism presented in Section 2.7.4 we
recover equation (70), which describes the total response in terms of
bulk- and surface-specific quantities. What remains to be discussed is
the shear case. In Section 2.8.1, we postulated that this type of strain-
gradient deformation is not relevant for a fully relaxed unsupported   
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Figure 8. Flexoelectric response of a slab of non-interacting spheres. The total
induced potential is decomposed into three contributions, consistent with the
formalism developed in the main text. In all panels, the vertical axis corresponds
to the potential (dashed line indicates the zero), and the horizontal axis is the
spatial coordinate x along the surface normal. The combined effect of the surface
(including both induced polarization-charge and metric contributions) and the
bulk flexoelectric response yields a vanishing bias potential, regardless of the
type of strain gradient. (From Ref. [15].)

slab. Here, we shall substantiate this statement in light of the
results presented so far. Recall equation (106), which describes the
microscopic atomic relaxation pattern induced by a strain gradient
in terms of the internal-strain response tensors Γ and L, and let Xlκ

and Ylκ denote the x and y components of Rlκ. In the case of a shear
strain gradient of the type εxy,y in Fig. 6(c), equation (106) reads as

∂ul
κα

∂εxy,y
= Ylκ Γκ

αxy + Lκ
αy,xy. (139)

Now, regardless of the microscopic details of the slab, rotational
invariance dictates that

Γκ
αxy = −X0κδαy , (140)

i.e. under a uniform shear the slab rigidly rotates to accommodate
the deformation of the supercell, without feeling any restoring force   
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because the repeated images of the slab are decoupled. By combining
equations (139) and (140) we obtain

∂ul
κα

∂εxy,y
= −YlκXlκδαy + Lκ

αy,xy. (141)

Now, recall that a macroscopic strain gradient can be written in
terms of the components of the type-I strain-gradient tensor as

ul
κβ =

ηβ,γλ

2
(Rlκ)γ(Rlκ)λ.

Equation (141) states that a shear strain gradient of amplitude
ηx,yy = η is always accompanied, in a fully relaxed unsupported
film, by a second strain gradient component of the type ηy,xy =
−2η. The overall effect, in type-II notation, is that of a negative
transverse strain gradient, εyy,x = −η. This means that, for a
free-standing film, the shear case reduces exactly to the transverse
one. The basic concept is illustrated in Fig. 9, where we compare
the configurations obtained by periodically subjecting a slab to a
transverse strain gradient εyy,x as in Fig. 6(b), or a (negative) shear
strain gradient εxy,y of the kind shown in Fig. 6(c). If internal atomic
relaxations are allowed while still preserving the overall undulation
along y, the two configurations will clearly relax to the exact same
geometry.

(a) (b)

Figure 9. Sketch of slab subjected to a periodic transverse strain of the type
shown in Fig. 6(b), or a negative shear strain of the type shown in Fig. 6(c).
After internal atomic relaxations, the two configurations become equivalent.   
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Thus, we have rigorously demonstrated the result that we
heuristically presented in Section 2.6: flexoelectric effects in a free-
standing film of sufficiently high symmetry (e.g. cubic or in-plane
hexagonal) are governed by only one response coefficient ϕxx,yy, as
given by equation (70). The induced voltage at a given location is
then given by ϕxx,yy(t/ξy + t/ξz), where ξy = ε−1

yy,x and ξz = ε−1
zz,x are

the radii of curvature (along the Cartesian axes) of the film at that
specific point.y This includes the plate-bending and beam-bending
limits as special cases.

It is interesting to note that, in contrast with what happens in
the bulk, here we have a notable case where the flexoelectric effects
induced by a sound wave are identical to those associated with a
static deformation. (Equivalently, one can say that the same strain
gradient field can be induced either by dynamic or static means.)
Indeed, any 2D object such as a slab is characterized by a transverse
acoustic phonon branch, usually referred to as ZA, with zero sound
velocity, corresponding to a bending mode. A long-wavelength ZA
phonon coincides, therefore, with the static bending case described
above, and produces the same flexoelectric response.

2.9. Summary

In this section we have presented a fundamental theory of flexoelec-
tricity, based on a quantum-mechanical description of the electronic
and lattice response to a strain-gradient perturbation. In particular,
we have used a long-wave expansion of acoustic phonons to derive,
in the linear limit, the relevant electromechanical response functions
of a crystalline solid. Our formalism is fully general, and correctly
recovers earlier theories of piezoelectricity as a special case.

In order to address some conceptual issues (e.g. regarding the role
of the surfaces, or regarding the calculation of some components of
the bulk flexoelectric tensor that are presently difficult to access)
we have gone a step further, and developed a fully microscopic

y One could equivalently choose different orthogonal axes, e.g. those corresponding
to the principal curvatures of the surface. Since 1/ξy + 1/ξz is the trace of the
shape operator, the result is independent of such a choice.   
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theory of the linear response to an inhomogeneous strain field. In this
context, we have demonstrated that the use of curvilinear coordinate
frames greatly facilitates the representation of the relevant physical
fields and their response to mechanical deformation. The latter
methodological tools are applicable well beyond the specifics of
flexoelectricity, and may find application in related research areas,
such as flexomagnetism.28

3. Application to SrTiO3

In this section, we shall demonstrate the theory developed so far
by applying it to SrTiO3, one of the most important materials in
the context of flexoelectricity, and the best known experimentally. In
order to quantify the importance of surface effects, we shall consider
a slab geometry, and two different lattice terminations (either of the
SrO or TiO2 type), as illustrated in Fig. 10.

3.1. General Methodology

Our goal is to calculate the total flexovoltage response of either
SrTiO3 slab to a bending deformation in the limit of large thickness.
We shall do this by taking into account the effect of full atomic
relaxation, under the initial hypothesis that our slab behaves as a

(a)

(b)

Figure 10. Supercell models of the SrO- (a) and TiO2-terminated (b) SrTiO3

slabs. Ti and O atoms are represented as white squares and gray circles
respectively; Sr atoms are not shown. (Adapted from Ref. [27].)   
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plate.z (We shall see in Section 3.3.3 that the beam-bending limit
can easily be recovered by rescaling the plate-bending coefficient
by a constant.) This requires the combination of three different
computational frameworks, as detailed in the following.

3.1.1. Bulk calculations

Here, we perform a number of calculations on a primitive unit cell
of bulk SrTiO3. This is primarily aimed at calculating the bulk
flexoelectric tensor via a long-wave expansion of acoustic phonons.
Acoustic phonons are treated at the linear-response level by means of
density-functional perturbation theory as implemented in a modified
version of the ABINIT package29 in which the contribution of
the macroscopic electric fields has been removed according to the
discussion of Section 2.3. In particular, We choose a small star of
wave-vectors q surrounding the Γ point in the Brillouin zone,

q =
2πq̃
a0

(±1, 0; ±1, 0; 0),

and perform a full linear-response calculation for each of these points.
(In practice, we make full use of symmetries to minimize the number
of actual calculations.) Next, we perform a long-wave expansion
of the charge-density response and interatomic force constants and
extract the second-order-in-q coefficients via numerical differentia-
tion with respect to q. We obtain: (i) the flexoelectric force-response
tensor T κ

αλ,βγ via equation (31), from which Cκ
αλ,βγ and then the

internal-strain tensor Lκ
αλ,βγ are constructed via equations (34)–(35);

and (ii) the charge-density response tensors Q
(1,γ)
κβ and Q

(3,γλσ)
κβ ,

corresponding respectively to the Born effective charge tensor Z∗
κ,βγ

and the dynamical octupole tensor, via equation (45).
By combining the internal-strain tensor with the Born effective

charges one can readily obtain the lattice-mediated contributions to
the flexoelectric tensor as explained in Section 2.2. The octupole
tensor, on the other hand, provides us with only partial information

z This means that along the direction parallel to the bending axis the system is
clamped (i.e. no anticlastic bending is allowed).   
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on the electronic (frozen-ion) flexoelectric tensor. In particular, only
the longitudinal component of the electronic flexoelectric tensor, µ̄q̂,
along an arbitrary direction q̂ can be inferred from the two linearly
independent entries of Q(3,γλσ)

κβ . Following Hong and Vanderbilt,14 we
define

µ̄L1 = µ̄(100), µ̄L2 = 2µ̄(110) − µ̄(100).

These are related to the components of the type-II flexoelectric
tensor, µL2 by27

µ̄II
xx,xx = µ̄L1, (142)

µ̄II
xx,yy + 2µ̄II

xy,xy = µ̄L2. (143)

Thus, in order to determine the transverse and shear components
µ̄II

xx,yy and µ̄II
xy,xy independently, an additional calculation is neces-

sary; this will be addressed shortly in Section 3.1.2.
In addition to the above calculations, which are based on the

methodology described in this chapter, we also need a bulk-level
calculation of some auxiliary quantities by means of more established
techniques. Specifically, we extract the high-frequency dielectric
constant ε̄r from a separate linear-response treatment of the electric-
field perturbation. At the same time we obtain a redundant set of
Z∗

κ,βγ tensor elements, which are useful for assessing the quality
of the numerical differentiation at first order in q performed in
Section 3.1.1. Similarly, we carry out an independent calculation of
the elastic tensor Cαλ,βγ via finite differences with respect to applied
strain; this allows us to check the second-order-in-q calculations of
the force-response tensors Cκ

αλ,βγ , since these quantities are directly
related by the sum rule in equation (36).

3.1.2. Truncated-bulk slab calculations

Here, we carry out calculations similar to those of Section 3.1.1,
but now on a slab supercell. This step is aimed at determining the
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transverse and shear components of the bulk electronic (frozen-ion)
flexoelectric tensor.aa In fact, the two independent components of the
bulk dynamical octupole tensor Q(3,γλσ)

κβ that we calculated above
are not sufficient to determine the three independent entries of the
bulk µ̄II

αλ,βγ tensor. We are able to circumvent this limitation by
recourse to a series of calculations on a slab geometry in which we
determine the charge-density response, both in the bulk and at the
surface, to longitudinal, transverse, and shear strain gradients. A
calculation of the flexoelectrically induced open-circuit electric field
in the interior of the film, which relates [based on equation (50)]
directly to the corresponding component of the bulk flexoelectric
tensor in two cases out of three (longitudinal and transverse),
allows us to obtain the missing componentbb of µ̄II. The key point
here is that the missing divergence-free component of the induced
polarization current, which is not currently available from bulk
level calculations, manifests itself as a surface charge density, whose
influence is readily apparent in the slab supercell geometry. Note
that the specifics of the surface structure should not matter in
these calculations. Thus, we choose the geometry that ensures the
best convergence of the inner open-circuit field as a function of
slab thickness, i.e. a truncated-bulk structure. (We perform such
an analysis on both SrO- and TiO2-terminated slabs, in order
to verify that the results are indeed surface-independent as we
expect.)

In practice, we use the same star of q-points surrounding Γ as in
the bulk calculations described above. This time, however, we neglect
the information on the force constants and only focus on the charge-
density response of the system. We need to analyze such a response at

aaIt may seem odd to use a slab supercell to calculate a bulk-specific quantity;
this is indeed a temporary work-around, which will no longer be necessary once
a proper theory of the current-density response becomes available.
bbStrictly speaking, only the transverse component is really needed, as the
longitudinal component calculated in this way is redundant with the µL1 value
that we already calculated at the bulk level. We shall use this as a test to assess
the numerical accuracy of our calculations.
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the microscopic level, by using the curvilinear-coordinate formalism
of Sections 2.7 and 2.8. Of the two relevant response functions,
ρU(x) and ρG(x), only the latter is really an issue, as ρU(x) can be
straightforwardly calculated as the response to a uniform strain.cc

The result of the second-order Taylor expansion in q yields ρG(x),
and this (together with ρU) is then used to calculate the electric-field
response functions EU,G(x).

Note, however, that due to the removal of the macroscopic electric
fields in the phonon calculations13,15,27 (as required to perform the
aforementioned Taylor expansions in q, see Section 2.3), short-circuit
electrical boundary conditions are enforced by construction on the
calculated ρG and EG. This means that there are non-vanishing
macroscopic electric fields in both the vacuum and the slab interior,
and these fields show an undesirable dependence on the supercell
geometry (vacuum and slab thicknesses). To have a physically well-
defined (and geometry-independent) value of the internal field we
need to enforce open-circuit electrical boundary conditions. We do
this by applying an external field to the system that is exactly
opposite to the calculated vacuum field. To determine the charge
redistribution induced in the system upon application of an external
field, we perform a separate linear-response calculation of the local
electric-field response to a macroscopic electric displacement field D.
This is nothing but the local inverse dielectric permittivity of the
slab supercell,

∂Ex(x)
∂Dx

=
1
ε0
ε̄−1
r (x).

We then use

EG,OC
x (x) = EG,SC

x (x) − EG,SC
x (+∞)ε̄−1

r (x),

ccWe calculated ρU(x) separately by using standard ground-state calculations
where we took finite differences in the strain. We found that this latter procedure
yields slightly better accuracy than the long-wave method described above.
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where x = +∞ corresponds, as usual, to the vacuum region. When
referring to EG(x) in the following, we shall implicitly assume that
we are speaking of the open-circuit version EG,OC

x (x).

3.1.3. Relaxed-ion slab calculations

Now that we have all the necessary bulk-specific information in
hand, we still need to determine the surface-specific contributions to
the flexovoltage coefficient ϕsurf

xx,eff .dd We shall compute ϕsurf as the
induced electrostatic potential offset upon application of a uniform
effective strain (εyy = εeff ; εxx = −νεeff) to a free-standing slab with
(001) surface orientation. This quantity can be conveniently accessed
by means of a standard plane-wave code; no linear-response features
are needed. In particular, we take a slab supercell corresponding to
a periodic lattice of alternating SrTiO3 and vacuum layers, and first
calculate the electronic and structural ground state by setting the
in-plane lattice parameter to the equilibrium bulk value. We then
apply a small positive or negative strain of the type

ε =
εeff
2


−2ν 0 0

0 1 0
0 0 1


,

where εeff is a small dimensionless number, typically εeff(±) =
±0.001. (We find it computationally advantageous to preserve the
fourfold axis of the SrTiO3 surface by applying an isotropic in-plane
strain.)

In each perturbed configuration, we first calculate the electronic
ground state with the reduced coordinates of the atoms kept fixed to
their unperturbed values; the resulting electrostatic potential profile
is then processed by means of macroscopic averaging17,26 to extract
the perturbed frozen-ion (FI) surface potential offsets. Next, we let
the atoms relax to their new equilibrium positions in the strained

ddRecall that we need to consider, for a bent slab at mechanical equilibrium, an
effective combination of transverse and longitudinal strain-gradient deformations,
εyy,x = εeff,x; εxx,x = −νεeff,x, where ν = Cyy,xx/Cxx,xx.
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lattices, and repeat the macroscopic averaging procedure to obtain
the relaxed-ion (RI) offsets. Finally, we numerically differentiate the
perturbed offsets (both FI and RI) to obtain their corresponding
first-order variation,

ϕsurf =
φ(+) − φ(−)

2|εeff | ,

where φ(±) refers to the surface potential offset at positive or
negative strain.ee This procedure readily yields the RI and FI values
of ϕsurf . The lattice-mediated (LM) values are simply calculated as
the difference of the RI and FI ones. Of course, the slab needs to be
sufficiently thick in order for the inner layers to be truly bulk-like, i.e.
unaffected by the atomic distortions that originate from the surface
truncation of the bonding network.

3.2. Computational Parameters

We use the local-density approximation30 to DFT. The interactions
between valence electrons and ionic cores are described by separable
norm-conserving pseudopotentials in the Troullier–Martins31 form,
generated with the fhi98PP code.32 The 4s24p6 and 3s23p6 shells
of Sr and Ti, respectively, are explicitly treated as valence electrons.
The reference states (numbers in parentheses indicate the core radius
in bohr) of the isolated neutral atom used in the pseudopotential
generation are 2s(1.4), 2p(1.4), and 3d(1.4) for O, 4s(1.5), 4p(1.5),
and 4d(2.0) for Sr and 3s(1.3), 3p(1.3), and 3d(1.3) for Ti. The local
angular-momentum channel is l = 2 for Sr and O and l = 0 for Ti.
The rigid-core corrections of equation (60) are not included in the
presented results. The cutoff for the wavefunction plane-wave basis
is set to 150 Ry in the slab calculations. (A test calculation with
a 300 Ry cutoff did not show appreciable changes in the calculated

eeAs a technical note, many first-principles codes use the Ewald procedure to
calculate the self-consistent electrostatic potential. This involves adding to the
electronic density a lattice of spherical Gaussian compensating charges, whose
spurious contribution must be removed from the calculated value of ϕsurf . See
the Supplementary Notes of Ref. [27] for details.   
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electronic response functions; the 300 Ry cutoff was, nonetheless,
necessary to ensure satisfactory accuracy in the force-response tensor
at the bulk level.) The surface Brillouin zone of the slab supercell is
sampled by means of a 8 × 8 Monkhorst–Pack grid;33 for the bulk
primitive cell we use a sampling of up to 12 × 12 × 12 k-points. The
finite-difference parameter in the long-wave expansion, q̃, is set to
0.01 (tests with q̃ = 0.02 or q̃ = 0.03 indicated a convergence better
than 1% in the calculated electronic response functions; smaller
values of q̃ were found to yield less accurate results because of
the excessive numerical noise). The lattice parameter of the cubic
cell is set to a0 = 7.268 bohr, which corresponds to the calculated
equilibrium value.

The supercell models are based on the schematic illustrations of
Figs. 10(a) and (b). For the truncated-bulk linear-response calcula-
tions we use 5.5-unit-cell (uc) thick SrTiO3 slabs alternating with
vacuum layers whose thickness is set to 2.5 uc. Of course, both (slab
and vacuum) thicknesses are intended as convergence parameters
in our calculations, whose scope is to describe the thermodynamic
limit of a macroscopic slab. Tests with thinner slabs and thicker
vacuum layers (up to 3.5 uc) showed optimal convergence for the
aforementioned values of these parameters (again, better than 1%).
For the relaxed-ion slabs, we use 7.5 uc-thick slabs with 3.5 uc-thick
vacuum layers.

3.3. Results

3.3.1. Bulk calculations

In Table 1, we report the relevant values of the force-response tensor
of bulk SrTiO3, calculated by using the long-wave method described
in Section 2.2. In Table 2, we compare the above physical quantities
to the analogous ones that were calculated in Ref. [14]. To perform
the comparison we first recast the force-response components into
a tensorial representation that follows the same prescriptions as
equations (142) and (143),

Cκ
L1 = Cκ

xx,xx, (144)

Cκ
L2 = Cκ

xx,yy + 2Cκ
xy,xy. (145)   
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Table 1. Force-response tensor Cκ
αλ,βγ of

bulk SrTiO3 in short-circuit boundary condi-
tions. O1, O2, and O3 refer to oxygen atoms
forming x-, y- or z-oriented Ti–O–Ti bonds,
respectively. All values are in eV.

Atom (xx, xx) (xy, xy) (xx, yy)

Sr −24.9 7.9 −28.7
Ti −67.9 3.8 −102.3
O1 159.3 15.3 97.4
O2 35.2 17.3 42.3
O3 35.2 −0.9 30.9

Table 2. Summary of the linear-response data obtained from the long-wave
(LW) approach at the bulk level, compared to the results of Hong and
Vanderbilt14 (here used as HV) for the same quantities. Open-circuit electrical
boundary conditions are enforced on the longitudinal response functions (L1 and
L2). The force response to a shear strain gradient (S) is quoted in short circuit.
The oxygen modes ξ3 = xO1 and ξ4 = (xO2 + xO3)/

√
2 are defined following

Ref. 14. ϕ̄bulk is in V; other values are reported in eV.

L1(LW) L1(HV) L2(LW) L2(HV) S(LW) S(HV)

ϕ̄bulk −16.15 −16.25 −18.07 −18.17 — —

Sr 16.3 17.0 33.2 35.7 7.9 8.4
Ti 49.1 52.3 36.3 38.9 3.8 3.0
ξ3 67.2 68.7 24.9 13.1 15.3 15.7
ξ4 3.0 3.6 22.7 18.2 11.6 12.0

Then, we convert the longitudinal quantities L1 and L2 from fixed-
E or short-circuit (SC) to fixed-D or open-circuit (OC) boundary
conditions by using [see equation (106) of Ref. [14]]

Cκ
L(OC) = Cκ

L(SC) − ϕ̄bulk
L Z∗

κ, (146)

where Z∗
κ is the Born effective charge (calculated values are reported

in Table 3), ϕ̄bulk
L is the purely electronic flexovoltage coefficient, and

L stands for either L1 or L2. The calculated values of ϕ̄bulk
L1,L2 are also

reported in Table 2 for direct comparison to those reported by Hong
and Vanderbilt.14 The agreement is overall very good, especially   
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Table 3. Calculated Born effective charges and dielectric properties of
bulk SrTiO3.

Z∗
Sr Z∗

Ti Z∗
O1 Z∗

O2 Z∗
O3 ε̄r εr (static)

2.5548 7.2455 −5.7027 −2.0488 −2.0488 6.1785 1657

Table 4. Calculated elastic tensor of bulk SrTiO3. The
two rows refer to the bulk force-response calculation
(“Force”) and to a direct bulk calculation where we
took finite differences of the calculated stress tensor
while varying the strain around the equilibrium cubic
configuration (“Strain”). Values are in GPa.

Method (xx, xx) (xy, xy) (xx, yy)

Force 385.3 122.2 111.7
Strain 386.2 122.4 112.6

considering the different computational strategy, first-principles code
and pseudopotentials that were used in Ref. [14].

As a numerical test of the calculated force-response tensor
(Table 1), in Table 4 we report the elastic constants of bulk SrTiO3

that we computed in two different ways: either as a first derivative
of the stress with respect to the applied strain (“strain”) or by
using the sum rule of equation (36) (“force”). The agreement is
excellent (better than 1%), confirming the high numerical quality
of the calculation. Note that the choice of the electrical boundary
conditions is irrelevant for this test, as the sublattice sum of the
atomic forces induced by a hypothetical electric field vanishes due to
the acoustic sum rule.

3.3.2. Truncated-bulk slab calculations

In Figs. 11(a) and (d) we plot the calculated EU,G
x (x), corresponding

to either a SrO- or a TiO2-terminated slab and to each of the three
types of imposed strain gradients shown in Fig. 6 (with no internal
relaxations allowed). As anticipated in Section 2.8.1, there is an
important qualitative difference between the case of the longitudinal
or transverse response, where the strain gradient is oriented along the   
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Figure 11. Electric-field response to mechanical deformations. The EU
x (a–b) and

EG
x (c–d) response functions are shown for a SrO- (a, c) and TiO2-terminated

(b, d) slab. Solid black, dashed black and solid gray curves refer to longitudinal,
transverse and shear deformations, respectively. The location of the SrO (dashed)
and TiO2 (solid) atomic layers is indicated by vertical lines (only half of the
symmetric slab is shown). (Adapted from Ref. [27].)

surface normal, and that of the shear response, where it is directed
in plane.

In the former case, EU
x,ββ(x) (describing the E-field response to

a uniform strain) yields the surface contribution to the flexovoltage
coefficient, ϕ̄surf

xx,ββ, via equation (128),ff while the functions EG
xx,ββ(x)

provide us with the sought-after information on the bulk flexovoltage
coefficient of SrTiO3,

ϕbulk
xx,ββ = −EG

xx,ββ(x = 0).

Note that the EG
xx,ββ(x) functions are roughly uniform inside the

film, which indicates that the slab is thick enough to display bulk

ffNote, however, that here we are dealing with a truncated-bulk slab, whose
surface atomic coordinates were artificially frozen to ideal bulk positions. The
surface contributions that one extracts from such a geometry do not necessarily
reflect, therefore, the response of a realistic system; they are quoted here mostly
for illustrative purposes.   
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properties therein, and zero outside, consistent with the open-
circuit electrical boundary conditions that were enforced. Moreover,
the uniform internal field appears to be nicely independent of the
surface termination for the longitudinal and transverse deformations,
which is a further important consistency test for our computational
approach.

In the shear case, however, the flexoelectric field depends on both
bulk and surface-specific properties,15 and such a termination depen-
dence is clear from a comparison of the gray curves in Figs. 11(c)
and (d). From the electric-field response functions of Figs. 11(c) and
(d) we can thus only extract the total flexovoltage coefficient of the
slab, ϕxy,xy = −EG

xy,xy(x = 0). To separate ϕxy,xy into bulk and
surface terms it suffices, however, to complement the above data
with the ϕbulk

L1,L2 values that we calculated at the bulk level. Indeed,
by replacing the flexoelectric tensor components in equations (142)
and (143) with the corresponding flexovoltage coefficients, we have

ϕbulk
L1 = ϕbulk

xx,xx, (147)

ϕbulk
L2 = ϕbulk

xx,yy + 2ϕbulk
xy,xy. (148)

Equation (147) constitutes a useful consistency check of the method-
ology, as ϕbulk

L1 is redundant with the already calculated value of
ϕbulk

xx,xx. Equation (148), on the other hand, yields the desired value
of ϕbulk

xy,xy since we already know ϕbulk
xx,yy from the slab calculations.

Finally, we use ϕxy,xy = −Eslab
xy,xy to infer ϕsurf

xy,xy = ϕxy,xy − ϕbulk
xy,xy.

Our results for the bulk, surface, and total flexovoltage coeffi-
cients of the truncated-bulk, frozen-ion deformation of a SrTiO3 slab
are summarized in Table 5. At the bulk level, it is interesting to note
the relatively small magnitude of the shear coefficients ϕbulk

xy,xy and
ϕsurf

xy,xy compared to both the longitudinal and the transverse ones.
Meanwhile, in the latter two cases there is a substantial cancelation
between bulk and surface terms; as a result, the values of the total
flexovoltage coefficients ϕ are all comparable in magnitude. This
fact can be rationalized by observing that the linear response to
atomic displacements in a ionic (or partially ionic) solid is largely
dominated by the rigid displacement of an approximately spherical   
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Table 5. Frozen-ion flexovoltage coefficients of a truncated-bulk
SrTiO3 slab. To compute ϕbulk we used ϕbulk

L1,L2 as reported in Table 2
and Eslab

xx,yy = 15.08 V [extracted from Figs. 11(c) and (d)]. (L), (T), and
(S) stands for longitudinal, transverse and shear, respectively. Units of
Volts are used throughout.

ϕsurf ϕ (total)

ϕbulk SrO TiO2 SrO TiO2

xx, xx (L) −16.15 14.36 16.95 −1.80 0.80
xx, yy (T) −15.08 15.68 12.45 0.61 −2.63
xy, xy (S) −1.50 −2.38 −0.51 −3.88 −2.01

charge density distribution surrounding each atom. The spherical
contribution, which is typically large and negative,12 shows up in
ϕbulk

xx,ββ, and with opposite sign in ϕsurf
xx,ββ; in the shear case neither

the bulk nor the surface term are affected (see Section 2.5.1).
Remarkably, the resulting values of ϕ depend strongly on the details
of the surface, and in some cases even have opposite signs in the SrO-
and TiO2-terminated slabs. Such a conclusion, in fact, persists after
we take into account the full relaxation of the atomic structure; we
shall demonstrate this point in the following paragraphs.

3.3.3. Relaxed-ion slab calculations

The results of the relaxed-ion slab calculations allow us to complete
the picture of the fully relaxed flexovoltage response of a SrTiO3 slab
in the plate-bending limit. [The beam-bending case is easily recovered
by multiplying the reported values by τ = Cxx,xx/(Cxx,xx + Cxx,yy).
By using the calculated elastic constants of bulk SrTiO3, reported
in Table 4, we find τ = 0.77.] A summary of the results is reported
in Table 6. The respective contributions of the bulk and surface are,
overall, in line with the available order-of-magnitude estimates.34 The
values shown in bold font, i.e. the total flexovoltage coefficients of the
two types of slab, comprise the main result of this work. Note that
they depart substantially from the corresponding bulk coefficient,
confirming the dramatic impact of the surface structural and elec-
tronic properties on the electromechanical response of the system.
In fact, the aforementioned response coefficients are even opposite
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Table 6. Flexovoltage coefficients of a relaxed SrTiO3 slab.
FI, lattice-mediated (LM) and total relaxed-ion (RI=FI+LM)
values of the bulk, surface, and total slab response are reported.
Units of Volts are used throughout.

ϕsurf ϕ (total)

ϕbulk SrO TiO2 SrO TiO2

FI −10.37 13.47 6.84 3.10 −3.53
LM −0.44 −4.93 5.34 −5.38 4.90

RI −10.81 8.53 12.18 −2.28 1.37

in sign depending on whether a SrO- and TiO2-terminated slab is
considered. This is a remarkable result, as it means that an atomically
thin surface termination layer can modify, and even reverse, the flex-
ovoltage response of a macroscopically thick sample. This constitutes
a rather drastic departure from the characteristics of other electrome-
chanical phenomena (e.g. piezoelectricity), where the details of the
surfaces typically become irrelevant in the thermodynamic limit.

It is interesting to note that the surface shows an even larger
termination dependence at the frozen-ion level, but with opposite
sign. The LM contribution to ϕsurf is indeed large, and depends so
strongly on the termination that its inclusion results in a voltage
reversal, both in the TiO2- and SrO-type slabs. (By contrast, the LM
contribution to the bulk flexovoltage coefficient is relatively minor,
about one order of magnitude smaller than any other value reported
in the table, and has little impact on the final results.) To illustrate
the reason for such a strong dependence, a microscopic analysis of the
surface relaxations is provided in Fig. 12. In the SrO case, the layer-
by-layer decomposition of the induced dipole shown in Fig. 12(e)
has an oscillatory behavior whose amplitude decays exponentially
as a function of the distance from the surface; as a consequence, the
surface layer clearly dominates the overall response.gg Instead, for the

ggInterestingly, the structural relaxation pattern in the unperturbed state,
Fig. 12(a), appears very similar to the induced relaxation pattern under an applied
tensile strain. This suggests that the former might be, in fact, rationalized as a
response of the system to a large surface stress.
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Figure 12. Static and induced ionic relaxations at the SrTiO3 surface. (a–
b): Ionic relaxations in the unperturbed slabs (displacements from ideal bulk-
like sites). Circles, squares, diamonds and triangles correspond, respectively,
to Sr, Ti, O(Ti), and O(Sr) atoms. (Cations are indicated by empty symbols,
oxygen atoms by filled ones.) Negative values indicate inward displacements (i.e.
towards the slab center). (c–d): Displacements induced by a uniform strain of
the type εyy − νεxx; for the two oxygen atoms in the TiO2 layers, only one
value (their average displacement) is shown. (e–f) Layer-by-layer decomposition of
the lattice-mediated contribution to the induced surface potential offset. Vertical
lines indicate the position of the SrO (solid) and TiO2 (dashed) atomic planes.
(Adapted from Ref. [27].)

TiO2-terminated slab shown in Fig. 12(f), the surface layer responds
with a positive dipole instead of a negative one, in sharp contrast to
the “underdamped” oscillatory behavior in Fig. 12(e). This behavior
is probably due to the alteration of the bonding network, which we   

  
  
  
  
  
  
  
  
  
  
  

  
  
  

w
w

w
.w

o
rl

d
sc

ie
n
ti

fi
c.

co
m

/w
o
rl

d
sc

ib
o
o
k
s/

1
0
.1

1
4
2
/9

7
6
4
#
t=

to
c 

  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
 ©

 W
o
rl

d
 S

ci
en

ti
fi

c 
P

u
b
li

sh
in

g
 C

o
. 
P

te
. 

L
td

. 
  

 

T
h
is

 b
o
o
k
 i

s 
p
ro

v
id

ed
 t

o
 P

ro
f 

A
L

E
X

A
N

D
E

R
 K

 T
A

G
A

N
T

S
E

V
 a

n
d
 P

E
T

R
 V

 Y
U

D
IN

 o
n
ly

. 
N

o
 f

u
rt

h
er

 

d
is

tr
ib

u
ti

o
n
 i

s 
al

lo
w

ed
. 

 



July 18, 2016 18:24 Flexoelectricity in Solids - 9in x 6in b2369-ch02 page 105

First-Principles Theory of Flexoelectricity 105

speculate to be much more profound at the TiO2-type surface than
at the SrO-type one, whereby the boundary atoms no longer behave
as bulk-like but rather as a distinct chemical entity.

Apart from the obvious relevance of the above observations to
the physics of SrTiO3 surfaces, the analysis of Figs. 12(e) and (f)
carries a general message that we have already anticipated in the
above paragraphs. Any single atomic layer near the surface has a
remarkably large contribution to ϕsurf , sometimes of the same order
as (or even larger than) the overall flexovoltage response of the
slab. In fact, the total open-circuit voltage results from the subtle
cancelation of many contributions of dissimilar physical nature.
This implies that exceptional care is needed when dealing with
flexoelectric phenomena, either when performing the calculations or
when interpreting the experiments.

4. Conclusions and Outlook

In this chapter, we have described the main advances in the first-
principles theory of flexoelectricity that have taken place during
the past five years. The progress that emerges from these pages
is undoubtedly impressive — we are at the stage where the full
flexoelectric response of real materials, including bulk and surface
effects, can be calculated ab initio with great accuracy. Still, much
remains to be done before the field can be regarded as mature. We
discuss here several research avenues that we identify as being of
pivotal importance for future progress.

• Theory of the current-density response. The most funda-
mental and complete framework for the theory of flexoelectricity
is the current-response formalism introduced in Section 2.2. Unlike
the charge-response formalism summarized in Section 2.5, the
current-response approach is capable in principle of resolving all
independent components of the flexoelectric tensor. However, two
issues remain to be settled in relation to this approach. First,
direct methods for obtaining the current response functions Pq

κβ

of equation (13) by computing the linear response to a phonon
of small but finite wave-vector q have not yet been developed   
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and tested. Once implemented, this would allow for a finite-
difference calculation of the P (2,γλ)

α,κβ of equation (14), and thence,
the electronic contribution in equation (18). Second, some aspects
of the connection between the current-response theory and the
theory of charge responses (including surface charges) remain to be
clarified, as discussed in the context of equation (50) and following
equation (101). A solution of these two issues would help put the
theory of flexoelectricty on a truly sound footing.

• Analytic derivation of the q-expansions. The conceptual
foundation of most of the material treated in this chapter is a long-
wave expansion of certain physical observables as a function of the
wave-vector q of an acoustic phonon. The calculations described
in Section 3 were performed by taking such a q-expansion numer-
ically via finite differences, which is computationally cumbersome.
Ideally, it would be best to perform the expansion analytically, i.e.
to derive the DFPT equations that directly yield the wavefunction
response to a strain gradient perturbation. This would also be
desirable in the context of the direct current-density implemen-
tation sketched just above. When implemented in an existing
DFPT code, such methods would allow for a more straightforward
calculation of flexoelectric properties of materials, and thus foster
a more widespread application of these techniques within the
research community.

• Application to complex materials. Our focus in this chapter
has been on materials with cubic symmetry. Clearly a proper
theory that also covers crystals of lower symmetry is strongly
required. The extension of the theory to such materials will require
attention not just to the proliferation of independent parameters
in the flexoelectric tensor, but also to subtle physical issues having
to do, for example, with the anisotropic electronic screening that
occurs when the symmetry is reduced. In the case of crystals that
are piezoelectric (and possibly also polar), care will be needed to
separate the higher-order flexoelectric from dominant piezoelectric
(and possibly spontaneous) polarization response. The application
to insulating ferromagnets or antiferromagnets should introduce   
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no special difficulties in most cases, but may involve subtleties
for magnetoelectric crystals or when spin-orbit coupling is strong.
A first-principles theory of flexomagnetism has yet to be developed.

• Compositional gradients. An electric polarization can also arise
in the presence of a compositional gradient, e.g. in Ba1−xTixO3

films.35 To our knowledge, a proper theory of such an effect is
lacking. Since a compositional gradient generally also entails a
strain gradient, some care will be called for in separating these
effects and computing them independently before combining the
contributions to make physically meaningful predictions.

• Connection to higher-level models. With the techniques
described here, one can in principle calculate the fundamental
flexoelectric properties of an arbitrary material. To use this
information in real physical problems, however, one typically has
to deal with many additional issues that are intractable by means
of direct first-principles simulation: large samples with complex
shapes, temperature effects, etc. It would be very desirable in
this context to be able to extract the relevant physical param-
eters from the ab initio calculations, and incorporate them in
some higher-level theory (e.g. atomistic, effective Hamiltonian, or
continuum) where length- and time-scale limitations are much
less stringent. A successful attempt in this sense has already
been reported36; still, consistently incorporating the latest first-
principles developments into macroscopic theories remains an open
challenge. For example, it would be of crucial importance, for
a realistic description of the flexoelectric effect, to extract the
relevant surface-specific properties from the density-functional
calculations, and incorporate them into the higher-level model.
Making progress in this direction will also promote a closer inter-
action between different communities working on flexoelectricity
(continuum numerical modeling, Landau theory, etc.), which we
believe would have a strong positive impact on the field.

In summary, there has been dramatic progress in the development
of a full first-principles theory of flexoelectricity. Several important
challenges remain, as discussed above, but at least these have been   

  
  
  
  
  
  
  
  
  
  
  

  
  
  

w
w

w
.w

o
rl

d
sc

ie
n
ti

fi
c.

co
m

/w
o
rl

d
sc

ib
o
o
k
s/

1
0
.1

1
4
2
/9

7
6
4
#
t=

to
c 

  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
 ©

 W
o
rl

d
 S

ci
en

ti
fi

c 
P

u
b
li

sh
in

g
 C

o
. 
P

te
. 

L
td

. 
  

 

T
h
is

 b
o
o
k
 i

s 
p
ro

v
id

ed
 t

o
 P

ro
f 

A
L

E
X

A
N

D
E

R
 K

 T
A

G
A

N
T

S
E

V
 a

n
d
 P

E
T

R
 V

 Y
U

D
IN

 o
n
ly

. 
N

o
 f

u
rt

h
er

 

d
is

tr
ib

u
ti

o
n
 i

s 
al

lo
w

ed
. 

 



July 18, 2016 18:24 Flexoelectricity in Solids - 9in x 6in b2369-ch02 page 108

108 Flexoelectricity in Solids: From Theory to Applications

identified, and solutions appear to be within reach. In any case, the
development of the theory of flexoelectricity has already revealed
many fascinating links to other, at first sight unrelated, research
areas (e.g. the relationship to transformation optics, where the use
of curvilinear coordinates facilitates the solution of complex electrical
engineering problems). We believe that more surprises are in store,
and will progressively emerge while further progress is made along the
above lines. As the study of flexoelectricity touches so many subfields
of condensed matter physics, we expect cross-cutting progress that
will likely benefit the first-principles materials theory community
at large. All in all, we look forward to the day when predictive
calculations of flexoelectric responses can become a routine part of
the tool-kit of first-principles computational materials theory.

Acknowledgments

We thank Jiawang Hong for useful discussions. We acknowledge
support from ONR Grant N00014-12-1-1035 (D.V.), a grant from
the Simons Foundation (#305025 to D.V.), MINECO-Spain Grant
FIS2013-48668-C2-2-P (M.S.), and Generalitat de Catalunya Grant
2014 SGR 301 (M.S.). M.S. also acknowledges support from
MINECO-Spain through the “Severo Ochoa” Programme for Centres
of Excellence in R&D (SEV-2015-0496).

References

1. R. O. Jones and O. Gunnarsson. Rev. Mod. Phys. 61, 689 (1989).
2. S. Baroni, S. de Gironcoli, and A. D. Corso. Rev. Mod. Phys. 73, 515

(2001).
3. R. M. Martin. Phys. Rev. B. 5, 1607–1613 (1972).
4. R. Resta. Ferroelectrics. 136, 51–55 (1992).
5. R. D. King-Smith and D. Vanderbilt. Phys. Rev. B. 47, R1651–R1654

(1993).
6. R. Resta and D. Vanderbilt. Theory of polarization: A modern

approach. In: (eds.) K. M. Rabe, C. H. Ahn, and J.-M. Triscone,
Physics of Ferroelectrics: A Modern Perspective. Springer-Verlag,
Berlin Heidelberg (2007).

7. R. Resta. J. Phys. Condensed Matter. 22, 123201 (2010).   
  
  
  
  
  
  
  
  
  
  
  

  
  
  

w
w

w
.w

o
rl

d
sc

ie
n
ti

fi
c.

co
m

/w
o
rl

d
sc

ib
o
o
k
s/

1
0
.1

1
4
2
/9

7
6
4
#
t=

to
c 

  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
 ©

 W
o
rl

d
 S

ci
en

ti
fi

c 
P

u
b
li

sh
in

g
 C

o
. 
P

te
. 

L
td

. 
  

 

T
h
is

 b
o
o
k
 i

s 
p
ro

v
id

ed
 t

o
 P

ro
f 

A
L

E
X

A
N

D
E

R
 K

 T
A

G
A

N
T

S
E

V
 a

n
d
 P

E
T

R
 V

 Y
U

D
IN

 o
n
ly

. 
N

o
 f

u
rt

h
er

 

d
is

tr
ib

u
ti

o
n
 i

s 
al

lo
w

ed
. 

 



July 18, 2016 18:24 Flexoelectricity in Solids - 9in x 6in b2369-ch02 page 109

First-Principles Theory of Flexoelectricity 109

8. A. K. Tagantsev. Phys. Rev. B. 34, 5883 (1986).
9. A. Tagantsev. Phase Transit. 35, 119–203 (1991).

10. J. Hong, G. Catalan, J. F. Scott, and E. Artacho. J. Phys. Condens.
Matter. 22, 478–492 (2010).

11. R. Resta. Phys. Rev. Lett. 105, 127601 (2010).
12. J. Hong and D. Vanderbilt. Phys. Rev. B. 84, 180101(R) (2011).
13. M. Stengel. Phys. Rev. B. 88, 174106 (2013).
14. J. Hong and D. Vanderbilt. Phys. Rev. B. 88, 174107 (2013).
15. M. Stengel. Nat. Commun. 4, 2693 (2013).
16. P. Zubko, G. Catalan, A. Buckley, P. R. L. Welche, and J. F. Scott.

Phys. Rev. Lett. 99, 167601 (2007).
17. A. Baldereschi, S. Baroni, and R. Resta. Phys. Rev. Lett. 61, 734–737

(1988).
18. R. Resta. Phys. Rev. B. 44, 11035–11041 (1991).
19. R. Resta, L. Colombo, and S. Baroni. Phys. Rev. B. 41, 12358–12361

(1990).
20. F. Gygi. Phys. Rev. B. 48, 11692–11700 (1993).
21. D. R. Hamann, X. Wu, K. M. Rabe, and D. Vanderbilt. Phys. Rev. B.

71, 035117 (2005).
22. W. Yan, M. Yan, Z. Ruan, and M. Qiu. New J. Phys. 10, 043040 (2008).
23. U. Leonhardt and T. G. Philbin. New J. Phys. 8, 247 (2006).
24. M. Stengel, N. A. Spaldin, and D. Vanderbilt. Nat. Phys. 5, 304–308

(2009).
25. P. Umari, A. D. Corso, and R. Resta. AIP Conf. Proc. 582, 107–117

(2001).
26. J. Junquera, M. H. Cohen, and K. M. Rabe. J. Phys. Condens. Matter.

19, 213203 (2007).
27. M. Stengel. Phys. Rev. B. 90, 201112(R) (2014).
28. R. Hertel. Spin. 3, 1340009 (2013).
29. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin,

P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch,
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