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Dissipation Due to a ‘‘Valley Wave’’ Channel in the Quantum Hall
Effect of a Multivalley Semiconductor
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When the quantized Hall effect occurs at a semiconductor surface such as Si(1 10), where the car-
riers have a time-reversal valley degeneracy, there should be a spontaneous valley polarization at
appropriate values of the filling factor v. There can be dissipation at 7= 0 due to radiation of Gold-
stone bosons (‘‘valley waves”’) at impurity sites, provided that the current density exceeds a critical
value j. determined by the intervalley electron-electron scattering or other terms which modify the
valley-wave dispersion at long wavelengths. The dissipation above J, is described by a constant Pxxs
which should be small but measurable, and sensitive to the density of neutral impurities.

PACS numbers: 71.45.Nt, 72.20.My, 73.40.Lq

In this note we consider the possible modification of tude, we argue below that there exists a critical current
the quantized Hall effect when the band structure of density j., whose value is small and determined by
the two-dimensional electron system has a valley de- terms in the Hamiltonian which violate the SU(2)
generacy, due to time-reversal invariance, which is not symmetry, such that for currents j above j. there is a
lifted by the surface potential. [An example is a resistivity p, which is independent of j, while p,, van-
metal-oxide-semiconductor field-effect transistor on ishes rapidly for j < j.. The value of p, is deter-
the (110) surface of silicon.] We discuss in particular mined by intervalley scattering due to impurities in the
the case of filling factor v=1, such that there is pre- layer, and it may be varied by several orders of magni-
cisely one electron per quantum of magnetic flux, but tude by variation of the concentration of neutral im-
similar considerations would apply to the fractional purities, which have little effect on the resistance in
quantized Hall effect at filling factor v = % and to vari- normal circumstances.
ous other values of v. As has been noted previously, In the absence of the applied magnetic field, an elec-
if one treats the Hamiltonian for this system in an tron in an inversion layer is characterized by a two-
effective-mass approximation, and if one neglects in- dimensional band structure e(k). We consider a case

tervalley scattering terms and any other terms which where e(k) has minima at points k= + Q/2, which are
distinguish the two valleys, then the ground state has a not at the center or edge of the Brillouin zone, and

broken SU(2) symmetry due to a spontaneous *‘valley therefore are degenerate by time-reversal symmetry.
polarization,”’ and low-lying Goldstone modes (‘‘val- [We choose our coordinate system such that the sur-
ley waves’’) exist as a result.! One may ask, in partic- face lies in the x-y plane, with Q in the x direction.
ular, to what extent these valley waves will spoil the We also use the notation R= (r,z), where r is the pro-
ability of the system to carry an electric current at jection of the position R on the x-y plane.] When the
T =0 without dissipation, which is generally associated magnetic field is present, and there is one electron per
with the quantized Hall effect. flux quantum, the most important terms in the Hamil-
Using an analysis linear in the valley-wave ampli- | tonian can be written as
Heff=‘;"iwclza/:ah L2 Ev(q)[p(q)p(‘Q) f(q)p(0)1+ EU(q)p(q) 4))
T

Here the index 7= +1 distinguishes the electron valleys at wave vector + Q/ 2, the operator a,T creates an electron

. T
in the lowest Landau level of valley 7 with an envelope wave function ¢,(r) in the x-y plane, and p(q) is the

Fourier transform of the density operator at wave vectors small compared to the reciprocal lattice,

p(a)= Jala. p, (@), @
LN
where

oy (@ = fdrer(r)e=rg, (r).
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The term U (q) in Eq. (1) is the long-wavelength part
of the scattering potential due to impurities, while
v(g)=2me?/eq is the two-dimensional Fourier
transform of the electron-electron interaction. The
quantity L? is the area of the system while the remain-
ing quantities in (1) are given by w.=eB/
(mem,c?)'/2, and

(@) =expl—1*(gim, +q}rm.)/ (4mem,) 2], (3)
where m, and m, are the effective masses in the x and
y directions, /= (kc/eB)"?, and B is the magnetic
field. We have assumed that the Zeeman energy is
large, so that all spins are aligned parallel to the field,
and we have chosen, for simplicity, to omit from (1)
interaction terms which can mix in higher Landau lev-
els. Of course, we assume that / is very large com-
pared to the lattice spacing. The envelope functions
¢,(r) may be any convenient basis functions for the
lowest Landau level, in the effective-mass approxima-
tion, and we may use any convenient gauge.

Let us now introduce an ‘‘isospin operator’’

1 t
= _5 zlolf'r'al"al‘r"
Tl

where o is the set of Pauli spin matrices. Then S com-
mutes with Hy, and the components of S satisfy the
usual angular momentum commutators. When there
is precisely one electron per flux quantum, the ground
state of H.y is given exactly by a single Slater deter-
minant of the form

) = [L,la) cos+6 +a)_; sin36 e*]]0),  (4)

where lO) is the vacuum state. The energy is indepen-
dent of the parameters 6 and ¢, while the expectation
value of S has the form

(S,) =+Ncoss, (S,+iS,)=+Nsinge'®, (5

where N is the number of electrons in the system.
The lowest-lying excitations are Goldstone modes as-
sociated with long-wavelength variations in the orien-
tation of the isospin vector, which we term ‘‘valley
waves,’’ and which are analogous to spin waves in a
Heisenberg ferromagnet. The excitation energy is pro-
portional to the square of the wave vector ¢, in the
limit of long wavelengths, and the spectrum can be
calculated exactly for the model described by Hg
without impurities (see Ref. 1, Kallin and Halperin,?
and Bychkov, Iordanskii, and Eliashberg®). For the
case of isotropic electron mass (m,=m,=m") the
spectrum for g/ << 1 has the form

wo(q) =2mJI*q?, (6)

where the ‘‘exchange constant’ is calculated to be
S = (3/2117)V2:2/¢)

The full Hamiltonian of the system may be written
as H= H s+ H’, where H' contains terms that violate

SU(2) symmetry. For example, there will be terms in
the electron-electron interaction of the form
a4y, _la,:_ -14;,,1 in which one electron is scattered
from valley 1 to valley —1, while the second is scat-
tered from —1 to 1. There also are small symmetry-
breaking terms that arise from the fact that the form
factors of the Bloch functions have an opposite depen-
dence on wave vector, in the two valleys, and from the
fact that terms in the kinetic energy proportional to the
cube of the wave vector have opposite signs in the two
valleys. An impurity at point (r;,z) gives rise to a
symmetry-breaking term of form

Hy=2lu(z)e Vs, (r)) +Hcl], ™

where

s()==23, 367 (6, (Do, .ala,,

i orr’
is the isospin density operator at point r, projected
onto the lowest Landau level. Because the phase fac-
tor e ‘XN is a rapdily varying function of the position
of the impurity, the perturbation H; behaves like a
field which is randomly oriented in the x-y plane of
isospin space. The coefficient u(z;) is the matrix ele-
ment of the impurity potential between Bloch wave
states in the electron layer at wave vectors Q/2 and
—Q/2 in the plane. The relevant Fourier components
of the impurity potential are those at large wave vec-
tors Q+ G, where G is a reciprocal-lattice vector, and
are qualitatively the same for neutral or charged im-
purities. Moreover, the matrix element u(z) van-
ishes rapidly if z; is outside of the region occupied by
the electron layer.

In the absence of impurity scattering, the Hamiltoni-
an H conserves separately the number of electrons in
each of the two valleys, and therefore commutes with
operator S,. For B=0, this follows directly from
wave-vector conservation parallel to the interface. For
B#=0, the envelope wave function ¢,(r) contains a
Gaussian spread in the momentum. The amplitude for
a transition from one valley to the other is of order
exp(—constx Q?/2), which is the overlap integral
between states in the lowest Landau level of two dif-
ferent valleys, and is negligibly small for the field
strengths of interest.

To lowest order in the symmetry-breaking H', if im-
purity scattering is neglected, the ground-state energy
depends on 6 through a term of the form

E(8)=—kAy(S,)?/N=— +NiAycos?,

where Ag is a constant. If Ayg> 0, then the ground
state has all electrons condensed in one valley, so that
(S) is parallel to the +z direction (Ising case). If
Ag < 0 (x-y case), then the minimum-energy state has
0=m/2. The energy remains independent of the
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orientation angle ¢ in the x-y plane.

The effect of Ay on the valley-wave spectrum may
be deduced immediately from the behavior of the
analogous ferromagnetic systems with small anisotro-
py.* In the Ising case there is a gap in the spectrum,
and one finds

w(k)=w0(k)+A0, (88.)

where wq is the unperturbed spectrum, given by (6).
For the x-y case, the frequency spectrum is

w(k)=I[wy(k)+ |A0l]1/2[w0(k)]1/2,

which is linear in the limit®> k — 0 (see Fig. 1).

Now suppose that there is an electric field in the x-y
plane, and hence a Hall current resulting from the drift
velocity vy= (ExB)c/B? 1In the frame of reference
moving with the electrons, the electric field vanishes,
but the impurities move backwards with velocity — v,.
If v, exceeds the critical velocity v., given by
ve = (87J1A) Y% or (2w JI*|Ay]) Y2 for the Ising or x-y
case, respectively, dissipation can occur via Cherenkov
radiation of valley waves by the moving impurities. If
the density of impurities is small, the emission rate
can be calculated by Fermi’s ‘‘golden rule.”” In the Is-
ing case, we obtain a dissipation rate

(8b)

FIG. 1. A sketch of the valley-wave dispersion for the Is-
ing and x-y ground states at small g/ The effect of the
symmetry-breaking terms is to introduce a gap A in the Is-
ing case and a linear dispersion in the x-y case. The slope of
the dashed tangent line is the critical velocity, in each case.
Inset: Sketch of the longitudinal resistivity vs the current
density j in the Ising case.

2
V4

Sl ©)

dE _ 8aN 2 d’q

= = u(z)) ) slw(g) —vy-qlol(q)

dt h’LZIZI P fslo@)-viq )
for v, < vy << JI. (The maximum velocity of the val-
ley waves is of order JI.) The dissipation for v; > v, is
equivalent to a resistivity

poc= (120172 3, lu () |/ L2, (10)

In the x-y case, the matrix element for valley-wave
creation depends on ¢ through a Bogoliubov transfor-
mation, which relates s(r) to the valley-wave creation
operators.* The final result for the dissipation differs
somewhat from the Ising case, but the resistivity p,
reaches a saturation value, for vy, >> v, which is just
1 of the value given in Eq. (10).

In addition to providing the mechanism for dissipa-
tion, the symmetry-breaking impurity field H; may
have an effect on the ground state and the excitation
spectrum. Even for small values of the impurity con-
centration, the random field will cause destruction of
long-range order in the x-y case.® On average, the ran-
dom field will lower the energy of the Ising orientation
relative to the x-y orientation.” Thus, a sufficient con-
centration of impurities can lead to Ising orientation,
even if the pure system would have isospin in the x-y
plane.” The impurities will tend to increase the gap A,
in the Ising case.

Finally, impurities may broaden the valley-wave
spectrum, and may lead to some density of localized
modes, at low energies. It seems unlikely that local-
ized modes can contribute directly to the dissipation
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Px- However, when terms beyond lowest order in the
impurity concentration are taken into account the dis-
sipation may not be precisely zero for drift velocity v,
below the critical velocity v.. (We neglect in our dis-
cussion the extremely small dissipation which is always
present, in principle, from large values of q, where the
excitation spectrum is flat.)

We conclude by applying these general results to the
Si(110) inversion layer, where our coordinate system
is z11(110), x11(110), and p1i(001). Then the
lowest-lying energy state for an electron in the inver-
sion layer with wave vector k near Q/2 is constructed
from the bulk Bloch states by

Ue(R) = +v2g(2) [ePdE | (R) + e~ B, (R)],
(1)

where @£, is a bulk Bloch state in the (100) valley
whose wave vector projected onto the surface plane is
equal to k, ¢£, is a similar state in the (010) valley,
the phase shift & depends on the boundary condition at
the surface, and g(z) is an envelope function® with
the approximate form g(z)=2"V2p¥2ze=#/2 For k
near —Q/2 we use the time-reversed states construct-
ed from (100) and (010). From Ref. 8, for surface
carrier density n=1.5x10'"/cm?, or /=100 A, we
take 56~!=~20 A. We choose an impurity potential



VOLUME 57, NUMBER 1

PHYSICAL REVIEW LETTERS

7 JULY 1986

Vimp such that (Wq/al Vimpl —q2) is 1 eV (here ¥y is
normalized to unity in one atomic volume). This
scattering strength is intermediate between our es-
timated values for substitutional Ge and C impurities.
The value of p,, is proportional to the impurity con-
centration #;, and for ;=10 cm™3, we find p,,, =2.8
Q for the Ising case, when vy > v,.

We have also made an estimate of the valley-wave
gap parameter at low impurity concentration, and we
find £A;=10"% meV.’ This estimate is based on a
Hartree-Fock calculation of the ground-state energy in
the presence of the electron-electron interaction, as a
function of the mixing angle 8 of Eq. (4).19 More pre-
cisely this leads to a value of the form
3

b

ik

erl 1

A0~—e—l- "Q—Z

where I' is a number of order unity. An empirical
pseudopotential approach!! was used to determine the
Bloch functions in Eq. (11). While the sign of Aq indi-
cates an Ising ground state, the uncertainties in the
calculation and in the choice of screened interaction
preclude a definitive prediction. The above value of
Aq gives a critical velocity v, =8x10% cm/sec, or a
critical current density j, = 7x1073 A/cm.

In summary, we make several predictions of novel
behavior which should be observable in the quantum
Hall effect of a multivalley semiconductor. These in-
clude the existence of a critical current density
above which dissipationless current flow ceases, a sat-
uration of the longitudinal resistivity above j., and a
strong dependence of this saturated resistivity on the
density of neutral defects in the inversion layer. A
number of issues deserve further investigation, includ-
ing the influence of disorder on the valley-wave spec-
trum, the effects of nonlinear interactions as the popu-
lation of valley waves builds up, and the manner in
which heat is finally removed from the valley-waves
mode.!?
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