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Abstract. The first-principles-derived approach proposed in Ref. [1] is used to study
structural properties of Pb(Zr0.5Ti0.5)O3 alloys at finite-temperature. Predictions are
in excellent agreement with experimental data and direct first-principles results. Other
possibilities offered by this approach are also discussed.

INTRODUCTION

Ferroelectric materials are of growing importance for a variety of device appli-
cations. Examples include piezoelectric transducers, actuators, and non-volatile
ferroelectric memories, as well as dielectrics for microelectronics and wireless com-
munication. The perovskite oxides ABO3 (e.g., PbTiO3) comprise an important
class of ferroelectric materials. At high temperature, these share the paraelectric
simple-cubic perovskite structure: metal A atoms at the cube corners, metal B
atoms at the cube centers, and O atoms at the cube face centers. As the tem-
perature is reduced, many of the perovskite compounds undergo structural phase
transitions and develop a switchable spontaneous electric polarization P, thus be-
coming ferroelectric.
Most of the perovskite compounds that are of greatest technological interests

are not simple systems, but rather A(B′,B′′)O3 alloys with two different kinds of B
atoms. For example, Pb(Zr,Ti)O3 alloys are currently used in piezoelectric trans-
ducers and actuators [2]. Similarly, the use of Ba(Zn,Ta)O3 and Ba(Mg,Ta)O3 al-
loys as dielectric resonators greatly improve the performance of the high-frequency



wireless technologies [3], such as cellular phones and global positioning systems.
Last but not least, the compounds Pb(Mg,Nb)O3 and Pb(Zn,Nb)O3 exhibit such
extraordinarily high values of the piezoelectric constants when alloyed with PbTiO3
[4] that they could usher in a new generation of piezoelectric devices [5]. Very little
is known about the microscopic behavior that is responsible for the fascinating and
anomalous properties of these ferroelectric alloys.
Since the early 1990’s, first-principles methods have emerged as one of the most

powerful tools for the theoretical investigation of the properties of ferroelectric sys-
tems (see [6–9] and references therein). However, these methods are essentially
restricted to the study of the zero-temperature properties, while technological ap-
plications and fundamental features – such as phase transitions – are realized at
finite temperature. Moreover, because of computational cost, only structures con-
taining a small number of atoms per unit cell can be investigated directly via
first-principles methods, while accurate prediction of alloy properties would require
calculations on much larger cells. Ideally, one would like to have a computational
scheme with the capability of predicting the properties of “real” perovskite alloy
systems at finite-temperature, with the accuracy of the first-principles methods.
Such a computational scheme has recently been proposed in Ref. [1].
The aim of this article is to test this scheme by investigating the structural

properties of the Pb(Zr0.5Ti0.5)O3 (PZT) alloy at finite temperature. We chose
this alloy as a test case because experimental data, as well as direct first-principles
results, are available for it. A direct comparison with these data and results will
thus attest to the accuracy of the proposed computational scheme.
This article is organized as follows. Section II recapitulates our theoretical ap-

proach. Results are shown and discussed in Section III. Finally, new possibilities
offered by this numerical technique are detailed in Section IV.

CONSTRUCTION OF THE FINITE-TEMPERATURE
COMPUTATIONAL SCHEME FROM

FIRST-PRINCIPLES

We construct an effective Hamiltonian based on first-principles calculations as
follows. For a ferroelectric material, the effective Hamiltonian should include struc-
tural degrees of freedom corresponding to the ferroelectric local soft mode and the
strain variables. These are the most important degrees of freedom because ferro-
electric transitions are accompanied by a softening of the phonon soft mode and
by the appearance of a strain [10]. Moreover, a realistic alloy effective Hamilto-
nian must also include the compositional degrees of freedom, because the atomic
arrangement can strongly affect the ferroelectric properties of an alloy [11]. We
propose to incorporate all such degrees of freedom by writing the total energy E
as a sum of two energies,

E({ui}, {vi}, ηH , {σj}) = Eave({ui}, {vi}, ηH ) + Eloc({ui}, {vi}, {σj}) , (1)



where ui is the local soft mode in unit cell i; {vi} are the dimensionless local
displacements which are related to the inhomogeneous strain variables inside each
cell [10]; ηH is the homogeneous strain tensor; and the {σj} characterize the atomic
configuration of the alloy. That is, σj=+1 or −1 corresponds to the presence of a
B′ or B′′ atom, respectively, at lattice site j of the A(B′1−xB′′x)O3 alloy. The energy
Eave depends only on the soft mode and strain variables. The {σj} parameters are
thus incorporated into the second energy term Eloc.
Analytical expressions for the total energy E have been recently developed [10,12]

for simple ABO3 perovskite systems (i.e., in the absence of {σj} variables). These
have been very successful both for reproducing phase transition sequences [10,12,13]
and for studying ferroelectric domain walls [14], as well as for calculating finite-
temperature dielectric and electromechanical properties [15–17]. Here, for Eave, we
generalize the analytical expression of Ref. [10] to the case of an A(B′1−x,B

′′
x)O3

alloy, by making use of the virtual crystal approximation (VCA) [18–20]. We thus
replace A(B′1−x,B′′x)O3 by a virtual (uniform) ABO3 system in which the potential
felt by the electrons is a compositional average of the potentials felt by the electrons
in the AB′O3 and AB′′O3 parent systems. Eave thus consists of five parts: a local-
mode self-energy, a long-range dipole-dipole interaction, a short-range interaction
between soft modes, an elastic energy, and an interaction between the local modes
and local strain [10]. The analytical expression for Eave has 18 free parameters (see
Table II of Ref. [10]) that are determined by fitting to the results of almost 40 first-
principles calculations on small VCA cells (typically between 5 and 20 atoms/cell)
following the procedure of Ref. [10].
While expressions were available for Eave, we were not aware of any analytical

expression that had previously been proposed and tested for Eloc. Following the
spirit of the “computational alchemy” method developed for calculating the com-
positional energy of semiconductor alloys [21–23], we derived Eloc by treating the
alloy configuration {σj} as a perturbation of the VCA system. We adopted an
expression that includes: (i) the on-site effect of alloying on the self-energy up to
the fourth order in the local mode amplitude ui ; and (ii) the intersite contributions
involving the first-order terms in a perturbation expansion in powers of σj (i.e.,
terms that are linear in ui or vi). That is,

Eloc({ui}, {vi}, {σj}) =

∑

i

[∆α(σi) u
4
i + ∆γ(σi) (u
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+
∑

ij

[Qj ,i eji · ui + Rj ,i fji · vi)] , (2)

where the sum over i runs over all the unit cells, while the sum over j runs over the
mixed sublattice sites. ∆α(σi) and ∆γ(σi) characterize the on-site contribution
of alloying, while Qj ,i and Rj ,i are related to alloy-induced intersite interactions.
uix , uiy and uiz are the Cartesian coordinates of the local-mode ui . eji is a unit
vector joining the site j to the center of the soft mode ui , and fji is a unit vector
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FIGURE 1. The averaged largest, middle and smallest Cartesian coordinates u1, u2 and u3 of

the supercell-averaged local mode amplitude as a function of temperature in disordered single

crystals of Pb(Zr0.5Ti0.5)O3. The open and filled symbols refer to two different random atomic

configurations. (For clarity, the u2 and u3 of the second configuration are not shown; they are

nearly null at all temperatures.) The supercell size is 10×10×10.

joining the site j to the origin of vi . In principle, terms involving higher powers
of {σj}, ui and vi might be included to improve the quality of the expansion, but
as we will show below, we find this level of expansion to give a very good account
of experimental findings. We also find that Qj ,i and Rj ,i rapidly decrease as the
distance between i and j increases. As a result, we included the contribution up to
the third neighbors for Qj ,i , and up to the first neighbor shell for Ri ,j . Note that
for symmetry reasons, the expression for the intersite interactions becomes more
complex when going beyond the third neighbor shell.

The quantities ∆α(σi), ∆γ(σi), Qj ,i and Rj ,i are derived by performing first-
principles calculations in which a true atom [e.g., Ti or Zr in Pb(Zr,Ti)O3] is
surrounded by VCA atoms. The first-principles method used in the present
study here to fully specify the effective Hamiltonian is the plane-wave ultrasoft-
pseudopotentials method [24] within the local-density approximation (LDA) [25].
The virtual crystal approximation used is the one proposed in Ref. [19].

Once our effective Hamiltonian is fully specified, the total energy of Eq. (1) is
used in Monte-Carlo simulations to compute finite-temperature properties of ferro-
electric alloys. The {σj} variables are chosen randomly in order to mimic maximal
compositional disorder – consistent with the experiment – and are kept fixed during
the Monte-Carlo simulations. The outputs of the Monte-Carlo procedure are the
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FIGURE 2. The largest Cartesian coordinate u1 of the average local mode amplitude as a

function of temperature. Filled and open symbols refer to 10×10×10 and 12×12×12 supercells

respectively, while the solid line indicates the prediction for a 14×14×14 supercell. For each

supercell size, only one random configuration is used. The other Cartesian coordinates (u2 and

u3) are not shown, and are nearly null at all temperatures.

cell-averaged local mode amplitude u (which is directly proportional to the electri-
cal polarization) and the homogeneous strain ηH . Up to 106 Monte-Carlo sweeps
are first performed to equilibrate the system, and then 2×104 Monte Carlo sweeps
are used to get the various statistical averages. The system is cooled down in small
steps.

RESULTS

Figure 1 shows the largest, middle and smallest Cartesian cubic coordinates u1,
u2 and u3 of the local mode of Pb(Zr0.5Ti0.5)O3 as a function of temperature,
as predicted by our approach of Eqs. (1) and (2). Here, we use a 10×10×10
supercell, corresponding to 5000 atoms, to perform the Monte-Carlo simulations.
The predictions for two different realizations of the disorder are shown. One can
notice that the results are fairly independent of the configuration used to mimic
the randomness. In each case, u1, u2 and u3 are close to zero at high temperature,
characterizing a paraelectric cubic phase. u1 then drastically increases at around
950K, while u2 and u3 remain nearly null as the temperature decreases further.
The finite-temperature behavior of the phonon local mode amplitude indicates a
transition to a ferroelectric tetragonal phase as is experimentally observed [26].
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FIGURE 3. The tetragonal axial ratio c/a as a function of temperature in disordered single crys-

tals of Pb(Zr0.5Ti0.5)O3. Filled and open symbols refer to 10×10×10 and 12×12×12 supercells,

respectively. For each supercell size, only one random configuration is used.

Figure 2 shows the effect of the supercell size on the behavior of the local phonon
mode as a function of the temperature. A single realization of the disordered is used
for each supercell size. One can clearly see that it is necessary to use a 12×12×12
supercell, corresponding to 8640 atoms, to have convergent results. As a matter of
fact, increasing the supercell size from 10×10×10 to 12×12×12 leads to an increase
of the Curie temperature Tc by 60K. On the other hand, increasing even further the
size of the supercell to 14×14×14 does not lead to any significant further change
of Tc.

All the theoretical Curie temperatures displayed in Figs. 1 and 2 are much higher
than the experimental value of 640K [27]. This difficulty of reproducing Tc seems
to be a general feature of the effective-Hamiltonian approach [10,12,13], and may be
due to higher perturbative terms not included in the analytical expression for the
total energy. This shortcoming can be overcome by multiplying the temperature
used in the simulation by a constant factor of Tc,exp/Tc,theo, where Tc,exp and Tc,theo
are the Curie temperatures observed and predicted, respectively [15].

Figure 3 shows that the tetragonal axial ratio c/a looks very similar for the
10×10×10 and 12×12×12 supercells when adopting this temperature rescaling.
The c/a ratio is predicted to range from 1 (close to the transition region) to 1.02
(at very low temperature). This is in good agreement both with the experimental
value of 1.02-1.025 [26,28] obtained for disordered samples, and with the direct first-
principles result of 1.03 obtained for an ordered alloy [8]. Our finite-temperature



TABLE 1. Structural parameters of tetragonal Pb(Zr0.5Ti0.5O3). ‘FTA’ de-

notes the predictions at 50K given by our finite-temperature approach. ‘FPO’ de-

notes the direct-first principles calculations for a [100]-ordered supercell (Ref. [8]).

‘EXP’ denotes the experimental result of Ref. [32]. z are the ferroelectric atomic

positions, in c-lattice units. The origin is chosen to be on a Pb atom.

FTA FPO EXP

z(Pb) 0.000 0.000 0.000
z(〈B〉) 0.442 0.446 0.452
z(O1) 0.376 0.369 0.379
z(O3) −0.098 −0.104 −0.103

approach is thus able not only to reproduce the correct phase transition sequence
but also to predict quite accurately the relevant lattice parameters of PZT. The
effective Hamiltonian approach described in Eqs. (1) and (2) is also capable of pre-
dicting the internal atomic displacements, since the phonon local-mode u is simply
related to them via the eigenvectors of a second derivative matrix [10,29]. Table I
demonstrates that these predictions are in excellent agreement both with data mea-
sured on disordered samples and with direct first-principles calculations performed
on ordered Pb(Zr0.5Ti0.5)O3. Note that in Table I, the averaged transition-metal
atom interpolating between Zr and Ti is referred to as 〈B〉, and the oxygen atoms
are grouped into two kinds: those denoted O3, located between two 〈B〉 atoms
along the z direction; and those denoted O1, located between two 〈B〉 atoms in the
perpendicular directions [7,30].

CONCLUSIONS AND PERSPECTIVES

In summary, the first-principles derived computational approach proposed
in Ref. [1] has been tested and used to study structural properties of the
Pb(Zr0.5Ti0.5)O3 solid solution as a function of temperature. We find that all pre-
dicted structural properties – the phase transition sequence, the tetragonal axial
ratio, and the internal atomic coordinates – are in very good agreement with mea-
surements and with direct first-principles calculations when available.
Reference [1] demonstrates that this finite-temperature computational scheme

also offers other important possibilities. For instance, it confirms the existence of
the low-temperature monoclinic phase of PZT experimentally found for Ti compo-
sitions ranging between 47% and 50% [28,31,32]. This new scheme also leads to a
new explanation for the unusually large value of the piezoelectric coefficient found
in tetragonal ceramics of PZT, namely that it arises from a huge value of the d15
piezoelectric coefficient that is predicted to occur for a single crystal of PZT [1].
Materials other than PZT, as well as other properties (e.g., the dielectric re-

sponse), are currently being investigated using this new technique. Once again,
preliminary results show a very good agreement with experimental results. In the
future, it will be of particular interest to use this approach to investigate the effects



of atomic long-range order, atomic short-range order, and pressure on the struc-
tural, piezoelectric and dielectric properties of ferroelectric solid solutions. This
scheme may also be used to probe the atomic features responsible for the very in-
triguing relaxor behavior of some perovskite alloys. Based on its successes and on
its broad possibilities, this scheme may help in fulfilling the dream of computational
design of new ferroelectric materials.
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