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Spin-orbit spillage as a measure of band inversion in insulators
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We propose a straightforward and effective approach for quantifying the band inversion induced by spin-orbit
coupling in band insulators. In this approach we define a quantity as a function of wave vector in the Brillouin
zone (BZ) measuring the mismatch, or “spillage,” between the occupied states of a system with and without
SOC. Plots of the spillage throughout the BZ provide a ready indication of the number and location of band
inversions driven by SOC. To illustrate the method, we apply this approach to the two-band Dirac model, the 2D
Kane-Mele model, a 2D Bi bilayer with applied Zeeman field, and to first-principles calculations of some 3D
materials including both trivial and Z2 topological insulators. We argue that the distribution of spillage in the
BZ is closely related to the topological indices in these systems. Our approach provides a fresh perspective for
understanding topological character in band theory, and should be helpful in searching for new materials with
nontrivial band topology.
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I. INTRODUCTION

Spin-orbit coupling (SOC) is a relativistic effect originating
from the interaction between the spin and orbital motions
of electrons. It has played a key role in various aspects of
condensed-matter physics, including the electronic structure
of solids and the transport properties in mesoscopic systems
[1,2]. It has been known since the 1950s that SOC can induce
anisotropic spin splitting in some III-V semiconductors with
the zinc-blende structure, known as the Dresselhaus splitting
[1]. In 2D and quasi-2D systems, the SOC resulting from
the electric field perpendicular to the 2D plane gives rise
to a Rashba splitting linear in k with interesting “helical”
spin textures [1,2]. The SOC is also crucial in determining
the transport behavior of low-dimensional electronic systems.
One famous example is the weak antilocalization in spin-
orbit-coupled 2D electronic systems, where the backscattering
amplitudes interfere destructively due to a geometric Berry
phase [3] associated with the intrinsic SOC, leading to a
suppressed resistivity when an external magnetic field is absent
[4]. SOC is also responsible for spin precession in 1D and
quasi-1D systems [2], the spin Hall effect in paramagnetic
metals [5], and numerous other effects.

The SOC has received renewed attention recently because
of its central role in the physics of topological insulators (TIs)
and related topological states. Typically, the transition from
a topologically trivial to a nontrivial phase is accomplished
by a SOC-driven inversion of states of different symmetry
at the conduction-band minimum (CBM) and valence-band
maximum (VBM). For example, such a SOC-driven topologi-
cal band inversion between �6-derived (s-like) and �8-derived
(p-like) states at the zone center is responsible for the quantum
spin Hall (QSH) state observed in HgTe/CdTe quantum wells
[6,7]. Similarly, the Kane-Mele model of 2D graphenelike
systems [8,9] enters the QSH state when two band inversions
occur at the K and K ′ points as the SOC strength is increased
at a constant staggered potential. In 3D band insulators with
time-reversal (TR) symmetry, a SOC-induced band inversion
can transform the system from a trivial insulator into a strong
TI displaying an odd number of gapless Dirac cones in the
surface states, as occurs for Bi2Se3 and Bi2Te3 [10–13].

In the case of a 3D strong TI with inversion symmetry such
as Bi2Se3, the strong Z2 index can be uniquely determined by
the parities of the occupied bands at the TR-invariant momenta
(TRIM) in the Brillouin zone (BZ) [14]. If the highest occupied
states and lowest unoccupied states at one of the TRIM possess
opposite parities without SOC, and they are inverted by turning
on SOC, then the system transforms from a normal to a
topological insulator. For example, in Bi2Se3, two pairs of
Kramers-degenerate occupied states at the BZ center (�) are
inverted by SOC, resulting in the nontrivial Z2 index. For TIs
without inversion symmetry, the band inversion may happen
at arbitrary points in the BZ, instead of at the TRIM. We
can identify such band inversion points as the points where a
band touching occurs between valence and conduction bands
as the SOC is adiabatically turned on; TR symmetry implies
that an inversion at k0 will always be accompanied by one at
−k0. Even in the absence of inversion symmetry, therefore, a
band inversion driven by SOC is typically a hallmark of the
nontrivial topology in TIs with TR symmetry.

The SOC also plays a crucial role in giving rise to the Chern
insulator (CI) state, also known as the quantum anomalous Hall
state, which can occur in 2D insulators lacking time-reversal
symmetry. The possibility of a CI state was first introduced
by Haldane [15], who constructed an explicit model that
demonstrates the effect. Although the Haldane model is a
model of spinless fermions on a honeycomb lattice, its key
feature is the presence of complex second-neighbor hoppings,
which can be regarded as arising from intrinsic atomic SOC
through a second-order perturbation process in a more realistic
system of spinor electrons [16]. An example is a Bi bilayer with
an applied Zeeman field, as will be discussed below.

The concept of topological band inversion has been much
discussed in the topological-insulator literature, but in the
absence of symmetry it may be difficult to recognize when
a band inversion has actually occurred. The usual approach is
to look at the symmetry or orbital character at a high-symmetry
point in the BZ where a band inversion is suspected, but this
only works if sufficient symmetry is present. Some authors
have tried to deduce the presence of band-inversion behavior
by studying other properties of the system, such as by looking
at the qualitative shape of the bands near the symmetry point

1098-0121/2014/90(12)/125133(7) 125133-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.125133


JIANPENG LIU AND DAVID VANDERBILT PHYSICAL REVIEW B 90, 125133 (2014)

[17], or even more indirectly, by studying the variation of the
band-energy differences with strain in the absence of SOC
[18]. However, the reliability of such methods is questionable,
as they do not give a direct and quantitative evaluation of the
SOC-induced band inversion.

In this paper, we propose that the calculation of spin-orbit
spillage, which measures the degree of mismatch between the
occupied band projection operators with and without SOC,
provides a simple and effective measure of SOC-driven band
inversion in insulators. We demonstrate that the mapping
of this spin-orbit spillage in k space easily allows a direct
identification of any region in the BZ where band inversion
has occurred, and that the maximum spillage is a useful
indicator of topological character. We illustrate the method
in the context of both tight-binding models and realistic
first-principles calculations.

The paper is organized as follows. In Sec. II, the formal
definition of SOC-induced spillage is introduced, and the
correspondence between topological indices and spillage is
also discussed. In Sec. III, the formalism is applied to various
systems, including the two-band Dirac model, 2D Kane-Mele
model, a Bi bilayer with tunable SOC and exchange field,
and realistic materials including Bi2Se3, In2Se3 and Sb2Se3.
In Sec. IV, we make a brief summary.

II. FORMALISM

A. Definitions

Mathematically, the mismatch between two projection
operators P and P̃ , both of rank N , can be represented by
a quantity

γ = N − Tr(P P̃ ) = Tr(PQ̃) = Tr(QP̃ ), (1)

where Q = 1 − P and Q̃ = 1 − P̃ denote the complementary
projections. This measure of mismatch is often referred to as
“spillage” since it measures the weight of states that spill from
P into Q̃, or equivalently, from P̃ into Q. Clearly, the spillage
vanishes if P = P̃ at one extreme, and rises to N at the other
extreme if there is no overlap at all between the subspaces
associated with P and P̃ . Thus the spillage provides a measure
of the degree of mismatch between the two subspaces.

Here we apply this concept to the band projection operators

P (k) =
nocc∑
n=1

|ψnk〉〈ψnk| (2)

associated with a given wave vector k in the BZ of a crystalline
insulator with N = nocc occupied bands. We assume an
effective single-particle Hamiltonian such as that appearing
in density-functional theory (DFT) [19,20]. Then the SOC-
induced spillage γ (k) is defined as

γ (k) = Tr[P (k)Q̃(k)], (3)

where P and P̃ (and their complements) refer to the system
with and without SOC, respectively. More explicitly,

γ (k) = nocc − Tr[P (k)P̃ (k)]

= nocc −
nocc∑

m,n=1

|Mmn(k)|2, (4)

where

Mmn(k) = 〈ψmk|ψ̃nk〉 (5)

is the overlap between occupied Bloch functions with and
without SOC at the same wave vector k. Equivalently, this
can be written as Mmn(k) = 〈umk|ũnk〉 if one prefers to
work in terms of the cell-periodic |unk〉 defined as unk(r) =
e−ik·rψnk(r).

In the case of realistic DFT calculations in a plane-wave
basis, the overlap matrix elements are easily evaluated as

Mmn(k) =
∑

G

〈ψmk|k + G〉〈k + G|ψ̃nk〉 , (6)

where |k + G〉 is the plane wave ei(k+G)·r for reciprocal vector
G normalized to the unit cell. The evaluation should also be
straightforward in other first-principles basis sets. For simple
lattice models, the Hamiltonian is typically written in an
orthonormal tight-binding basis, so that the wave functions
are

|ψnk〉 =
∑

j

Cnj,k |χjk〉, (7)

where |χjk〉 are the Bloch basis states

χjk(r) =
∑

R

eik·R ϕj (r − R) (8)

and ϕj (r − R) is the j th tight-binding basis orbital in unit cell
R. Then the spillage is trivially computed using

Mmn(k) =
∑

j

C∗
mj,kC̃nj,k . (9)

Since the use of Wannier interpolation methods [21–23]
is becoming increasingly frequent, we also comment on this
case here. In this approach, the occupied Bloch states are again
written as in Eq. (7), but this time the Bloch basis states are

χjk(r) =
∑

R

eik·R wj (r − R), (10)

where wj (r − R) is the j ’th Wannier function in unit cell R.
Then the spillage is again computed using Eqs. (4) and (9).
This will be accurate as long as the WFs for the systems with
and without SOC are chosen to be the same, or as similar as
possible. As we shall see in the following section, the results
from the Wannier basis match those of the direct plane-wave
calculation very closely for the cases studied here.

In the case of complex unit cells or supercells with many
bands near the gap, it may be difficult to identify precisely
which bands have been inverted by the SOC. In this case,
it may be helpful to define a valence-band-resolved spillage
as γn(k) = [L(k)L†(k)]nn, where Lnm(k) = 〈ψnk|ψ̃mk〉 is the
overlap matrix between the occupied states without SOC
and the unoccupied states with SOC. Then the total spillage
is γ (k) = ∑nocc

n=1 γn(k). Similarly, γ̄m = (L†L)mm provides a
conduction-band-resolved spillage. However, it should be
noted that γn and γ̄m are not gauge-invariant; they will change
under a unitary transformation among the occupied or unoccu-
pied states. A natural gauge choice is the one associated with
the singular-value decomposition L = V �W †. Transforming
the sets of occupied and unoccupied states according to the
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unitary matrices V and W , respectively, the overlap matrix
between the transformed states is just �, which is real and
diagonal. The columns of V (W ) corresponding to the leading
eigenvalues indicate which linear combinations of valence
(conduction) states contribute the most to the total spillage.
We leave the exploration of these refinements for a future
study.

B. Relation to topological character

Here, we argue that the presence of nontrivial topological
indices will be reflected in certain features of the spillage
distribution in the BZ. We first consider the relatively simple
case in which the SOC-driven band inversion is associated with
the crossing of highest valence and lowest conduction states
belonging to two different irreducible representations (irreps)
at a high-symmetry point k = �0 in the BZ. Since the states
belonging to different irreps have no overlap with each other,
the spillage at �0 must be greater than or equal to the irrep
dimension. In TR-invariant Bi2Se3, for example, the four states
around the Fermi level at � consist of two Kramers doublets
of opposite parity. In this case, the dimension of the irreps is
two, so we expect a peak in γ (k) centered at � whose height is
γmax � 2. As we shall show in Sec. III D, this is exactly what
we find in Bi2Se3.

Next, we argue that a correspondence between topological
character and spillage should also remain valid for more
general cases without special lattice symmetry. Let us first
consider the case of CIs (i.e., with broken TR symmetry).
We assume the Bloch functions ψnk are those of a normal
system with Chern number C = 0, while ψ̃nk are topologically
nontrivial with a nonzero Chern number C̃. We argue that this
implies the existence of at least one point in the BZ where
the spillage is �1. If we assume the contrary, i.e., γ (k) < 1
everywhere in the BZ, then the determinant of the overlap
matrix of Eq. (5) between ψnk and ψ̃nk obeys det(Mk) > 0
everywhere, since a singular M would imply γ � 1. Because
the system |ψnk〉 is topologically normal, we know it is possible
to choose a smooth and periodic gauge for it, and we assume
without loss of generality that this has been done. But if Mk is
nowhere singular, the |ψnk〉 can be used as “trial functions” to
construct a smooth and periodic gauge for the |ψ̃nk〉, as follows.
At each k, carry out a singular value decomposition to express
M = V †�W (V and W are unitary and � is real positive
diagonal), and then use the unitary matrix V †W to transform
the original ψ̃nk to a new set ψ̃ ′

nk. Then M = V †�V , i.e., it is
Hermitian and positive definite. Intuitively, this means that a
smooth and periodic gauge has been chosen for the states ψ̃ ′

nk
to make them “maximally aligned” with the states ψnk. But
a smooth and periodic gauge is inconsistent with a nonzero
Chern number, completing the proof by contradiction. Thus,
if γ < 1 everywhere in the BZ, then Mmn,k is nonsingular
everywhere, and the system |ψ̃nk〉 is normal. Conversely, a
topological system must have γ (k) � 1 somewhere in the BZ,
which provides both a signal for the topological phase and an
indication of where in the BZ the band inversion has occurred.

For the TR-invariant Z2 TIs, similar arguments can be put
forward that work even in the absence of inversion symmetry.
If the system of |ψnk〉 is in the Z2-even phase, one can
always make a smooth gauge choice over the entire BZ that
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FIG. 1. (Color online) The spillage of the half-filled Dirac
Hamiltonian as λ increases from 0.4 to 1.9.

respects TR symmetry. In the Z2-odd case, however, such a
gauge choice does not exist [24,25]. Therefore det(Mk) must
vanish somewhere in BZ, or else the smooth gauge could be
transferred to the |ψ̃nk〉, resulting in a contradiction. Due to the
TR symmetry, det(Mk) = det(M−k), so one would generically
expect γ (k) � 1 at two points (k0 and −k0) in the BZ. For the
case of inversion-symmetric TIs, k0 and −k0 merge at one of
the TRIM, the two spillages add up, and one expects γ � 2 at
one of the TRIM. In the following section, we numerically test
and confirm the above arguments by applying the formalism
to systems in different topological phases.

III. APPLICATIONS

A. Application to two-band Dirac Hamiltonian

As a warm-up exercise, we first apply the spillage formula
to a minimal model of a band inversion in 2D (kx,ky) space,
namely, a Dirac model at half filling as described by the
Hamiltonian

H = m(1 − λ)σz + kxσx + kyσy, (11)

where σj are Pauli matrices. Here, m is a mass and λ is a control
parameter that inverts the bands at λ = 1. Physically, such a
model may describe the low-energy physics in the vicinity of
a band touching event associated with the transition from a
normal to a quantum anomalous Hall insulator, or at one of the
band touching events (at k0 or −k0) in the transition to a spin-
Hall insulator. The energy spectrum of the above Hamiltonian
is E± = ±

√
m2(1 − λ)2 + k2

x + k2
y , where the gap closes at

λ = 1 at � (kx = ky = 0). The spillage is just γ (λ,k) = 1 −
|〈ψ0

1k|ψλ
1k〉|2, where |ψ0

1k〉 (|ψλ
1k〉) is the occupied eigenstate at

zero (nonzero) λ.
Figure 1 shows the spillage versus kx at ky = 0 as λ is

increased from 0.4 to 1.9. When λ = 0.4, the spillage is
negligible almost everywhere, and is exactly zero at �. On
the other hand, when λ = 0.99, which is very close to the gap
closure point, one finds two peaks of spillage emerging on
either side of �, with a peak value approaching 0.5 as λ → 1.
As λ passes through the critical point at λ = 1, one finds that
the spillage at � jumps from 0 to 1, and then gradually spreads
out in BZ as λ is increased further.
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This interesting behavior can be interpreted as follows.
When λ = 0, the σz term dominates around �, so that the
pseudospin is mostly along the z direction around �. On the
other hand, if λ is very close to 1, the σx and σy terms dominate
near (but not exactly at) �, forcing the pseudospin direction
to point in the (x,y) plane and resulting in a spillage of 1/2.
However, the σx and σy terms vanish at �, which means the
pseudospin has to point along the ±z direction. Therefore,
when λ < 1 (λ > 1), the pseudospin is parallel (antiparallel)
with the pseudospin direction at λ = 0, such that the spillage
jumps from 0 to 1 as λ passes through the critical point.

B. Application to the Kane-Mele model

The Kane-Mele model is a four-band TB model on
a graphene lattice, including nearest-neighbor (NN) spin-
independent hoppings and both NN and next-NN spin-
dependent hoppings:

H =
∑
〈ij〉

tc
†
i cj +

∑
〈〈ij〉〉

iλsoνij c
†
i szcj

+
∑
〈ij〉

iλRc
†
i (s × d̂ij )zcj +

∑
i

ε(−1)ic†i ci . (12)

Here spin is implicit, t is the NN spin-independent hopping
amplitude, λso is the strength of the next-NN non-spin-flip
SOC, λR is the NN Rashba-like SOC amplitude, and ε is
the magnitude of on-site energy, with signs ±1 for A and
B sublattices, respectively. Also, νij = ±1 with the sign
depending on the chirality of the next-NN bond from site i

to j , and d̂ij is the unit vector pointing from site i to its NN
j . In this model, λso competes with λR and ε, in the sense that
λso tends to drive the system to the QSH phase while λR and ε

tend to retain the trivial band topology.
For simplicity, we first drop the Rashba coupling, so that

spin is a good quantum number. The system is in the QSH
phase when 3

√
3λso > ε, and in the normal phase otherwise.

Without the Rashba term, the Kane-Mele model can be
considered as a superposition of two copies of the Haldane
model with opposite Chern numbers [15]. If one calculates
the 2D Chern numbers for spin-up and spin-down electrons
separately, one would find that the two Chern numbers are ±1
in the QSH phase. While the Haldane-model system goes from
a normal insulator to a CI via a band inversion at either the
K or K ′ point, the Kane-Mele model transitions to the QSH
state via simultaneous band inversions at both K and K ′, but
for opposite spins at these two points.

The SOC-induced spillage without the Rashba term is
shown in Fig. 2(a). In this case, the spins act independently,
so the spin-up and spin-down spillages γσ (k) = nocc/2 −∑nocc/2

m,n=1 |Mnσ,mσ (k)|2 (where σ = {↑,↓}) are shown sepa-
rately. Clearly, the spin-up band inversion at K is responsible
for γ↑ = 1, and conversely at K ′. The total spillage γ (k) =
γ↑(k) + γ↓(k) is shown by the solid line in Fig. 2(b). The
symmetry between the behavior at K and K ′ has been restored
by summing over spins. Note that the peak values are γ = 1
exactly; the fact that they do not exceed one is an artifact of the
simplicity of the model. It is also interesting to note that in the
absence of time-reversal symmetry, the spin-resolved spillage
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FIG. 2. (Color online) Spin-orbit spillage of the Kane-Mele
model in the QSH phase, with t = 1, λso = 0.1t , and ε = 0.1t .
(a) Spin-resolved spillage without Rashba coupling; solid (green)
and dashed (red) lines denote spin-up and spin-down spillage. Inset
shows �-M-K-M-K ′-� path used here (blue) and K-�-M-K path
used in Fig. 3 (magenta). (b) Total spillage without (solid line) and
with (dashed line) Rashba coupling.

is closely related to the van Vleck paramagnetism in spin-orbit
coupled systems.

When the Rashba coupling is included, as shown by the
dashed line in Fig. 2(b), spin is no longer a good quantum
number, so that a spin decomposition is not well-defined. As
expected, adding the Rashba term does not significantly change
the results [26]; one still finds that the spillage reaches unity at
K and K ′ as before, providing an indication of the spin-Hall
phase.

C. Application to Chern insulators

We now consider the case of broken TR symmetry, so that
the Z2 index is no longer well-defined, but the possibility of
CI phases appears. As discussed in Sec. I, SOC is important
here as well. Here we study a buckled honeycomb Bi bilayer
with a Zeeman field applied normal to the plane, which can be
regarded as having been cut from a 3D Bi crystal on a (111)
plane. The Bi (111) bilayer has been proposed as a candidate
for QSH insulator [27]. If a Zeeman field is further applied,
it is possible to obtain CI phases with Chern numbers C = 1
or −2 [16,28]. To describe this system, we use a TB model
based on Bi 6s and 6p orbitals, where the first-neighbor ss, sp,
ppσ , and ppπ hoppings, as well as the second-neighbor ppσ

hoppings, are included. The hopping parameters are taken from
a TB model for 3D bulk Bi [29]. In order to obtain nonzero
Chern numbers, an on-site p-shell SOC (λSOC) and a Zeeman
field (Hz) are further applied. It turns out that if Hz is fixed at
0.8 eV, then the phases with C = −2 and +1 are realized at
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FIG. 3. (Color online) (a) Spin-orbit spillage of the Bi bilayer for
C = 1 (dashed blue) and C = −2 (solid red) phases, plotted along
the K-�-M-K path [magenta path in inset of Fig. 2(a)]. (b) Spillage
for C = 1 phase plotted in the 2D BZ (kx and ky in units of Å−1).
(c) Same for C = −2 phase.

λSOC = 2.4 and 0.6 eV, respectively. If the SOC is completely
turned off, C = 0.

The spillage for the Bi bilayer is shown along a high-
symmetry k path in Fig. 3(a), and as a distribution in the
2D BZ in Figs. 3(b) and 3(c), for the two parameter sets giving
the C = 1 and C = −2 phases. In both cases the spillage
distribution is concentrated at �, indicating a band inversion
there, although it is much more sharply peaked in the C = 1
case. Clearly, the spillages provide a signature of the presence
of a Chern-insulator phase, including the location of the band
inversion and the magnitude (but not the sign) of the Chern
number. Here again the peak values of the spillage are exactly
equal to the magnitude of the Chern number. For more realistic
systems with more bands included, the spillage can be expected
to exceed these values slightly, but a clear correlation between
the peak values of spillage and the Chern number is still
expected.

D. Application to 3D topological insulators

In this section, we apply our formalism to realistic first-
principles calculations of Bi2Se3, In2Se3 and Sb2Se3. Bi2Se3

is a well-known strong TI [13], where the SOC-induced band
inversion takes place at �. We also consider In2Se3 and
Sb2Se3 in the same crystal structure (known as β phase for
In2Se3 and not realized experimentally for Sb2Se3), which
are theoretically predicted (and experimentally confirmed for
In2Se3) to be trivial insulators [13,30–32]. Here, it is interesting
to note that even though Sb and In have very similar atomic
SOC strength, the substitution of In atoms tends to drive
Bi2Se3 into a trivial-insulator phase much faster than does
Sb substitution, due to the existence of In 5s orbitals [32].

(a)

(b)

FIG. 4. (Color online) (a) Lattice structure of Bi2Se3. (b) The BZ
of Bi2Se3; the spillage and band structures shown in Figs. 5(a) and 6
are plotted along the black path.

As shown in Fig. 4, the considered structure is rhombohe-
dral, with two cations and three Se atoms in the primitive unit
cell. The five 2D monolayers are stacked in an A-B-C-A- . . .

sequence along the (111) direction to form quintuple layers
(QLs). Experimentally, the in-plane hexagonal parameters
are a = 4.138 and 4.05 Å, and the QL size is c = 9.547
and 9.803 Å, for Bi2Se3 and In2Se3, respectively. In our
calculations, we take the experimental lattice parameters of
Bi2Se3 and In2Se3, but relax their internal atomic coordinates.
As for Sb2Se3, because its rhombohedral structure is not
adopted in nature, both the lattice parameters and atomic
positions are relaxed. The ground state of rhombohedral
Sb2Se3 is predicted to be a trivial insulator with a = 4.11 Å
and c = 10.43 Å.

We use the QUANTUM ESPRESSO package [33] to carry out
first-principles calculations on these systems both with and
without SOC. The PBE generalized-gradient approximation
(GGA) is taken to treat the exchange-correlation functional
[34,35] and norm-conserving pseudopotentials are generated
from OPIUM package [36,37]. The energy cutoff is taken
as 65 Ry for In2Se3 and 55 Ry for Bi2Se3 and Sb2Se3,
with an 8 × 8 × 8 Monkhorst-Pack k mesh [38]. The wave
functions defined in the plane-wave basis are extracted from
these calculations and Eq. (6) is applied to evaluate the
spillage.

As mentioned in Sec. I, the spillage can also be calculated
in the Wannier basis. Starting from the first-principles cal-
culations, we use the WANNIER90 package [39] to construct
Wannier functions (WFs) and a corresponding realistic TB
model [40] for each of the three materials. The basis WFs
are constructed by projecting 30 atomic p trial orbitals onto
the Bloch subspace of p-like bands to generate a 30-band
spinor model for Bi2Se3 and Sb2Se3, whereas four additional
In 5s projectors and bands are included in the model for
In2Se3. In order that they will retain their atomiclike identity
as much as possible, the projected WFs are not optimized to
minimize the spread functional [23]. We find that the WFs
generated by this projection method are almost the same for
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FIG. 5. (Color online) (a) Spin-orbit spillage of rhombohedral
Bi2Se3, Sb2Se3, and In2Se3 as indicated by blue, green and red
lines respectively. Solid (dashed) lines show the spillage computed
from direct plane-wave (Wannier-based) calculations. (b) Spillage of
Bi2Se3 in the (kx,ky) plane at kz = 0 (units of Å−1).

the systems with and without SOC, so that the matrix elements
Mmn(k) defined in Sec. II A can be evaluated with good
accuracy.

The spillage from the direct plane-wave calculations are
shown as the solid lines in Fig. 5(a). For Bi2Se3, the spillage
γ (k) has a peak value of 2.12 at �, which is slightly larger
than 2, indicating that two Kramers degenerate bands at �

have been inverted by SOC. On the other hand, the effect of
SOC in In2Se3 and Sb2Se3 seems to be negligible everywhere
in the BZ, which is consistent with the fact that they are both
trivial insulators.

The calculations carried out in the Wannier basis are shown
by the dashed lines in Fig. 5(a). The spillage is typically slightly
larger for the direct plane-wave calculations, since the fact that
the WFs have a slightly different plane-wave representation
with and without SOC is not taken into account in the Wannier-
based calculations. Still, the qualitative features are the same,
showing that the Wannier-based approach can successfully
provide the same kind of information about the nature and
location of the topological band inversion. In Fig. 5(b), we
also show the spillage of Bi2Se3 in the (kx,ky) plane at kz = 0,
as calculated in the Wannier basis, which again indicates a
highly localized band inversion near � and is fully consistent
with the expected picture of the band inversion in Bi2Se3.

To see the band inversion from another perspective, we
plot in Fig. 6 the bulk band structures of Sb2Se3 and Bi2Se3

projected onto Sb 5p and Bi 6p orbitals respectively. It is clear
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FIG. 6. (Color online) (a) Wannier-interpolated band structure of
Sb2Se3. (b) Same for Bi2Se3. Color coding indicates weight of Sb 5p

or Bi 6p orbitals.

that for Sb2Se3, the Sb 5p orbitals are almost all concentrated
in the conduction bands, whereas in Bi2Se3 there is a localized
region around � where the corresponding Bi 6p orbitals
contribute mostly to the top valence band. This is precisely
the region of the band inversion corresponding to the peak at
� in Fig. 5.

IV. SUMMARY

To summarize, we have introduced the SOC-induced
spillage γ (k) as a useful quantitative tool for evaluating the
degree of band inversion driven by SOC and mapping it as
a function of k in the BZ. We have applied this method to
the two-band Dirac model, the 2D Kane-Mele model and
a tight-binding model of a Bi bilayer with applied Zeeman
field, as well as to realistic materials including both trivial
and topological insulators. A clear correspondence between
nontrivial topological indices and nontrivial spillage distribu-
tions is evident. In the two-band Dirac model, one observes
interesting behavior in the distribution of spillage through a
topological phase transition process. In the Kane-Mele model,
one gets two peaks of spillage at K and K ′ with the peak value
of 1, which indicates that a single band is inverted at these
two points corresponding to an odd 2D Z2 index. In the Bi
bilayer with applied Zeeman field, a peak of spillage shows
up at �, with the peak value corresponding to the absolute
value of the Chern number. In Bi2Se3, the spillage is slightly
greater than 2 at one of the TRIM, namely �, implying that two
bands are inverted by SOC there and signaling the presence of
a nontrivial strong Z2 index.

As mentioned above, other methods exist for the direct
computation of topological Chern and Z2 indices, with or
without inversion symmetry [14,41,42], and we still recom-
mend these if a direct and definitive determination of the
topological indices is needed. However, the present spillage-
based approach has the advantage of providing a BZ map of
the strength, position, and degree of localization of the band
inversion responsible for the topological character, thus giving
valuable physical intuition about the origin of the topological
properties of the material in question. In addition, compared
with direct methods for topological index calculation, the
spillage calculation only requires the evaluation of overlaps
between two wave functions at the same k point, which is easy
to implement and numerically very efficient. Therefore, it is
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our hope that the calculation of SOC spillage will prove to be a
widely useful tool that can be applied both for high-throughput
screening for topological materials and for obtaining a deeper
understanding of the critical features of the band structures in
known topological materials.
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