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Topological phase transitions in (Bi1−xInx)2Se3 and (Bi1−xSbx)2Se3
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We study the phase transition from a topological to a normal insulator with concentration x in (Bi1−xInx)2Se3

and (Bi1−xSbx)2Se3 in the Bi2Se3 crystal structure. We carry out first-principles calculations on small supercells,
using this information to build Wannierized effective Hamiltonians for a more realistic treatment of disorder.
Despite the fact that the spin-orbit coupling (SOC) strength is similar in In and Sb, we find that the critical
concentration xc is much smaller in (Bi1−xInx)2Se3 than in (Bi1−xSbx)2Se3. For example, the direct supercell
calculations suggest that xc is below 12.5% and above 87.5% for the two alloys, respectively. More accurate
results are obtained from realistic disordered calculations, where the topological properties of the disordered
systems are understood from a statistical point of view. Based on these calculations, xc is around 17% for
(Bi1−xInx)2Se3, but as high as 78%–83% for (Bi1−xSbx)2Se3. In (Bi1−xSbx)2Se3, we find that the phase transition
is dominated by the decrease of SOC, with a crossover or “critical plateau” observed from around 78% to 83%.
On the other hand, for (Bi1−xInx)2Se3, the In 5s orbitals suppress the topological band inversion at low-impurity
concentration, therefore accelerating the phase transition. In (Bi1−xInx)2Se3 we also find a tendency of In atoms
to segregate.
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I. INTRODUCTION

Topological aspects of quantum systems have been an
exciting area in condensed-matter physics since the discovery
of the integer quantum Hall effect1,2 (IQHE) and the first
proposal of a two-dimensional (2D) Chern insulator.3 Both
the IQHE and the 2D Chern insulators are characterized by
a quantized Hall conductance and the presence of gapless
edge modes that are topologically protected by a nonzero
Chern number. In 2005, a topological classification was also
found to apply to spinful systems with SOC and time-reversal
symmetry, defining a topologically nontrivial 2D state known
as a quantum spin Hall (QSH) insulator.4,5 A QSH insulator
also possesses gapless edge states that always cross at one
of the time-reversal-invariant momenta (TRIM) in the one-
dimensional (1D) edge Brillouin zone (BZ). In a 2D Chern
insulator, the chiral gapless edge modes can be interpreted in
terms of the charge accumulation at one end of a truncated
1D system during an adiabatic periodic evolution. The spin-
polarized edge modes in a QSH insulator can be interpreted
in a similar way, except that charges with opposite spin
characters are pumped in opposite directions and accumulated
on opposite ends.6 This pumping process can be classified
by a new topological index, known as the Z2 index, which
guarantees the robustness of the edge modes of a QSH insulator
to weak time-reversal-invariant perturbations.

The definition of theZ2 index was later generalized from 2D
to 3D crystals.7,8 In 3D systems, there is one strong Z2 index.
When it is odd, defining a strong topological insulator (TI), the
number of Dirac cones on the surface is odd. When it is even,
the other three indices characterize the weak TIs, specifying
how these gapless surface states are distributed among the
TRIM in the 2D surface BZ.

A nontrivial bulk topological index is usually connected
with a nontrivial “topological gap” resulting from band inver-
sion. For systems with inversion symmetry, the topological
index can be uniquely determined from the parities of the
occupied states at the TRIM in the BZ.9 Thus, to drive an

inversion-symmetric system from a normal insulator (NI) to
a TI, a strong SOC is usually needed to flip the valence-band
maximum (VBM) and conduction-band minimum (CBM)
with opposite parities at one of the TRIM. The band gap after
the topological band inversion is conventionally assigned with
a minus sign, to be distinguished from the ordinary band gap
in the Z2-even case. The scenario sketched above is exactly
the mechanism in the Bi2Se3 class of TIs.10–17 In Bi2Se3 with
SOC turned off, the VBM and CBM states at � are built from
Se 4p and Bi 6p orbitals in such a way as to have opposite
parities. When SOC is turned on, the previous VBM is pushed
up into the conduction bands, leading to an exchange of parities
and a nontrivial Z2 index. As long as the inverted band gap
remains and time-reversal symmetry is preserved, a single
Dirac cone exhibiting a helical spin texture is guaranteed to
exist at � in the surface BZ. For some useful recent reviews, see
Refs. 18–20.

Up to now, however, only a few pioneering works21–23 have
focused on the topological phase transition from the TI to
the NI state driven by nonmagnetic substitution, and while
the general picture of such a transition seems obvious, details
remain unclear. In the simplest picture, one would expect the
band gap of a TI to decrease linearly as a lighter element
with weaker SOC is substituted, and the phase transition
would occur when the bulk gap is closed. However, on a
closer look, many questions arise. For example, the band
structures of known TIs are mostly dominated by p orbitals,
but what happens if the substituted element includes different
valence orbitals such as s or d orbitals? More fundamentally,
translational symmetry is lost for a randomly substituted
system. In this case, how should one determine the topological
properties of a system in which wave vector k is no longer
a good quantum number, and what signature indicates the
presence of a TI state? These questions focus on two aspects
that are not taken into account in the simplest linear band-
closure picture: the effects of impurities with different orbital
character, and the effects of disorder.
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These issues arise, in particular, for the substitution of
In into Bi2Se3, one of the best-known TI systems. Recently,
several experimental groups have reported a surprisingly low
critical concentration xc of about 5% in (Bi1−xInx)2Se3, much
lower than would be expected from a linear band-closure
picture, thus challenging the usual understanding of the
phase-transition behavior of TIs by nonmagnetic doping.24,25

These experiments motivated our theoretical studies of the
(Bi1−xInx)2Se3 system. Moreover, to separate the effects of
In 5s orbitals from a simple weakening of the effective SOC,
we also study (Bi1−xSbx)2Se3. Here, Sb has the same orbital
character as Bi, lying directly above it in the Periodic Table,
but shares the weaker intrinsic SOC strength of In because
their atomic numbers are very close in magnitude.

We first study the solid-solution systems by constructing
small supercells with different impurity configurations. For
each supercell configuration, the strong Z2 index and surface
states are computed using Wannier-interpolation techniques,26

which also allow us to test the effect of artificially removing
the In 5s orbitals from the calculation. Next, we study the
the effects of disorder more realistically by constructing a
large supercell of pure Bi2Se3 acting as reference system,
making random substitutions of In or Sb on the Bi sites, and
calculating the disorder-averaged spectral functions.27,28 We
further propose an approach in which we compute “Z2-index
statistics” in order to determine the topological properties of
disordered systems from a statistical point of view.

Based on our results, the (Bi1−xSbx)2Se3 system is well
described by the linear band-closure picture with a high
critical concentration xc because the orbital character of the
host and dopant are the same and the disorder effect is
thus rather weak. We also observe a “critical plateau” in
the Sb-substituted system, where the critical Dirac semimetal
phase remains robust from about x ≈ 78% to 83%, although
it is difficult to test whether this may be a finite-size effect
due to the limited numerical accuracy in our calculations. In
In-substituted Bi2Se3, on the other hand, the disorder effects
are quite strong, and the presence of In 5s orbitals rapidly
drives the system into the NI state even at very low impurity
concentrations. A tendency of segregation of In atoms has been
observed for (Bi1−xInx)2Se3, and may play an important role.

The paper is organized as follows. In Sec. II, the lattice
structures, notations, and the details of first-principles calcula-
tions are introduced. In Sec. III, we present the main results of
this paper. First, we summarize the results from the direct
first-principles superlattice calculations, and determine the
critical points and the influence of In 5s orbitals by computing
the bulk Z2 index and by calculating surface states. Then, the
critical points of the two solid-solution systems are further
determined by looking at the disordered spectral functions,
and the topological behaviors are understood from a statistical
point of view. Finally, we summarize in Sec. IV.

II. PRELIMINARIES

A. Structures of bulk material and superlattices

As shown in Fig. 1, the crystal structure of Bi2Se3 is
rhombohedral. The crystal has a layered structure along the
z direction with five atoms per primitive cell. The five 2D

FIG. 1. (Color online) (a) Lattice vectors of Bi2Se3 primitive cell,
2 × 2 × 1 supercell, and 2 × 2 × 2 supercell. (b) Corresponding bulk
Brillouin zone and its surface projection.

monolayers made by repeating the primitive cell in the x and
y directions form a quintuple layer (QL). In each QL, there
are two equivalent Se atoms located at the top and bottom
of the QL, two equivalent Bi atoms inside those, and another
central Se atom. Seen from the top, each monolayer forms a 2D
triangular lattice, and these triangular planes are stacked along
the z direction in the order A − B − C − A − B − C. . . ,
where A, B, and C represent the three different high-symmetry
sites. Both Bi2Se3 and β-phase In2Se3 have a rhombohedral
structure belonging to the R3m space group, but their lattice
parameters are slightly different. The in-plane hexagonal
lattice parameter is a = 4.138 Å for Bi2Se3 but a = 4.05 Å
for In2Se3, and the height of a QL is c = 9.547 Å for Bi2Se3

compared with c = 9.803 Å for In2Se3. The rhombohedral
structure of Sb2Se3 does not exist in nature, so for this case
we relaxed both the lattice parameters and atomic positions.
After a complete relaxation, we obtained a = 4.11 Å and
c = 10.43 Å for Sb2Se3.

To study the substitution problem from first-principles
calculations, a 2 × 2 × 1 supercell based on the original Bi2Se3

crystal structure is built. The lattice vectors of the supercell
are shown in Fig. 1. There are 20 atomic sites in such
a supercell, where 8 of them are Bi sites. Among all the
possible configurations, we choose to investigate the supercells
with one, two, four, six, and seven Bi atoms substituted
by impurities. The (unique) configuration with x = 0.125 is
denoted as C0.125. For two or six impurities (x = 0.25 and
0.75), there are two inequivalent configurations, with the
two impurity (or remaining host) atoms residing in different
monolayers or in the same monolayer, which we label as C0.25

(C0.75) and C′
0.25 (C′

0.75), respectively. For four impurities,
x = 0.5, all impurities can be clustered in one monolayer,
labeled as C′′

0.5, or three in one monolayer and one in the
other, denoted as C′

0.5, or the impurities can be equally divided
between top and bottom monolayers with inversion symmetry,
denoted as C0.5. Note that primes indicate more strongly
clustered configurations.

B. First-principles methodology

The first-principles calculations are carried out with
the QUANTUM ESPRESSO package,29 with the PBE gener-
alized gradient approximation (GGA) exchange-correlation
functional30,31 and well-tested fully relativistic ultrasoft32

and norm-conserving pseudopotentials. The ultrasoft pseu-
dopotentials are from QUANTUM ESPRESSO,33 and the
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norm-conserving pseudopotentials are from the OPIUM

package.34,35 The ionic relaxations, ground-state energies, and
densities of states presented in Sec. III are calculated with ul-
trasoft pseudopotentials, but we switched to norm-conserving
pseudopotentials for those topics that required transformation
to a Wannier representation (see following). The energy cutoff
with ultrasoft pseudopotentials is 60 Ry for In-substituted
Bi2Se3 supercells and 35 Ry for Sb-substituted supercells. The
cutoff becomes larger for norm-conserving pseudopotentials,
specifically 65 Ry for In substitution and 55 Ry for Sb
substitution. The BZ is sampled on a 6 × 6 × 6 Monkhorst-
Pack36 k mesh for the 2 × 2 × 1 supercells, and 8 × 8 × 8
for the primitive cell bulk materials. In our calculations, the
lattice parameters of the Sb- and In-substituted supercells are
fixed, taken as a linear interpolation of the Bi2Se3 and In2Se3

experimental lattice parameters according to the impurity
concentration x, and the internal coordinates of the atoms are
fully relaxed. We do not relax the lattice vectors because the
coupling between two QLs is at least partially of van der Waals
type, so that the standard GGA does not give a good estimate
of the lattice constants, especially the one in the z direction.

To investigate the topological properties of these supercells,
we calculate both the bulk Z2 indices and the surface states
using the Wannier-interpolation technique. More specifically,
we use the WANNIER90 package to generate Wannier func-
tions (WFs) from the outputs of standard first-principles
calculations.37 WANNIER90 can optionally generate maximally
localized WFs,38,39 and in any case reports the Wannier charge
centers, their spreads, and the real-space Hamiltonian matrix
elements of an effective tight-binding (TB) model in the WF
basis. This information is often very useful in studying the
bonding mechanism of materials, as well as for calculating
topological indices, computing surface and interface states,
treating disorder, etc.

It should be noted that the TB models constructed from
WANNIER90 are realistic in the sense that the Wannier-
interpolated band structures reproduce the first-principles band
structures essentially exactly within a certain energy window.
This “frozen window” is chosen to extend from 3 eV below the
Fermi level to 3 eV above the Fermi level in our calculations.
In addition to the frozen window, there is also an outer
energy window outside which the Bloch eigenstates will not
be included in generating the WFs. The outer window varies in
our calculations depending on the system, but typically covers
a total range of 17–22 eV and includes all the valence p bands
as well as In valence s bands when present. For example, for
Bi2Se3we construct 30 spinor WFs per primitive cell, and two
additional WFs constructed from In valence s orbitals would
be added for each substituted In atom.

III. RESULTS AND DISCUSSIONS

A. Ground-state energies and band gaps

We begin by discussing our results for In-substituted super-
cells representing (Bi1−xInx)2Se3. The ground-state energies
for supercells with different In impurity configurations are
shown in Fig. 2. Open and closed circles represent topologi-
cally normal and Z2-odd cases, respectively (see Sec. III D).
For concentrations 0.25 � x � 0.75 there are two or more
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FIG. 2. (Color online) Ground-state energies vs impurity con-
centration x for (Bi1−xInx)2Se3 supercells. Here, � = Eg(x) − (1 −
x)E1 + xE2, where Eg(x), E1, and E2 are the ground-state energies
per five-atom cell for the alloy supercell, host material, and dopant
material, respectively. Filled and open circles denote Z2-odd and
-even states, respectively. Solid (red) and dashed (dark blue) lines
follow the most and least In-clustered configurations, respectively.

inequivalent configurations of the 2 × 2 × 1 supercell having
the same concentration x. Among these, the configurations
with lowest total energy are traced by the solid red line, and are
found to consist of “clustered” configurations in which the In
impurities tend to be first neighbors. Conversely, those with the
highest total energies, indicated by the dark blue dashed line,
are those with the In atoms distributed most evenly throughout
the supercell. For example, at x = 0.5, the ground-state energy
of the clustered configuration (C′′

0.5) is lower than that of the
distributed one (C0.5) by 140 meV per primitive unit cell, and
at x = 0.25 the energy of C′

0.25 is lower than that of C0.25 by
50 meV per primitive unit cell. Thus, we clearly find a strong
tendency of the In atoms to segregate and cluster together.
We also find that the Z2 index changes sign at a critical
concentration xc lying somewhere between 6.25% and 12.5%.
(One may notice from Fig. 2 that the distributed configuration
C0.25 at x = 0.25 is Z2 odd, but since its energy is so much
higher, the significance of this is questionable.)

Turning now to the case of Sb substitution, we find a quite
different behavior. The corresponding total-energy results
for the 2 × 2 × 1 (Bi1−xSbx)2Se3 supercells are presented
in Fig. 3(a). Here, we find that the energies of different
configurations at the same x differ by no more than 10 meV
per primitive unit cell, which is roughly 10 times smaller than
in (Bi1−xInx)2Se3 (note the difference in the vertical scales
here compared to Fig. 2). This signifies that the disorder effect
is very weak in this system. It is also evident from Fig. 3(a)
that the system remains in the TI phase even up to x = 87.5%,
in sharp contrast to the behavior in (Bi1−xInx)2Se3.

Because we find the disorder effect to be so weak in Sb2Se3,
we have also analyzed its behavior using the virtual crystal
approximation (VCA), in which each Bi or Sb is replaced by an
identical average atom whose properties are a weighted mean
of the two constituents. We implement the VCA in a Wannier
basis by constructing separate 30-band models for Bi2Se3 and
Sb2Se3, including all the valence cation and anion p orbitals.
The Hamiltonian matrix elements H VCA

mn of the “virtual crystal”
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FIG. 3. (Color online) (a) Ground-state energies vs impurity
concentration x for (Bi1−xSbx)2Se3 supercells, following the same
conventions as in Fig. 2. (b) Band gap at the center of the Brillouin
zone vs impurity concentration x computed within the virtual crystal
approximation. Positive and negative values of band gap denote the
topological and normal phases, respectively.

are taken as the linear interpolation in x of the two bulk
materials H VCA

mn = (1 − x)H Bi
mn + xH Sb

mn, where H Bi
mn and H Sb

mn

denote the matrix elements of the TB models of Bi2Se3 and
Sb2Se3. We note in passing that one has to be cautious when
generating the WFs for the VCA procedure since it is important
for the Wannier basis functions to be as similar as possible
before the averaging takes place. Only in this way will the
addition and subtraction between two different Hamiltonians
be well defined. Because the maximal localization procedure
might generate different WFs for different systems as it seeks
to minimize the “spread functional,”38 we construct the WFs
for the VCA treatment simply by projecting the Bloch states
onto the same set of atomiclike trial orbitals without any further
iterative localization procedure.

Within this VCA approach, it is straightforward to compute
the band gaps and topological indices since only a primitive
bulk cell is needed. Figure 3(b) shows how �� , the band
gap at the Brillouin zone center, evolves with x for the
(Bi1−xSbx)2Se3 virtual crystal. It is evident that the gap closes
at xc � 65%, where the system undergoes a transition to the
normal-insulator state (here indicated by a negative gap value).

B. Orbital character

To get some physical insight about the distinct behaviors
in the two substituted systems, we turn to study the orbital
character at a low composition of x = 12.5%. The local
density of states (DOS) of the substituted In and Sb atoms and
their neighboring Bi and Se atoms are plotted in Fig. 4. For
low-composition In-substituted systems, the In 5s orbitals and
nearest-neighbor Se 4p orbitals form bonding and antibonding
states, with the former leading to a flat band deep in the
valence bands corresponding to the In 5s peak around −6 eV
in Fig. 4(a). The hybridized s-p antibonding states further
interact with the Bi 6p orbitals, bringing some In 5s character
into the conduction bands. The In 5p orbitals are mainly
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FIG. 4. (Color online) (a) Local DOS of (Bi1−xInx)2Se3 at x =
12.5% for the s and p orbitals on the substituted In atom and the
p orbitals on first-neighbor Bi and Se atoms. (b) Local DOS of
(Bi1−xSbx)2Se3 at x = 12.5% for the p orbitals on the substituted Sb
atom and the p orbitals on first-neighbor Bi and Se atoms.

responsible for the sharp peak about 7 eV above the Fermi
level in Fig. 4(a), but also mix with Bi and Se p orbitals on
the nearby atoms to contribute to the lower conduction-band
states. The hopping between In 5p and neighboring Se 4p

states, on the other hand, contributes mainly to the valence
band, but also to the lower conduction bands.

If one only focuses on the low-energy physics, say within
5 eV of the Fermi level, one would notice that the In 5p states
are homogeneously distributed among the valence and conduc-
tion bands. On the other hand, the s orbitals are more concen-
trated at the bottom of the valence and conduction bands. This
implies that the effects of In 5s and 5p orbitals in the super-
cell electronic structure are distinct. The nonhomogeneously
distributed In 5s states may be crucial in determining the
topological properties of the supercell. From the DOS at the �

point (not shown here), we also observe that the VBM is mostly
composed of Se 4p states, while the CBM is dominated by
Bi 6p states. This implies that the nontrivial topological band
inversion has already been removed at 12.5% of In substitution.

For the Sb substitution at x = 12.5%, however, the local
DOS shown in Fig. 4(b) indicates that that Sb 5p orbitals are
more or less homogeneously distributed among the valence
and conduction bands as they hybridize with the Bi and
Se p states. In fact, the Sb 5p and Bi 6p local DOS
profiles are strikingly similar. While not displayed, we also
explore the DOS of (Bi1−xSbx)2Se3 at other compositions,
and observe that the hybridization between Bi, Se, and Sb
p states remains homogeneous over the entire composition
range. A homogeneous hybridization of Bi, Se, and Sb p states
tends to confirm the appropriateness of the use of VCA with
artificial orbitals to construct an effective description of the
electronic structure of the substituted system. Within the VCA,
the strength of the effective SOC would be expected to decrease
linearly as x is increased, suggesting that the topological phase
transition in the Sb-substituted system should belong to the
linear band-closure regime.

To study In-substituted Bi2Se3 at a lower concentration, a
2 × 2 × 2 supercell has been constructed, in which 1 out of 16
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FIG. 5. (Color online) (a) Wannier-interpolated band structure of
In2Se3, with color code indicating In 5s character. (b) Same but with
In 5s levels shifted upward by 0.79 eV.

Bi atoms is substituted by In. The supercell lattice vectors are
shown in Fig. 1. The energy cutoff is taken to be the same as for
the 2 × 2 × 1 supercell calculations. A 3 × 3 × 3 Monkhorst-
Pack k mesh is used for ionic relaxation and calculation of
the ground-state energy, while it is increased to 4 × 4 × 4
for the non-self-consistent calculation used to interface with
WANNIER90. The ground-state energy is indicated by the filled
circle at x = 6.25% in Fig. 2, and is confirmed to be in the
Z2-odd phase from theZ2 index and surface-state calculations.

C. Shift of In 5s levels

Among the In-substituted configurations, our calculations
find that C0.5 and C0.75 are metallic, in contrast with experi-
mental observations showing the gap opening with increasing
x beyond the transition to the normal phase.24,25 The reason
for the gap closure becomes clear from an inspection of
our calculated band structure of bulk In2Se3, shown in
Fig. 5(a), which was computed using the Wannier interpolation
capabilities of the WANNIER90 package37 based on a 34-band
TB model including the 30 valence p orbitals and 4 In 5s

orbitals. The color coding in Fig. 5(a) shows the degree of
In 5s character. We find that there is almost a gap closure,
Eg � 0.15 eV, much smaller than the experimental value of
1.34 eV.40 Our small gap clearly results from a low-lying
conduction band at L that is dominantly of In 5s character.
For the C0.5 and C0.75 cases, these states get folded and mixed
with other conduction-band states in such a way as to cause
the metallic behavior observed in our supercell calculations.

We have good reason to believe, however, that the energy
position of these In 5s is incorrectly predicted by standard
density functional theory (DFT).41,42 It is well known that DFT
tends to underestimate gaps, especially when the character of
the VBM (here p states at �) and the CBM (here In 5s states
at L) are different. More specifically, however, quasiparticle
calculations on InAs have shown that the In 5s energy levels
are too low relative to the many-body GW calculation.43

In particular, the CBM at �, having In 5s character, was
found there to be too low by about 0.79 eV within DFT. We
have checked that our In 5s energy positions do not depend
sensitively on the use of the local-density approximation44

(LDA) versus GGA, the choice of pseudopotentials, or the
use of different code packages.45,46 Therefore, we conclude
that more advanced approaches such as hybrid functionals or
direct many-body methods are needed to fix this problem.

Unfortunately, application of hybrid functionals to our
supercell calculations would be computationally expensive.
Here, we have taken a simpler approach to adjust the In
5s energy levels. The Wannier interpolation procedure has
already provided us with a first-principles effective TB model
reproducing the DFT band structure. We simply shift the
energies of all the In 5s orbitals within this effective model
upward by 0.79 eV, the value taken from Refs. 43, and leave all
other matrix elements unchanged. The resulting band structure
for bulk In2Se3 is shown in Fig. 5(b). We find that the band
gap opens up to 0.52 eV, while otherwise the general character
of band structure is not significantly changed.

While 0.52 eV is still far from an experimentally cor-
rect estimate of the gap, we expect our modified Wannier
Hamiltonian should be good enough for the purpose of
computing topological properties of (Bi1−xInx)2Se3 solid
solutions. Once we apply this shift, we find that the supercells
that were metallic before are now insulating, and moreover
the states near the Fermi energy that determine the topological
character do not have significant In 5s character. Therefore,
the magnitude of the shift is not important for computing the
topological properties, as long as it is large enough to prevent
the In 5s levels from interfering. In any case, since the β

phase of In2Se3 is not very stable at room temperature (it has
to be stabilized by doping small amounts of Sb),40 a direct
comparison between the experimental and theoretical band
gaps is not very meaningful. Therefore, we adopt the procedure
here of applying the 0.79-eV shift of In 5s levels in all of
our In-substituted supercell calculations. In particular, the Z2

indices (filled versus open circles) shown in Fig. 2 have been
computed using this shift, as will be discussed in detail next.

D. Z2 indices

The strong Z2 indices of all the In- and Sb-substituted
Bi2Se3 supercells have been calculated in order to locate
the critical concentrations for the transition from topological
to normal behavior in the two solid-solution systems. As
discussed above, some of the supercells (C0.25, C0.5, and C0.75)
have inversion symmetry, in which case the strongZ2 index can
be evaluated simply by counting the parities of the occupied
bands at the TRIM in the BZ. Specifically, if one defines δi as
the product of the parities of the occupied bands (counting just
one band from each Kramers doublet) at the ith TRIM in the
BZ, the strong Z2 index is just ν0 = ∏8

i=1 δi , i.e., the product
of δi at all the eight TRIM.9

In the general case, however, the strong Z2 index has to be
determined by explicitly calculating the 2D Z2 indices of the
top and bottom slices of half of the 3D BZ. There are six such
2D indices, namely, νj ≡ νkj =0 and ν ′

j ≡ νkj =π , corresponding
to the indices of the slices at kj = 0 and π , where j = {1,2,3}
labels the three wave-vector directions in the BZ. However,
only four of the six indices turn out to be independent variables.
The indices ν1, ν2, and ν3 are usually taken to define the three
weak topological indices, while the product ν0 = νjν

′
j of the

two indices on any pair of parallel slices is known as the
strong Z2 index ν0. This means that if two parallel slices have
different Z2 indices, as for example at k3 = 0 and π , then ν0

is odd and the system is a strong TI; otherwise, it is a weak TI
if any indices are odd, or normal if not.
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TABLE I. Bulk band gaps at � for x = 12.5% in (Bi1−xInx)2Se3.
“Shifted” In 5s levels were raised by 0.79 eV (see text).

Without SOC (eV) With SOC (eV)

In 5s levels unshifted 0.72 0.11
In 5s levels shifted 0.68 0.07
In 5s levels removed 0.42 −0.26

In the absence of inversion symmetry, the 2D Z2 index is
defined by the change of 1D “time-reversal polarization,” say
in the k1 direction, as the other wave vector k2 evolves from 0 to
π . The time-reversal polarization can be explicitly visualized
by tracing the 1D hybrid Wannier charge centers38 (WCCs) in
the k1 direction as a function of k2. The Z2 index is odd if the
hybrid WCCs of the Kramers doublets switch partners during
the evolution, and even otherwise.6

We implement these ideas in practice using the approach
of Soluyanov and Vanderbilt,47 in which the 2D Z2 index is
obtained by counting the number of jumps of the “biggest
gap” among the 1D hybrid WCCs during the evolution. The
approach for computing the Z2 indices described above has
been implemented in the Wannier basis using the matrix
elements of the effective TB model and the WCCs generated
from WANNIER90.37

The results are shown in Figs. 2 and 3(a) by using filled
circles to indicate cases in which the strong Z2 index is
odd, while an open circle means it is even. In fact, none
of the Z2-even configurations are found to be weak TIs, so
open circles denote topologically normal insulators. If one
follows the solid (red) lines in Figs. 2 and 3(a), which track
the configurations with lowest energies, it is clear that for
(Bi1−xInx)2Se3 the system becomes topologically trivial for
x >6.25%. For (Bi1−xSbx)2Se3, however, the TI phase is
preserved up to 87.5%.

It should be emphasized again that a 0.79-eV shift has been
added on the onsite In 5s energy levels in the effective TB
models for the supercells of (Bi1−xInx)2Se3. However, except
for C0.5 and C0.75, which are metallic without the shift, the Z2

indices of all the other configurations are unchanged by the
application of this shift.

E. Effects of In 5s orbitals on bulk and surface states

To understand why the phase transition happens so rapidly
in (Bi1−xInx)2Se3, we focus on the x = 0.125 supercell, and
separately investigate the effects of In 5s orbitals and SOC on
bulk band structure. As shown in Table I, without SOC the In
5s orbitals try to pull down the VBM, leading to a band gap
as large as 0.7 eV at �, such that the SOC strength is not large
enough to invert the CBM and VBM. If the In 5s orbitals are
removed, however, the gap at � is only 0.42 eV without SOC,
and when SOC is added back the band inversion reoccurs, with
an inverted gap as large as 0.26 eV (denoted with a minus sign
in Table I). We also notice that the shift of In 5s levels only
changes the gap at � by 0.04 eV, and does not influence the
topological behavior.

We continue to study the effects of In 5s orbitals on surface
states by calculating the surface band structures both with
and without In 5s orbitals. The surface band structures shown
in Fig. 6 are calculated with the “slab method,” where the
first-principles TB models of slabs of In- and Sb-substituted
Bi2Se3 with finite thickness stacked along the [111] direction
have been constructed. This is done by extrapolating the matrix
elements of the primitive unit cell TB model to multiple QLs
along the [111] direction, then truncating at the two surfaces
to enforce open boundary conditions. The 2D surface band
structure is then obtained by directly diagonalizing the TB
model of the slab.
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FIG. 6. (Color online) Surface band structures for (Bi1−xInx)2Se3 slabs, plotted in the 2D surface Brillouin zone. (Surface states are shown
in red.) (a) 8QL slab for x = 0.125. (b) 4QL slab for x = 0.125 but with In 5s orbitals removed. (c) 12QL slab for energetically favored
configuration C′

0.25 at x = 0.25. (d) 8QL slab for C′
0.25 with In 5s orbitals removed. Note split Dirac cones arising at � in (b) and (d).
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TABLE II. Existence of topological surface states vs impurity
concentration x in (Bi1−xInx)2Se3 and (Bi1−xSbx)2Se3 based on slab
calculations in the Wannier representation.

0% 6.25% 12.5% 25% 50% 75% 87.5% 100%

With In 5s � � × × × × × ×
Without In 5s � � � � × × × ×
Sb substitution � � � � � � ×

It has to be noted that the surface states are not calculated
self-consistently by doing such a truncation at the surface
because the Wannier functions close to the surface could be
significantly deformed and the hopping parameters between
orbitals close to the surface are expected to be different from
those deep in the bulk. These effects are not properly included
simply by truncating at the slab boundaries. However, we argue
that even though these surface effects could be important in
determining such details as the exact position of the Dirac point
(if present) relative to the bulk CBM, they can not change the
topological character of the surface states, which is what we
really care about here.

To understand the role of In 5s orbitals in the phase-
transition process, the surface states are calculated both with
and without the In 5s orbitals. The results for the configura-
tions with lowest energy (the In-clustered configuration) are
summarized in Table II, where “�” indicates the existence of
a Dirac cone around �, and × denotes the absence of such a
Dirac cone. The thicknesses of the slabs are chosen such that
the interference between the states from two opposite surfaces
is negligible.

As can be seen in Table II, the In 5s orbitals are directly
responsible for removing the Dirac cones from the surface
spectrum for the C0.125 and C′

0.25 cases. This is shown explicitly
in Fig. 6, where Dirac cones emerge at � only when the In
5s orbitals are removed. (Actually, a close inspection of the
figure shows a split pair of Dirac cones contributed by opposite
surfaces, where the splitting arises because of broken inversion
symmetry due to the pattern of In substitution.) Scanning over
the Sb-substituted Bi2Se3 supercells from x = 0.125 to 0.875,
clear signatures of Dirac cones are observed for all of them (not
shown here), consistent with the results of the bulk Z2-index
calculations of Fig. 3(a).

Our surface-state calculations are consistent with the results
of a recent scanning tunneling microscope (STM) study of
the same system,48 where a local suppression of density of
states was observed in the topological surface states due to
substitutional In atoms. Based on our supercell calculations,
we conclude that this suppression of the topological surface
states results from the In 5s orbitals, with an In concentration
of x = 0.125 or 0.25 being sufficient to remove them entirely.

F. Disordered spectral functions

The previous superlattice calculations enabled us to capture
some important physics of the phase-transition behavior, but
it is still difficult to give a precise estimate of the critical
concentrations because of the limited size of the supercells
and the approach of studying one particular configuration at
a time. Here, we use the Wannier representation to construct

ensembles representing the disordered systems in much larger
supercells, in an attempt to study the effects of disorder in the
phase-transition process more realistically and estimate the
critical points more accurately.

Two issues arise when disorder is included. First, in a
periodic lattice structure without any disorder, the eigenstates
are Bloch states which are perfectly coherent with infinite
lifetime, and the wave vector k is a good quantum number. For
such systems with nontrivial band topology, the easiest way
to study the topological phase transition is to look at the band
structure; a band-gap closure usually implies a phase transition
from a topological to trivial insulator. In disordered systems,
however, the “band-gap closure” is not so easy to recognize
because the Bloch functions are no longer the eigenstates of the
system and a band structure is really not well defined. Second,
as we know, the Z2 index is computable for periodic lattices
if the information of occupied Bloch states in the entire BZ
is given. However, it is a difficult question how to define the
Z2 index and determine the topological behavior of a realistic
disordered system.

Our answer to the first issue is to look at the disorder-
averaged spectral functions computed from a large supercell
with different impurity configurations, but unfolded back to
the BZ of the primitive unit cell. If the disorder is weak, one
should see a sharp spectrum with narrow lifetime broadening,
which means the quantum states would remain coherent over
long distances. For strongly disordered systems, however, it is
expected that the spectral functions should be strongly smeared
out due to the strong randomness of the impurity scattering, and
the quantum states would be localized around the impurities
with a relatively short localization length.

We propose the “Z2-index statistics” to address the second
problem. To be specific, several different impurity configu-
rations are generated in our calculations at each impurity
composition x, forming a representative ensemble of the
disordered system, and we then compute the strong Z2 index
for each configuration. If each configuration in the disorder
ensemble is equally weighted, then when over half of the
configurations are in the Z2-odd phase, we say that the
disordered system can be statistically considered as a TI.

To calculate the disordered spectral functions, we use the
Wannier effective-Hamiltonian approach as well as the tech-
nique of unfolding first-principles supercell band structures
(spectral functions) as proposed by Ku and co-workers.27,28

We note in passing that a similar technique has been proposed
by Popescu and Zunger.49 To be explicit, we first construct a TB
model for a 4 × 4 × 3 supercell of pure Bi2Se3 whose matrix
elements are extrapolated from the primitive-cell Bi2Se3 TB
model. The 4 × 4 × 3 supercell of the bulk material acts as
the reference system in which the Bi atoms are randomly
substituted by the impurity atoms. For a 4 × 4 × 3 supercell,
there are 240 atoms of which 96 are Bi-like, so the impurity
composition x can be varied on the scale of 1%, enabling us
to determine the critical point xc with high precision.

The next procedure is to extract the Hamiltonian of a
single impurity defined under the same WF basis. This is
done by working in a small supercell (2 × 2 × 1 in our case)
and subtracting the pure bulk-material Hamiltonian H 0 from
the Hamiltonian Hs of a supercell containing one substituted
impurity of type s. To set the notation, we label (five-atom)
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cells within the supercell by l, sites within the cell as τ , and
orbitals within the cell as m. Then, the impurity potential is
constructed as

�s
lm,l′m′ (τs) =[

Hs
lm,l′m′ (0τs) − H 0

lm,l′m′
]
Plm,l′m′(τs). (1)

This describes the change in the onsite energy if (lm) = (l′m′),
or in the hopping if (lm) �= (l′m′), induced by the presence
of the impurity of type s on site τs in the central cell ls =
0 of the small supercell. We define a “partition function”28

Plm,l′m′(τs) that is used to partition the contribution of the single
impurity from the superimages in the neighboring supercells,
such that the single-impurity Hamiltonian is not influenced by
the artificial periodicity of the supercell. In our calculations,
this partition function is chosen as

P (d) =
{

e−(d/r0)8
if d � dc,

0 otherwise,
(2)

where d = dlm,l′m′ (τs) ≡ |rlm − r0τs
| + |rl′m′ − r0τs

| is chosen
as a measure of the “distance” from the hopping matrix element
(lm,l′m′) to the impurity site located at r0τs

.28 Here, we choose
dc = 8.69 Å and r0 = 7.86 Å. (We find that if dc > 8.5 Å
and r0 is chosen slightly smaller than or equal to dc, the
impurity Hamiltonian becomes insensitive to small variations
of dc and r0.) Our partition scheme has been tested to be
able to reproduce the first-principles 2 × 2 × 1 supercell band
structures at x = 0.125 and 0.25.

We extract this impurity potential once and for all for an
In atom substituting for the top Bi atom in the quintuple layer
(s = 1) and again when it substitutes for the bottom Bi atom
(s = 2). Then, for a particular impurity configuration R =
{l1s1,l2s2, . . .} of the 4 × 4 × 3 supercell, where lj sj specifies
the subcell and type of impurity and j runs over the impurities
in the supercell, the effective Hamiltonian is taken as a linear
superposition of the reference-system Hamiltonian H 0 and the
single-impurity Hamiltonians residing on the specified sites in
the large supercell, i.e.,

HR
lm,l′m′ = H 0

lm,l′m′ +
∑

j

�
sj

(l−lj )m,(l′−lj )m′(τj ). (3)

The linear superposition of the matrix elements of different
TB Hamiltonians is well defined only when these Hamiltonians
are treated under the same WF basis. In other words, each of the
orbitals from the large supercell with impurities should map
appropriately to the corresponding orbitals of the unperturbed
reference system. For this reason, we skip the maximal
localization procedure when generating the WFs, and instead
simply use the projection method to generate a basis that
remains in close correspondence to the atomiclike orbitals.
Once the effective Hamiltonians have been obtained for an
ensemble of impurity configurations representing a given
concentration x, we calculate the spectral function for each,
and unfold it from the highly compressed supercell BZ into
the primitive-cell BZ.27 Finally, the ensemble average of the
unfolded spectral functions can then be taken to reflect the
effects of disorder on the original bulk electronic states.

To be specific, let AN (ω,K) be the spectral function at
energy ω associated with band N in the supercell, with K
specifying the wave vector in the small supercell BZ, given by
the imaginary part of the retarded Green’s function operator

G via A = −π−1 Im G = −π−1 Im(ω + iη − H )−1, where H

is the supercell Hamiltonian and η > 0 is a small artificial
smearing factor. Then, to unfold the supercell spectral function
onto a complete set of primitive-cell Bloch states, one can
expand the primitive-cell spectral function An(ω,k) in terms
of the supercell spectral functions as

An(ω,k) =
∑
NK

|〈ψNK|ψnk〉|2AN (ω,K), (4)

where |ψnk〉 and |ψNK〉 are the primitive-cell and supercell
Bloch states, respectively, and n and k represent the band
index and wave vector of the primitive cell. One can solve for
the coefficient 〈ψNK|ψnk〉 within the Wannier basis provided
that the supercell Hamiltonian is defined under a set of WFs
having a clear one-to-one mapping with the primitive-cell WFs
by primitive-cell lattice translations, as can be realized by using
simple projection for the Wannier construction.50

In our calculations, 16 configurations are generated for
(Bi1−xInx)2Se3 at each impurity composition, whereas 8
configurations are generated for each x of (Bi1−xSbx)2Se3

due to the much weaker effect of disorder. For (Bi1−xSbx)2Se3

the configurations are generated randomly, as different con-
figurations seem to be equally favored energetically. For
(Bi1−xInx)2Se3, however, the configurations are generated
using the Metropolis Monte Carlo method according to a
proper Boltzmann weight in order to reflect the tendency
of In segregation. The Boltzmann weight is proportional to
e−(EpNp)/(kBTg ), where Ep = [E(C′

0.25) − E(C0.25)]/2 is de-
fined as the “paring energy” of In atoms, Np is the number
of In pairs in a particular configuration, kB is the Boltzmann
constant, and Tg = 850 ◦C is taken as the growth temperature
of the In-substituted Bi2Se3 sample.

The disordered spectral functions of (Bi1−xSbx)2Se3 are
shown in Fig. 7, with an artificial Lorentzian broadening of
2 meV. At x = 68%, the spectral gap is visible, but already very
small, suggesting that the system is approaching the critical
point. As x is increased to 78%, a sharp Dirac cone is observed,
which remains robust from 78% to 83%. At x = 88.5%, the
band gap reopens, meaning that the system is in the NI phase,
and this topologically trivial phase becomes more robust as x

goes to 99% with a more visible gap. One may notice that the
effect of disorder is weak during the phase-transition process,
and the semimetallic behavior at criticality is rather sharp.

The spectral functions of (Bi1−xSbx)2Se3 at the � point (in
the primitive-cell BZ) are plotted in Fig. 8. At x = 68% there
are two peaks around the Fermi level, indicating that the CBM
and VBM are still separated, and the critical point has not
been reached yet. At x = 78% and 83%, the two peaks from
the conduction and valence bands merge into one, suggesting
the system becomes a semimetal. As x goes to 88.5%, the gap
opens up again. From these results it appears that there is a
kind of “critical plateau” for x between ∼78% and ∼83%.

This critical behavior observed for (Bi1−xSbx)2Se3 is at
variance with the general expectation for the topological
phase-transition behavior in the Bi2Se3 class of TIs, where
the system becomes a critical Dirac semimetal at one point
in the parameter space (here it is the impurity composition x)
and then becomes insulating again immediately after the gap
closure. This deserves discussion.
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FIG. 7. (Color online) Disordered spectral functions of
(Bi1−xSbx)2Se3 unfolded into the primitive-cell BZ. (a) x = 68%.
(b) x = 78%. (c) x = 83%. (d) x = 88.5%. (e) x = 99%.
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FIG. 8. (Color online) Disordered spectral functions of
(Bi1−xSbx)2Se3 at the � point in the primitive-cell BZ for
(a) x = 68%, (b) x = 78%, (c) x = 83%, and (d) x = 88.5%. Vertical
(red) line indicates Fermi energy. Distinct VBM and CBM peaks are
still visible in the topological phase in (a), merge in (b) and (c), and
reappear in (d) as the gap reopens in the normal phase.

We can not exclude the possibility that numeric uncer-
tainties play a role here. In (Bi1−xSbx)2Se3, the band gap
varies quite slowly as a function of x, with a change of
impurity composition of 5% corresponding to a band gap
change of only ∼0.03 eV. Thus, the critical point could be
hidden by disorder and artificial smearing, such that the system
looks metallic even if a very small band gap has opened up.
Moreover, finite-size effects may be important. In a disordered
system, we expect that the localization length evaluated in the
middle of the mobility gap should grow as the mobility gap
shrinks and the system approaches the critical metallic state.
As one approaches the critical point at which this mobility gap
vanishes, the localization length may exceed the size of the
supercell and the states in neighboring supercells may overlap
and behave like extended states.

However, it is also possible that a finite window of metallic
phase is physically correct. Since the topologically nontrivial
and trivial insulating configurations compete with similar
weight near criticality, the system may remain in the metallic
phase until one of the two insulating phases comes to dominate.
Support for this picture can be drawn from Ref. 51, in which
careful numerical simulations on a disordered lattice model
showed a finite-width region of metallic phase as the system
was driven from the TI to the NI phase with increasing disorder
strength while other parameters were held fixed. In our case,
the disorder strength remains approximately constant, but the
ratio of disorder strength to energy gap varies with x, so
that a metallic plateau may still be expected. We leave these
questions as avenues to pursue in future research.

The disorder-averaged spectral functions for
(Bi1−xInx)2Se3 with the same artificial broadening are
plotted in Fig. 9. At 8.3%, the band-inversion character is
still obvious (note the tildelike shape of the highest occupied
bands around �) with the spectral gap unclosed, which
implies the system may still stay in a TI phase. At 12.5%,
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FIG. 9. (Color online) Disordered spectral functions of
(Bi1−xInx)2Se3 unfolded into the primitive-cell BZ. (a) x = 8.3%.
(b) x = 12.5%. (c) x = 14.6%. (d) x = 16.7%. (e) x = 18.8%.

the spectral gap becomes hard to recognize. When it comes
to 14.6%, 16.7%, and 18.8%, the spectral gap is almost
completely unrecognizable, which means the system is pretty
close to the critical point. Moreover, in sharp contrast with
the behavior of (Bi1−xSbx)2Se3, the effect of disorder in
(Bi1−xInx)2Se3 is very strong. It can be seen from Fig. 9 that
the original energy bands are strongly smeared out. Different
Bloch states are mixed together, as would be expected if
localized eigenstates are formed centered on the substituted
In atoms. It is difficult to identify the critical point simply by
looking at the disordered spectral functions because the Dirac
semimetallic behavior is not as obvious as in (Bi1−xSbx)2Se3.
Therefore, we calculate the Z2 index of each configuration
from x = 8% to 18.8%. By inspecting the statistical behavior
of the resulting Z2 indices, as described next, we conclude that
the critical point of (Bi1−xInx)2Se3 is around 17%.

Our theoretical prediction of xc for (Bi1−xInx)2Se3 is
somewhat higher than the experimental values, estimated to
be 3%–7% according to Brahlek et al.24 and ∼6% according
to Wu et al.25 We attribute our overestimate of xc to
both the use of standard DFT methods and the absence of
impurity-impurity correlation terms in Eq. (3). Regarding
the former, we would expect to get an xc more consistent
with the experimental results if hybrid functionals or more
advanced many-body first-principles methods were used in the
calculations, which unfortunately becomes expensive for large
supercells. Regarding the latter, we expect that the In clustering
effects would be treated more accurately if we would go
beyond a simple superposition of one-body impurity potentials
and include many-body terms in the impurity cluster expansion
when constructing the effective Hamiltonian. However, this too
would carry a large computational cost due to the anisotropic
nature of the two-body impurity-impurity interactions and the
fact that higher-body terms may also be important.

G. Z2-index statistics

The Z2 indices of a 3D band insulator are well defined
for a perfect periodic lattice with time-reversal symmetry.
For disordered systems, however, the topological indices are
much harder to calculate. A promising approach is the use of
noncommutative algebra,52–55 but to date this has generally
been applied to simple models, and its applicability to realistic
disordered materials has not been demonstrated.

Here, we attempt to determine the topological indices of
a disordered time-reversal-invariant insulating system using
a more straightforward approach: we calculate the strong Z2

index (with periodic boundary conditions on the supercell)
for each impurity configuration in the statistical ensemble,
thus determining the topological properties of the disordered
system from a statistical point of view. As long as the
configurations are sampled in such a way that each contributes
equally to the statistical ensemble, then we define the system
asZ2 odd (i.e., a strong TI) if over half of the configurations are
Z2 odd, and normal otherwise. As mentioned in Sec. III F, the
impurity configurations of (Bi1−xInx)2Se3 are generated using
the Metropolis Monte Carlo method based on a Boltzmann
weight defined by the In-clustering energy. As a result, the
tendency of In segregation is reflected in the number of
generated distributed versus clustered configurations, rather
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TABLE III. Z2 statistics of (Bi1−xInx)2Se3. The entries in the
first, second, and third rows indicate, respectively, the number of Z2-
odd, Z2-even, and metallic configurations drawn from a 16-member
ensemble.

8.3% 12.5% 14.6% 16.7% 18.8%

Z2 odd 15 16 14 11 5
Z2 even 0 0 0 3 9
Metallic 1 0 2 2 2

than by manual assignment of weights. Thus, we consider each
configuration to be equally weighted, satisfying the criterion
stated above.

The strong Z2 index statistics of several (Bi1−xInx)2Se3

configurations are shown in Table III. For x between 16.7 and
18.8%, the number of Z2-odd configurations drops from 11 to
5 so we estimate xc to be approximately 17%.

IV. SUMMARY AND OUTLOOK

To summarize, we have studied the topological phase
transitions in (Bi1−xInx)2Se3 and (Bi1−xSbx)2Se3 using two
approaches, the direct application of first-principles calcu-
lations on small supercells, and a Wannier-based modeling
approach that allows for a more realistic treatment of disorder
in large supercells. Based on the former approach, the xc

of (Bi1−xInx)2Se3 is slightly less than 12.5%, while that of
(Bi1−xSbx)2Se3 is even above 87.5%. A VCA treatment of
(Bi1−xSbx)2Se3 predicts xc ∼ 65%; this is not in perfect
agreement with the prediction from the supercell calculations,
but both of them are much higher than that of (Bi1−xInx)2Se3.
From the results of realistic disordered calculations, we found
that xc is ∼17% for (Bi1−xInx)2Se3, while it is ∼78%–83%
for (Bi1−xSbx)2Se3. The critical concentrations are determined
from disorder-averaged spectral functions and Z2-index statis-
tics. It is concluded that in (Bi1−xSbx)2Se3, the band gap at
� decreases almost linearly with increasing x, corresponding
to the reduction in average SOC strength, with only a very
weak disorder effect. For (Bi1−xInx)2Se3, on the other hand,
the In 5s orbitals tend strongly to suppress the topological
band inversion even at very low impurity concentrations, so
that the phase transition is drastically accelerated as a function
of increasing x.

In the case of (Bi1−xSbx)2Se3, we observed a critical plateau
from x ∼ 78% to 83%. As discussed in Sec. III F, it is difficult
to say whether this intermediate metallic phase is just an
artifact of numerical limitations such as finite-size effects,
or is a true feature of the physics. Further theoretical and
experimental work is needed to clarify what happens in this
critical region.

We also find a tendency of the In (but not Sb) atoms to
segregate. This In clustering effect could help clarify some
aspects of the topological phase transition in (Bi1−xInx)2Se3,
as for example by suggesting a scenario in which the phase
transition may happen locally instead of homogeneously as in
the usual linear gap-closure picture. One can imagine that as
In atoms are implanted into bulk Bi2Se3, isolated In clusters
would start to emerge, inside which the system is topologically
trivial. As more and more Bi atoms are substituted by In, these
isolated In “islands” become connected to each other, and
the topological phase transition happens when the percolation
threshold is reached.

Our results for (Bi1−xInx)2Se3 provide a physical explana-
tion for the observed low-transition concentration in several
recent experiments on (Bi1−xInx)2Se3,24,25 and the results on
(Bi1−xSbx)2Se3 may give predictions for future experimental
works.

The techniques used in this paper provide a powerful
methodology that may be used to carry out theoretical
explorations of other types of disordered topological systems.
For example, interesting physics is anticipated in a TI whose
band structure is mostly contributed by p orbitals while
substituting with impurities having d or f orbitals. It could also
be interesting to investigate the effects of magnetic impurities,
not only on the surface states and their spin textures,56,57 but on
the bulk topological transition as well. We thus hope that these
methods will enable the search for new materials and systems
with nontrivial topological properties in strongly disordered
alloy systems.
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