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First-Principles Study of the Temperature-Pressure Phase Diagram of BaTiO3
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We investigate the temperature-pressure phase diagram of BaTiO3 using a first-principles effective-
Hamiltonian approach. We find that the zero-point motion of the ions affects the form of the phase
diagram dramatically. Specifically, when the zero-point fluctuations are included in the calculations, all
the polar (tetragonal, orthorhombic, and rhombohedral) phases of BaTiO3 survive down to 0 K, while
only the rhombohedral phase does otherwise. This behavior results from a practical equivalence
between thermal and quantum fluctuations. Our work confirms the essential correctness of the phase
diagram proposed by Ishidate et al. [Phys. Rev. Lett. 78, 2397 (1997)].
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FIG. 1. (a) Sketch of phase diagram of BaTiO3 as discussed
in Refs. [2–4]. Phases are cubic (C), tetragonal (T), ortho-
rhombic (O), and rhombohedral (R). Solid and dashed lines
represent measured data and suggested hypothetical comple-
tion, respectively. (Alternatively, critical points ‘‘1’’ and ‘‘2’’
these doubts, there is clearly a pressing need for a fresh
approach to this problem.

were suggested to coincide in Ref. [4]). (b) Sketch of phase
diagram of BaTiO3 as measured by Ishidate et al. [5].
BaTiO3 is a paradigmatic example of a ferroelectric
material [1]. Over the years it has been extensively studied
from both the experimental and theoretical points of view.
It is thus surprising to discover that its temperature-
pressure phase diagram remains very poorly investigated.
Actually, even the qualitative form of the phase diagram
is still controversial.

Figure 1(a) illustrates the results of early experimental
studies of the phase diagram of BaTiO3 [2,3], which were
confined to pressures up to �3 GPa only. In this pressure
range the system retains its zero-pressure transition se-
quence with decreasing temperature. That is, it progresses
from the high-temperature paraelectric cubic phase to
ferroelectric tetragonal, then ferroelectric orthorhombic,
and finally ferroelectric rhombohedral phases. It was
proposed that the diagram should be completed as shown
in Fig. 1(a) [2] (or with a modification in which the
critical points labeled ‘‘1’’ and ‘‘2’’ meet at a multicritical
point [4]). This kind of scenario has been generally ac-
cepted ever since. On the other hand, in 1997 Ishidate et
al. [5] published the first (and, up to now, the only)
experimental study extending high enough in pressure
to reveal the actual form of the entire phase diagram.
Surprisingly, these authors found that all the polar phases
of BaTiO3 survive down to 0 K as sketched in Fig. 1(b).

Ishidate et al. attributed this remarkable result to the
zero-point motion of the ions, which they argued should
be significant up to temperatures as high as 200 K. This
explanation may appear difficult to accept, given that no
atom lighter than oxygen is present in BaTiO3. Indeed, it
may be tempting to dismiss the phase diagram of Ishidate
et al. on the basis of technical concerns. In particular, it is
not easy to find a pressure-transmitting medium that
remains fluid (i.e., isotropic) at the low temperature and
high pressure required for this study [3]. This is a crucial
issue because anisotropies in the applied pressure could
easily upset the delicate balance of stabilities of the polar
phases of BaTiO3 and lead to incorrect results. In view of
0031-9007=02=89(11)=115503(4)$20.00 
In this Letter, we use a first-principles effective-
Hamiltonian approach [6,7] to carry out a theoretical
study of the pressure-temperature phase diagram of
BaTiO3. First-principles methods have been used exten-
sively since the early 1990s in many successful studies of
ferroelectric perovskites [8]. Our approach is well suited
to the present problem because it enables us (i) to calcu-
late the thermodynamic properties of BaTiO3 in the pres-
ence of perfectly hydrostatic pressures and (ii) to switch
on and off the zero-point motion of the ions at will.
Surprisingly, our results corroborate the scenario pro-
posed by Ishidate et al. [5]. We confirm that quantum
fluctuations completely change the high-pressure struc-
ture of the phase diagram and allow all three ferroelectric
phases to survive down to zero temperature, as sketched
in Fig. 1(b). We discuss these results and provide a simple
explanation for the predicted form of the phase diagram.

For this study we have made use of the effective-
Hamiltonian approach proposed for BaTiO3 by Zhong
et al. [6,7]. The effective Hamiltonian is a Taylor-series
expansion of the potential energy of the system around
a high-symmetry phase, written in terms of a set of
relevant degrees of freedom. For BaTiO3, the relevant
2002 The American Physical Society 115503-1
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FIG. 2. Phase diagram of BaTiO3 calculated at the classical
level (open circles and labels) and including quantum fluctua-
tions (solid circles and labels). Theoretical pressures are cor-
rected (shifted) following Zhong et al. [10].
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variables are the local polar modes (that add up to pro-
duce the spontaneous polarization of the system) and the
homogeneous strains, and the reference structure is the
paraelectric cubic phase. The parameters in this expan-
sion are obtained from first-principles density-functional
calculations [9]. Zhong et al. [6] performed classical
Monte Carlo (MC) simulations on the basis of such an
effective Hamiltonian and demonstrated that it correctly
reproduces the nontrivial phase transition sequence of
BaTiO3 along the zero-pressure isobar [10]. Indeed, after
this initial achievement, the first-principles effective-
Hamiltonian method has been successfully applied over
the years to situations of increasing complexity [11].

However, one should bear in mind that the quantitative
accuracy of this approach is still limited. The approxima-
tions involved in the effective-Hamiltonian construction,
including those related to the first-principles methods
used, result in some calculated quantities (especially
transition temperatures) that are not in very good quanti-
tative agreement with experiment. Of particular rele-
vance for us is the well-known underestimation of the
equilibrium volumes given by the local-density approxi-
mation, which brings about a systematic error in the
location of our zero of pressure [10]. For these reasons,
the results of the present calculations are to be regarded as
reliable only at the qualitative level.

Classical theory.—We first calculated the phase
diagram of BaTiO3 at a classical level by performing
standard Monte Carlo simulations for a number of tem-
peratures and external hydrostatic pressures. We simu-
lated a 12� 12� 12 supercell with periodic boundary
conditions, and typically did 30 000 MC sweeps to ther-
malize the system and another 30 000 sweeps to calculate
averages. Our classical calculation is essentially a repeat
of the one reported in Fig. 4 of Ref. [7], except that we
have taken special pains to resolve the high-pressure part
of the phase diagram as carefully as possible.

Our result, depicted with open circles in Fig. 2, is
topologically identical to the one shown in Fig. 1(a).
The interesting action occurs in a small region of low
temperature and high pressure where the different phases
meet. In this region the free-energy landscape of the
system is extremely isotropic and it is difficult to locate
the phase boundaries precisely. We can say with some
confidence that the rhombohedral and cubic phases meet
along a phase boundary that extends from about 12.5 GPA
at T � 0 K to about 11.5 GPa at about 10 K. Whether all
phases then meet at a multicritical point, or whether there
are two separate critical points as illustrated in Fig. 1(a),
is difficult to decide (although we tentatively favor the
latter possibility). A more reliable calculation adopting an
approach such as that of Ref. [12], which allows for a
detailed exploration of the free-energy landscape, would
probably be needed to decide for certain.

The key conclusion we extract from our classical analy-
sis is that, provided the zero-point motion of the ions is
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not considered, only the cubic and rhombohedral phases
can be true ground states of the system. This result can be
derived directly from the form of our effective
Hamiltonian, since it can be shown that a hydrostatic
pressure does not change the relative stability of the
different zero-temperature polar phases. To be certain
that this conclusion is not an artifact of any approxima-
tions made in connection with the effective-Hamiltonian
method, a careful check was carried out using zero-
temperature density-functional calculations directly
[13]. These tests confirm the presence of a second-order
transition directly from the ferroelectric rhombohedral to
the paraelectric cubic phase with increasing pressure
along the zero-temperature isotherm.

Quantum-mechanical theory.—The ionic zero-point
motion can be included in our calculations by carrying
out the thermodynamic simulations using the path-inte-
gral quantum Monte Carlo (PI-QMC) technique [14] in
place of the classical Monte Carlo. The same effective
Hamiltonian is used in both cases. A preliminary study of
this kind, but limited to zero pressure and small Trotter
numbers, was initiated by Zhong and Vanderbilt [15], who
showed that the transition temperatures are indeed sig-
nificantly affected by the quantum-mechanical fluctua-
tions. For instance, the rhombohedral to orthorhombic
transition, classically calculated to occur at 200 K, was
found to fall to 150 K. Not only is this effect quite large,
but it is also present at surprisingly high temperatures.

The technical details of the PI-QMC calculations are
as follows. A careful convergence analysis of simulations
at 10 K led us to take a Trotter number P � 64 as a good
compromise between accuracy and computational feasi-
bility. (Note that the size of the simulated system is
proportional to P.) For consistency, we kept the quantity
1=TP, which determines the degree of convergence of
the PI-QMC results, constant throughout the studied
115503-2
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temperature range. In order to obtain a thermalized con-
figuration for a given P, we find it convenient to increase
P from smaller values in a stepwise manner. For example,
if our target is P � 12, we consider P � 1 ! 3 ! 6 !
12, feeding every new calculation with the thermalized
configuration obtained in the previous one. We typically
performed 30 000 and 70 000 MC sweeps for thermal-
ization and averages, respectively, using a 10� 10� 10
supercell. We checked that these choices led to well-
converged results.

Our result is depicted with filled circles in Fig. 2. We
find, in perfect qualitative agreement with Ishidate et al.,
that all the polar phases of BaTiO3 survive down to 0 K.
Note the dramatic bending of the transition lines, which
pass from following the classical law Tc / �p0 � p� at
high temperatures to following the quantum-mechanical
law Tc / �pc � p�1=2 [16] at lower, but still relatively
high, temperatures. This is exactly the crossover that
Ishidate et al. observed and which led them to attribute
the occurrence of the orthorhombic and tetragonal phases
at 0 K to the zero-point motion of the ions in the system.
Our result clearly shows that such an interpretation is
correct.

Figure 3 shows the calculated sequence of phase tran-
sitions along the 10 K isotherm. It is apparent that, in spite
of the difficulties involved in our PI-QMC calculations,
we are able to identify the phase transitions unambigu-
ously. The calculated pressure range of stability of both
the orthorhombic and tetragonal phases at low tempera-
tures is around 1 GPa, while in Ref. [5] ranges of about
0.6 GPa are reported. Also, we obtain a value of approxi-
mately 6 GPa for the critical pressure pc at which ferroe-
lectricity disappears, in rough agreement with the value
of 6.5 GPa obtained by Ishidate et al. Of course, given the
limitations of our method, this level of agreement may be
partly fortuitous.
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FIG. 3. Calculated (quantum) phase transition sequence of
BaTiO3 along the 10 K isotherm, showing equilibrium polar-
ization �Px; Py; Pz� as a function of pressure. Theoretical pres-
sures are corrected (shifted) following Zhong et al. [10].
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Discussion.—This quantum phase diagram can be ra-
tionalized in the following way. It is natural to assume
that in BaTiO3 the lattice-dynamical fluctuations, either
thermal or quantum-mechanical in character, tend to
favor the paraelectric cubic phase, followed, respectively,
by the tetragonal, orthorhombic, and finally rhombohe-
dral ferroelectric phases. On the other hand, we know
from our first-principles calculations on BaTiO3 that the
potential-energy preference follows just the reverse order
(for any pressure p < pc). We can thus view the phase
transition sequence of this material along the zero-pres-
sure isobar as the result of the competition between these
two tendencies. Now let us turn to the case of the zero-
temperature isotherm, in which no thermal fluctuations
are present. At small pressures the rhombohedral phase is
the ground state because the potential-energy contribu-
tion dominates over the ion zero-point energy. However,
as we compress the system, the potential-energy differ-
ences between the different phases of BaTiO3 decrease, as
a direct consequence of the weakening of the ferroelec-
tric instability, and thus the relative importance of the
quantum-mechanical fluctuations grows accordingly.
Hence the phase transition sequence can occur in a simi-
lar way along both the zero-pressure isobar and the zero-
temperature isotherm.

Figure 4 shows the calculated polarization along the
zero-pressure isobar, for both the classical and quantum
cases. Classically the polarization reaches 0 K with a
finite slope, while the slope is zero quantum mechani-
cally. This is the expected quantum saturation of the order
parameter that has been discussed by Salje et al. [16] in
the context of structural phase transitions. Following
Ref. [16], the quantum-saturation effects in BaTiO3 can
be predicted to be significant up to several hundred
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FIG. 4. Phase transition sequence of BaTiO3 along the zero-
pressure isobar, calculated at the classical (empty circles) and
quantum-mechanical (filled circles) level, showing equilibrium
polarization �Px; Py; Pz� as a function of temperature. In both
cases, the transition sequence with decreasing temperature is
C ! T ! O ! R.
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Kelvin, such high temperatures being a consequence
of the shallowness of the potential-energy wells associ-
ated with the ferroelectric instabilities of the system.
Indeed, in the pressure range from about 3 GPa to about
6 GPa, this strong quantum saturation can be regarded as
inhibiting additional phase transitions to lower potential-
energy phases, thus allowing for the occurrence of ortho-
rhombic and tetragonal ground states.

It is important to note that, in contrast to the classical
case, the sequence of quantum ground states identified by
our calculation could not easily have been anticipated.
One could imagine trying to approximate the total energy
of each polar phase as a sum of classical and zero-point
contributions, with the latter expressed as �h=2 times a
sum of phonon frequencies. However, the classical zero-
temperature tetragonal and orthorhombic phases possess
unstable phonons for all p < pc, rendering this approach
inapplicable. One could also hope to use the approximate
treatment of ionic quantum fluctuations worked out by
Salje et al. [16]. These authors showed that the quantum
corrections can be calculated analytically for a purely
displacive system with a one-dimensional order parame-
ter. Unfortunately, our model of BaTiO3 is significantly
more complicated. Hence, to the best of our knowledge,
numerical solutions such as the one presented here are
indispensable for the study of the quantum phase diagram
of BaTiO3.

It is well known that quantum effects are responsible
for suppressing ferroelectricity in ‘‘quantum paraelec-
trics’’ such as SrTiO3 and KTaO3 [1]. The picture that
emerges for BaTiO3 is much more subtle. We find that the
zero-point fluctuations control the competition between
the various polar phases in a way that is, in practice,
almost identical to that of thermal fluctuations. As a
result, one observes a surprising approximate symmetry
between the T and p axes in the quantum phase diagram
of Fig. 2. This result could hardly have been anticipated
based on the conventional wisdom in the field.

In summary, we have made use of the first-principles
effective-Hamiltonian method of Zhong et al. to study in
detail the temperature-pressure phase diagram of BaTiO3.
We have gone beyond the usual approach and considered
the zero-point motion of the ions in our calculations by
means of the path-integral quantum Monte Carlo method.
We find that the quantum fluctuations make a dramatic
difference with respect to the classical result. In the
quantum-mechanical case, all the polar phases of the
system (rhombohedral, orthorhombic, and tetragonal)
survive down to 0 K, while at the classical level only
the rhombohedral phase does. Our result is in essential
agreement with the experimental work of Ishidate et al.,
thus giving strong support to the conclusions of these
authors.
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