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We investigate the oxygen octahedral rotations that occur in two perovskites, SrTiO3 and PbTiO3, as a function
of applied three-dimensional electric displacement field, allowing us to map out the phase diagram of rotations in
both the paraelectric and ferroelectric regions of the polar response. First-principles calculations at fixed electric
displacement field are used to extract parameters of a Landau-Devonshire model that is analyzed to identify the
phase boundaries between different rotational states. The calculations reveal a rich phase diagram of rotations
versus applied field in both SrTiO3 and PbTiO3, although the details are quite different in the two cases.
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I. INTRODUCTION

Oxygen octahedral rotations can have a significant impact
on the behavior of ABO3 perovskites, affecting electronic,
dielectric, ferroelectric, and magnetic properties. For example,
the octahedral rotations couple strongly with the magnetic
structure in transition-metal perovskites by modifying the
metal-oxygen-metal bond angles that are critical to determine
the magnetic interactions.1,2 In some materials, such as SrTiO3,
the oxygen rotations give rise to a nonpolar antiferrodistortive
(AFD) ground state contributing to the suppression of fer-
roelectric (FE) order.3–5 However, the recent discovery of
rotation-driven improper ferroelectricity in a superlattice6 has
inspired a search for this type of ferroelectricity in other types
of materials.1,7–9 Because they can also couple with magnetic
properties, octahedra rotations offer a promising approach to
the discovery or design of new multiferroic perovskites.1,10–13

In the cubic structure, SrTiO3 and PbTiO3 both show an
AFD instability at the zone corner (R point) of the Brillouin
zone.14,15 Following this instability leads to the experimentally
observed tetragonal ground state with rotations along the [001]
axis for SrTiO3, while PbTiO3 prefers rotations along the [111]
axis. For PbTiO3, however, this is not the equilibrium structure;
instead, a strong FE instability at � out-competes the AFD
instability, giving rise to a tetragonal FE ground state without
rotations. Nevertheless, the AFD modes provide a potential
source of instability in PbTiO3, as has been predicted for
example for surface16,17 and interface6 geometries. (In SrTiO3,
a weak FE instability at � is found in some calculations,
depending sensitively on lattice constant and other details.
However, experimentally the material just barely avoids this
instability, remaining paraelectric down to zero temperature.)

Oxygen octahedral rotations clearly play an important role
in these and other perovskites, and they are known to be
strongly affected by stress12,18,19 and temperature.20 Recently,
the effects of electric displacement field on the AFT rotations
were investigated in strained PbTiO3 bulk and SrTiO3 bulk21

and PbTiO3/SrTiO3 superlattice,22 with displacement field and
rotation axis fixed along [001]. In this paper, we study the phase
transition behavior of the AFD modes in SrTiO3 and PbTiO3

under three-dimensional constant electric displacement field.
Of course, SrTiO3 and PbTiO3 are qualitatively different

in that the latter is ferroelectric while the former remains
paraelectric down to zero temperature. However, the choice of
fixed electric displacement field D for the boundary conditions

in this study allows us to treat both materials on an equal foot-
ing. The situation would have been much more complicated
if we had chosen to work at fixed electric field E , because
the energy landscape is multivalued and the paraelectric
configuration is unstable at small E in a ferroelectric material
like PbTiO3. At fixed D, however, the energy landscape re-
mains single-valued, thus allowing access to the entire electric
equation of state for PbTiO3 as well as SrTiO3.23,24 Indeed,
both materials have a large static dielectric constant, so that
mapping at fixed D is qualitatively similar to mapping at fixed P
(all phases at nonzero D field exhibit an electric polarization).
Thus, in our study, the main qualitative difference between
SrTiO3 and PbTiO3 will be related to the fact that the
rotational instability that prefers to develop along a [001] axis
in SrTiO3 instead prefers a [111] axis in PbTiO3.

The paper is organized as follows. In Sec. II we introduce
the Landau-Devonshire model, provide the details of our first-
principles calculations, and specify the terminology for sym-
metries that will be used later. In Sec. III we present the results
of the first-principles calculations in one-dimensional D-field
space and discuss the fitting of the model, which is then used
to compute the phase diagram of rotational phases in three-
dimensional D space. Finally, Sec. IV contains a summary.

II. PRELIMINARIES

A. Landau-Devonshire model

In order to explore the octahedral-rotation phase diagram in
the space of D fields, the internal energy U has to be calculated
and minimized on a three-dimensional mesh of D values. Near
the phase boundaries between different rotational phases, this
process would be quite tedious; the first-principles calculations
would need to be very carefully converged, and the procedure
would become quite time-consuming. We therefore introduce
a Landau-Devonshire model to study the phase transitions in
this system, with the coefficients in the model being obtained
from fitting to our first-principles results on a smaller database
of D values. This model can then be used to locate the phase
boundaries efficiently.

As mentioned above, the dominant AFD rotational insta-
bilities for paraelectric SrTiO3 and PbTiO3 are both at the R

point in the Brillouin zone (corresponding, in the most general
case, to the a−b−c− Glazer notation). We therefore focus
on these modes here, and define a vector octahedral rotation
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θ = (θx,θy,θz) describing a rotation by angle θx around the x

axis, etc. (or, more generally, by angle θ = |θ | about axis θ̂).
Within our Landau-Devonshire model, then, the internal

energy Utot(D,θ ) is expanded as a function of displacement
field D = (Dx,Dy,Dz) and octahedral rotations θ = (θx,θy,θz)
as

Utot = UD + Uθ + Uint (1)

where
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Here we have made the approximation of truncating the
expansion systematically at overall fourth order, and α, β, γ ,
μ, ω, σ , τ , λ, and κ are coefficients that need to be fitted from
the first-principles calculations. The terms in Uint describe the
coupling of D and octahedral rotations. There is no strain in
this expansion since each term is defined assuming that the
strain is fully relaxed for each (D,θ ) value.

In the present work we are really only interested in the
internal energy difference Utot(D,θ ) − Utot(D,0) between the
states with and without octahedral rotations. We denote this
quantity simply as U and note that

U (D,θ ) = Uθ (θ ) + Uint(D,θ ). (5)

In order to fit the coefficients from first-principles calcu-
lations, we first apply D along just one Cartesian direction,
which we choose as Dz, to find the coefficients μ, ω, σ , τ , and
λ. For this case we set Dx = Dy = 0 and find

U = μθ2 + τD2
z θ
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z
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. (6)

We then do a series of calculations in which we choose different
initial structures with equillibrium rotations along θ̂ = [100],
[110], [001], or [111] at Dz = 0.0 a.u., and for each choice
(and for each Dz) we relax all the coordinates to obtain
the internal energy U (Dz,θ̂ ). (We increase Dz in increments
of 0.04 a.u. up to 0.12 a.u. for SrTiO3, and increments of
0.02 a.u. up to 0.08 a.u. for PbTiO3.) Fitting the model
parameters to this first-principles database of information, we
obtain all the coefficients in Eqs. (3) and (4) except for κ . We
then do one more series of calculations with both D and θ along
the [111] direction, i.e., D = (D0,D0,D0) and θ = (θ0,θ0,θ0),
for which the model predicts

U = 3μθ2
0 + 3(ω + σ )θ4

0 + 3(τ + κ + 2λ)D2
0θ

2
0 . (7)

(Here Dz is increased in steps of 0.02 a.u. up to 0.08 a.u. for
both materials.) Fitting in a similar way to these results, we
obtain the parameter κ as well. Once all the parameters are in
hand, we can go back to Eq. (5) and study the full behavior

of octahedral rotations as a function of three-dimensional D
space using this model.

B. First-principles methodology

Our calculations were performed within density-functional
theory in the local-density approximation25 using norm-
conserving pseudopotentials26 and a plane-wave cutoff of
60 Ha. A 6×6×6 Monkhorst-Pack grid27 was used to sample
the Brillouin zone. The unit cell for simulating the R-point
rotation is doubled to obtain a 10-atom fcc cell. The atomic
coordinates and lattice vectors of this cell were relaxed until
all atomic force components were smaller than 10−5 Ha/Bohr
and all stress components were below 10−7 Ha/Bohr3.
We used the open-source ABINIT code package28 with the
implementation of the constant-displacement-field method in
three dimensions24 to calculate the internal energy at a each
specified D field.

C. Terminology for symmetries

Here we introduce the notations that we will use for
describing rotational phases, following a scheme similar to
the one often used for polarization.29 When the octahedral
rotation axis is constrained to a symmetry axis lying along
〈001〉, 〈111〉, or 〈011〉, the resulting phase becomes tetragonal
(T ), rhombohedral (R), or orthorhombic (O), respectively.30

Similarly, the M phases arise when rotation axis is confined
to a mirror plane. There are three cases: MC, in which the axis
is along [0,u,v]; and MA or MB, in which the axis is along
[uuv] with u < v or u > v, respectively. The triclinic phase
(Tri) occurs if the axis is along [uvw] with u �= v �= w �= 0. We
also introduce the Cartesian subscript α = {x,y,z} to specify
the unique Cartesian direction when needed. For example, Tα

denotes the tetragonal phase with rotation axis along direction
α, while Oα and MCα denote the orthorhombic phase and MC

phases with rotation axis lying in the plane perpendicular to
the α direction. Similarly, MAα and MBα are the MA and
MB phases with the nonequal component v in [uuv] along the
α direction.

III. RESULTS

A. First-principles calculations

We first carry out a series of calculations, starting from
D = 0 and increasing Dz in steps of 0.04 a.u. for SrTiO3 and
0.02 a.u. for PbTiO3, to explore the resulting behavior for the
case that the octahedral rotation is constrained to lie along
the [100], [110], or [001] axis. At each Dz, the structure is
fully relaxed with respect to both ionic positions and lattice
parameters. In all three cases in both materials, the rotations,
which are fully developed at Dz = 0, are gradually suppressed
with increasing Dz until they disappear completely at a critical
value of Dz. We also attempt this procedure for the case that the
octahedral rotations started along the [111] direction at D = 0.
However, for SrTiO3 a rotation along [111] is a saddle point,
rather than a local minimum, of the D = 0 energy landscape,
and the breaking of the threefold symmetry about [111] by the
applied Dz immediately causes the rotation axis to switch to
either the [110] or [001] direction. For PbTiO3, by contrast, the
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FIG. 1. (Color online) Internal energy U of Eq. (5) for D applied along the ẑ direction, for phases with the octahedral rotations constrained
to be about different axes as indicated in the legend. (a) SrTiO3; (b) PbTiO3. Symbols are from first-principles calculations; curves are from
the Landau-Devonshire model.

D = 0 system has its minimum-energy AFD axis along [111],
and we can also follow the evolution of this fourth case as Dz

is applied. In this case we find that θz gradually increases, and
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FIG. 2. (Color online) Octahedral rotation angles (θx,θy,θz) for
different phases for D applied along ẑ. (a) SrTiO3; (b) PbTiO3. For
[110] cases (θx = θy), θx is plotted. For the PbTiO3 [111]-derived case
(θx = θy �= θz), θx and θz are plotted. Symbols are from first-principles
calculations; curves are from the model.

θx = θy gradually decrease, with increasing Dz, until a critical
value is reached at which θx and θy vanish and the solution
merges with the one with the rotation axis constrained to [001].
The results of these calculations are shown as the symbols in
Figs. 1 and 2, where the internal energy difference U of Eq. (5)
and the equilibrium rotation angles are plotted versus Dz.

We also carry out calculations for both materials with D
and the rotation axis both constrained to lie along [111]. As
mentioned in Sec. II A, the purpose of this is just to obtain
the additional coefficient κ that was not determined from
the calculations with D along [001], so it was not necessary
to study other rotation axes for this case. The results (not
shown) again indicate that the rotations gradually decrease
with increase of D0 for D = (D0,D0,D0), although in the case
of SrTiO3 the rotations never vanish over the range of D0 up
to 0.10 a.u. studied here.

B. Fitting of the model parameters

We now use the results of the above first-principles
calculations to determine the parameters in Eqs. (3) and (4)
following the procedure detailed at the end of Sec. II A.
The resulting parameter values are reported in Table I. The
predictions of the fit (solid curves) are compared with the
direct first-principles results (symbols) in Figs. 1 and 2. It is
clear that the model agrees quite well with the first-principles
calculations.

TABLE I. Fitted coefficients of the Landau-Devonshire model of
Eqs. (3)–(5), defined with energies in meV, rotation angles in degrees,
and displacement fields in a.u..

μ ω σ τ λ κ

SrTiO3 –0.863 0.015 0.036 64.45 41.19 –139.36
PbTiO3 –0.661 0.019 0.033 78.80 96.27 –147.91
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C. Details for D along [001]

From Fig. 1, we can see that SrTiO3 and PbTiO3 have
different octahedral rotation patterns. At D = 0, SrTiO3 has
the lowest energy in the T phase, which is its true ground state
experimentally below 105 K, and the highest energy in the
R phase (not shown in the figure because it is destabilized
by any finite Dz). In PbTiO3, on the other hand, the energy
ordering is just the opposite, with the R phase lowest and
the T phase highest in energy. In the context of Eq. (6), the
energy ordering of the phases at D = 0 is determined by the
combination of parameters (σ − 2ω), with the R or T phase
lowest in energy when this combination is negative or positive,
respectively. This is confirmed by the coefficients in Table I.

As Dz increases, Fig. 1 shows that the internal energy
U of SrTiO3 and PbTiO3 increases and finally reaches zero.
Recalling that U is measured relative to the structure with no
rotations, we conclude that the octahedral rotations disappear
at a sufficiently high Dz field. However, the behavior is
different for these two materials. Fig. 1(a) shows that for
SrTiO3 the T phase30 with rotation axis along [100] or [010]
has the lowest energy as Dz increases, which is consistent
with recent experiment observation.31 While the T phase with
rotation along [001] increases sharply in energy and becomes
the least favorable state when Dz > 0.05 a.u.. This suggests
that the T phase with its rotation axis perpendicular to D is
suppressed less than the rotation axis parallel to D. However,
PbTiO3 has a quite different behavior, as can be seen in
Fig. 1(b). The state of lowest internal energy at D = 0 is the
R phase. As Dz increases, the rotational axis is perturbed
to be along [uuv] for v > u, putting the system in the MA

phase. Eventually, the internal energy of this state merges into
the curve for the T phase (axis along [001]), indicating a phase
transition from MA to T at some critical value of Dz. The T
phase, with its rotation axis parallel to D, is then favored at
higher Dz, until there is a second phase transition at which the
rotations disappear.

The details of the rotational behavior in PbTiO3 can be
seen more clearly in Fig. 2(b), which shows the variation of
the various rotation angles with Dz field. The rotation angles
decrease as Dz increases for all phases except for the initial
R phase. This phase is immediately perturbed to become MA

as soon as a nonzero Dz is present. With increasing Dz, the
rotation angles θx and θy decrease, but θz increases. That is,
the rotation axis starts from [111] (R) and then rotates in the
(11̄0) plane (MA) towards [001] (T ). We can now see that the
critical Dz at which T phase is reached (i.e., at which θx and
θy vanish) is at Dz = 0.058 a.u. This also corresponds to the
merger of MA and T phases in the internal energy curves of
Fig. 1(b). For larger Dz, θz then decreases monotonically and
reaches zero at Dz = 0.092 a.u..

For SrTiO3, on the other hand, the picture is simpler. As
Dz increases in Fig. 2(a), the rotation axis remains along
[100] while the amplitude of θx monotonically decreases and
disappears entirely at a critical value of Dz = 0.144 a.u..32

D. Three-dimensional D field

We now turn to a detailed discussion of the behavior of
SrTiO3 and PbTiO3 as a function of three-dimensional D field,

based on the model of Eqs. (3)–(5) using the coefficients fitted
from first principles as reported in Table I.

First, note that because the coefficient μ is negative in both
SrTiO3 and PbTiO3, we are guaranteed to get a phase with
nonzero rotations at small D. Also, because of the non-zero
value of κ , we generically obtain a triclinic rotational axis
(θx �= θy �= θz) at a general point Dx �= Dy �= Dz �= 0 in D
space. High-symmetry phases will only exist under special
conditions, i.e., when one or more D components vanish, or
when two or more D components are equal.

1. Phase diagram for SrTiO3

Figure 3 shows several two-dimensional (Dx,Dy) slices of
the three-dimensional phase diagram of STO taken at different
values of Dz. In these panels, the outer solid (blue) boundaries
[and also the inner ones in Fig. 3(d) and 3(e)] indicate a second-
order phase transition from a phase with octahedral rotations to
a phase without rotations. Other solid lines represent first-order
phase boundaries as will be explained below. Dashed and dot-
ted lines are not true phase boundaries, but instead denote high-
symmetry structures that occur as special cases along special
lines or planes in D space; we use dashed lines (red) for MA or
MB phases, dotted lines (black) for T phases, dashed-dotted
lines (green) for MC phases, and short-dashed-dotted lines
(brown) forO phases, using the notation developed in Sec. II C.

In Fig. 3(a), for Dz = 0, the squarish solid curve marked
by crosses (green) is a first-order boundary separating the Tz

phase (inside) from phases with θz = 0 (outside). For generic
(Dx,Dy) outside, this corresponds to the MCz phase (recall,
from Sec. II C, that this means that the rotation axis lies in
the θx-θy plane). Along the horizontal axis (Dy = 0) outside,
shown by the dotted (black) line, the Tz and Ty phases are
degenerate. However, any small finite Dy favors the Ty phase
and adds a small θx component (via the κ term) so that theMCz

phase results. That is, crossing this dotted line from negative
to positive Dy just causes θx to cross smoothly through zero,
so that this is not a true phase boundary.

Along the [110] direction in D space, the behavior is rather
complex. We let Dx = Dy = D0. Recall that inside the square
region (small D0) one finds theTz phase. Next comes a segment
of first-order phase boundary, indicated again by a solid line
with crosses (green), along which there are two degenerate
MCz phases with rotation angles (θa ,θb,0) and (θb,θa ,0) (with
θa �= θb). Any small step away from this line (while remaining
in the Dz = 0 plane) favors one or the other of these phases,
and also slightly perturbs its angles θx and θy . Thus, when
crossing this line, both θx and θy jump discontinuously. When
D0 increases further, as shown by the dash-dotted (brown)
line, one finds the Oz phase exactly on this line, but it is just a
special case of the MCz phase as |θx | and |θy | cross smoothly
through each other. Like the dotted (black) line, therefore, this
is not a true phase boundary.

As Dz increases from zero, the behavior of the phase
diagram is initially very complex, especially in the vicinity
of the squarish central region of Fig. 3(b). The phase behavior
in the outer region at Dz = 0.015 a.u. is shown in Fig. 3(b).
TheMCz phase at Dz = 0 is perturbed to become triclinic as θz

becomes nonzero linearly in Dz. The Tx and Ty lines at Dz = 0
are perturbed to MC structures as shown by the dash-dotted
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FIG. 3. (Color online) Phase diagram for rotational phases of SrTiO3 under applied D field. Each panel is a cut plotted in the Dx-Dy plane
(note the change of scale between top and bottom panels) at fixed Dz. (a) Dz = 0.00 a.u.; (b) 0.015 a.u.; (c) 0.08 a.u.; (d) 0.16 a.u.; (e) 0.172 a.u.;
(f) 0.24 a.u.. Solid lines are second-order boundaries; decorated solid lines are first-order boundaries; and dashed, dash-dotted, and dotted lines
are special cases of higher symmetry induced by high-symmetry D vectors (see text for details). Gray area in (b) is detailed in Fig. 4.

(green) lines, and the Oz lines are converted to MA and MB

structures as shown by the dashed (red) lines. There are no
true phase transitions when crossing these nonsolid lines.

The phase behavior in the inner (grayed-out region) of
Fig. 3(b) is sufficiently complicated that we chose to provide
a separate Fig. 4 to describe the behavior there. The six
panels of Fig. 4 show a blow-up of the phase diagram in the
range Dz ∈ [0,0.05] a.u., with color coding as explained in the
caption. We shall not describe all the details here, as these del-
icate transitions occur in quite a small region around the origin
in D space and are not very relevant to the broader discussion.

In Figs. 3(a)–3(d), the solid outer boundary (second-order
transition to the rotationless phase) expands to larger Dx and
Dy with increasing Dz (note the change of scale from the
first three to the last three panels). In Fig. 3(c), which is for
Dz=0.08 a.u., the first-order boundaries, shown by solid lines
marked by squares (magenta), are the remnant of the first-order
boundaries of Figs. 4(e) and 4(f); these diminish and disappear
as Dz is increased further. Then, by the time Dz = 0.16 a.u. is
reached in Fig. 3(d), a new pocket of rotationless phase appears
near the origin in the Dx-Dy plane. This pocket grows until, at a
critical value of Dz = 0.172 a.u. shown in Fig. 3(e), the inner
and outer regions connect and split the region of rotational
phases into four ellipses, as shown for Dz = 0.24 a.u. in
Fig. 3(f). We expected these ellipses to shrink and disappear
with a further increase of Dz, but in fact this happens only very
slowly; along the line Dx = Dy = Dz, the rotations survive to
quite large values of D, as is confirmed by the first-principles

calculations upon which the model is based. We comment on
this further is Sec. III E.

2. Phase diagram for PbTiO3

The situation is simpler for the rotational phase diagram
of PbTiO3. The phase diagrams for several snapshots at
increasing Dz are shown in Fig. 5 for PbTiO3 using the same
conventions as in Fig. 3 wherever possible. When Dz = 0
as in Fig. 5(a), the center point (D = 0) is in the R phase.
The surrounding area enclosed by the solid lines (green) is
triclinic except along the [100] and [110] symmetry lines,
which are MAx (lines with circles, red) and MBz (dashed
lines, red) respectively. The transition is continuous across the
latter, but first order across the former. Essentially, at small
three-dimensional D, the system prefers to be in a slightly
perturbed version of one of four R phases, depending on the
octant in which D resides. Using the notation S++− to denote
the octant with Dx > 0, Dy > 0, Dz < 0, etc., we find that
the R-like phase with θ̂ � [111] is preferred in S+++ and
S−−−; θ̂ � [1̄11] is preferred in S−++ and S+−−; θ̂ � [11̄1]
is preferred in S+−+ and S−+−; and θ̂ � [111̄] is preferred in
S++− andS−−+. The planes Dx = 0, Dy = 0, and Dz = 0 thus
form first-order boundaries in this small-D region, appearing as
solid lines (labeled with circles, red) in the 2D plots. It follows
that the octahedral rotation can be “switched” between these
R-like (actually, triclinic) phases by a small change of external
electric displacement field.
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FIG. 4. (Color online) Enlargement of the central portion of Fig. 3
(Dx,Dy ∈ [−0.08,0.08] a.u.) for small Dz values. (a) Dz = 0.00 a.u.;
(b) 0.01 a.u.; (c) 0.015 a.u.; (d) 0.025 a.u.; (e) 0.04 a.u.; (f) 0.05 a.u..
Color coding is such that pure red, green, and blue correspond to
the Tx , Ty , and Tz phases respectively, with color values weighted
according to |θx |, |θy |, and |θz| for intermediate phases.

The area between the inner (green) and outer (blue) solid
lines in Fig. 5(a) is the MCz phase, which becomes Oz along
[110] directions (short-dashed-dotted lines, brown) and Tx

along [100] direction (dotted lines, black). The inner solid

(green) lines thus represent second-order phase boundaries at
which θz → 0 as one passes to the outside.

As was the case for SrTiO3, the high-symmetry phases
for PTO in Fig. 5(a) become lower-symmetry phases as Dz

increases, Figs. 5(b) and 5(c). In fact, as soon as Dz > 0, the
entire region inside the solid (blue) boundary is generically tri-
clinic. Special cases occur along the dashed lines (red), where
the symmetry is MA or MB, and along the dashed-dotted
lines (green), which is MC. When Dz is small enough, as in
Fig. 5(b), the first-order phase boundaries mentioned above are
still visible as the solid lines with squares (magenta) near the
origin, corresponding to the Oz phase, but with increasing
Dz these shrink and then vanish, as shown in Fig. 5(c).
The solid (blue) boundary, outside which the rotational phases
disappear, can also be seen to shrink with increasing Dz, at first
slowly and then more rapidly, and to disappear by the time Dz

reaches 0.10 a.u..

E. Discussion

There are quite significant differences between the rota-
tional phase diagrams for SrTiO3 and PbTiO3, as shown in
Figs. 3 and 5. At small D, the major differences arise from the
fact that the D = 0 ground states are different, namely T andR
respectively. Thus, small applied D fields essentially switch the
system between T -like phases in SrTiO3, or between R-like
phases in PbTiO3.

As D gets larger, the behavior becomes rather complex,
but we can identify an important difference that can be traced
back to the parameter values of the model. Namely, we notice a
much more isotropic behavior of the outer boundary at which
the rotations disappear in PbTiO3 compared to SrTiO3. In
PbTiO3, for example, we find that the critical magnitude of D

at which the rotations disappear is ∼0.09 a.u. and ∼0.07 a.u.
in the [100] and [111] D-space directions respectively. For
SrTiO3, on the other hand, the corresponding values are
∼0.14 and ∼0.40 a.u. respectively. In addition to being larger
(reflecting the stronger tendency to rotational instability in
SrTiO3), the anisotropy between [100] and [111] directions
is very much greater, with rotations extending much further
in D space along the [111] direction. This can be understood
from the coefficients reported in Table I. Restricting ourselves
to the case of D = (D0,D0,D0) and θ = (θ0,θ0,θ0), the

-0.1

0

 0.1

-0.1 0  0.1

(a)

-0.1 0  0.1

(b)

-0.1 0  0.1

(c)

FIG. 5. (Color online) Phase diagram for rotational phases of PbTiO3 under applied D field. Dx-Dy are cuts plotted at (a) Dz = 0.00 a.u.;
(b) 0.02 a.u.; (c) 0.08 a.u.. Conventions are similar to those of Fig. 3 (see text for details).
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critical displacement Dc can be obtained from Eq. (5) as
D2

c = −μ/(τ + 2λ + κ). From this we obtain Dc = 0.34 and
0.07 a.u. for SrTiO3 and PbTiO3 respectively. The greatly
enhanced anisotropy and large value of Dc along this [111]
direction can thus be traced to the small value of the
denominator (τ + 2λ + κ) for SrTiO3.

It is useful to put the above results in perspective regarding
the dielectric behavior. SrTiO3 is known experimentally to
remain paraelectric down to 0 K, so that the entire space of
D fields should be accessible by varying an applied E field,
even if the dielectric constant is very large. PbTiO3, on the
other hand, is strongly ferroelectric, so that the region of small
D corresponds physically to the saddle point of the multiwell
energy landscape. This internal-energy landscaped as a func-
tion of D (without octahedral rotations) was mapped out in our
previous work,24 where the spontaneously polarized tetragonal
ground state occurs at |D[001]| = 0.17 a.u.. Similarly, the
spontaneously polarized states with constrained orthorhombic
and rhombohedral symmetry occur at |D[110]| = 0.15 a.u. and
|D[111]| = 0.14 a.u. respectively. So, we can roughly think of
this as a three-dimensional “sombrero” potential with a radius
of ∼0.15 a.u.. In comparison, the results presented above show
that the octahedra rotations disappear for |Dz| > 0.09 a.u.
and |D[110] > 0.11 a.u.. Thus, the entire region of the inter-
esting rotational phase diagram shown in Fig. 5 lies inside the
sombrero radius, in the region where the crystal is unstable
under fixed E (but not under fixed D) electric boundary
conditions.

IV. SUMMARY AND CONCLUSION

In summary, we have investigated the phase transitions
associated with oxygen octahedral rotations in SrTiO3 and
PbTiO3 as a function of a three-dimensional applied electric
displacement field, first directly from first-principles cal-
culations and then also using a fitted Landau-Devonshire
model. For SrTiO3, the D = 0 ground state is tetragonal,

with degenerate states corresponding to the rotation angle
lying along one of the three Cartesian axes, and for small
D vectors the ground state is a weakly perturbed version of
one of these states. Similarly, for PbTiO3, the D = 0 ground
state is rhombohedral, with four degenerate states having
rotation axis in one of the [111] or related directions, and
again a small D selects and weakly perturbs one of these
states. However, as the strength of D is increased, we find
a quite complicated phase diagram for each material, with
both first- and second-order phase boundaries appearing in
different parts of the diagram. The structure is especially rich
for the case of SrTiO3. For both materials, the general state
associated with generic Dx �= Dy �= Dz �= 0 is triclinic, but
states with higher symmetry tend to arise when D itself has
higher symmetry. In both materials, the rotations eventually
disappear at sufficiently large values of applied D.

Our work represents one of the first attempts to carry out a
systematic three-dimensional characterization of the interplay
between polar and octahedral-rotation degrees of freedom in
perovskites of this class. There is no external field that couples
directly to the rotational degrees of freedom in the same
sense that the electric field couples to polarization, so that
is difficult to find ways of controlling the rotations directly.
However, the present work demonstrates that, once rotations
occur spontaneously, their magnitudes can be modified and
their orientations can be switched via the application of
appropriate electric fields. In any case, the observed richness
of behavior suggests that there may be much more to learn
in other materials of this class and in more distantly related
materials.
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