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First-principles theory of frozen-ion flexoelectricity
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We demonstrate that the frozen-ion contribution to the flexoelectric coefficient is given solely in terms of the
sum of third moments of the charge-density distortions induced by atomic displacements, even for ferroelectric or
piezoelectric materials. We introduce several practical supercell-based methods for calculating these coefficients
from first principles, and demonstrate them by computing the coefficients for C, Si, MgO, NaCl, SrTiO3, BaTiO3,
and PbTiO3. Three important subtleties associated with pseudopotentials, the treatment of surfaces, and the
calculation of transverse components are also discussed.
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Introduction. Flexoelectricity (FxE) refers to the linear
response of electric polarization to an applied strain gradient.1

Because a strain gradient breaks inversion symmetry, FxE
is always symmetry allowed, unlike piezoelectricity, which
arises only in noncentrosymmetric materials. The FxE effect
is normally negligible on conventional length scales, but it
may become very strong at the nanoscale, where huge strain
gradients can significantly affect the functional properties of
dielectric thin films, superlattices, and nanostructures. The
possibility of large effects at the nanoscale with application to
functional devices has caused a recent increase in experimental
interest in flexoelectricity.2–8

To the best of our knowledge, there have been remark-
ably few theoretical studies of FxE, the main difficulty
being that strain gradients are inconsistent with translational
symmetry. A classical phenomenological theory focused on
lattice-mediated contributions was proposed by Tagantsev9,10

and later applied to study FxE properties of dielectrics by
Maranganti and Sharma.11 An attempt at a first-principles
calculation of FxE is due to Hong et al.12 Recently, Resta13

developed a first-principles theory of FxE that was, however,
limited to simple elemental insulators such as Si, and was not
implemented in practice. Thus, unlike piezoelectricity, which
is routinely calculated using modern first-principles methods
in a mature theoretical framework, the theory of FxE remains
in a primitive state.

In this Rapid Communication, we present a complete theory
of the frozen-ion contributions to the FxE coefficient (FEC),
which were not addressed in Refs. 9–11. Working under
mixed electric boundary conditions to be defined shortly,
we demonstrate that the contribution of a given atom to the
frozen-ion FEC is just proportional to the third moment of the
change in charge density induced by its displacement. This
is true for all insulating crystals, from elemental dielectrics
to piezoelectrics and ferroelectrics. Furthermore, we propose
several practical supercell-based methods for extracting the
FEC from ab initio calculations, show that these give consistent
results, and discuss their relative advantages. We report the
frozen-ion FECs for C, Si, MgO, NaCl, SrTiO3, BaTiO3,
and PbTiO3, and discuss the trends that emerge from this
data. Finally, we briefly discuss three important subtleties:
(i) the issue of pseudopotential dependence; (ii) the question
of “surface contributions” to the FxE; and (iii) the treatment
of transverse components using current-density response. The

extension beyond the frozen-ion case, taking into account the
internal lattice relaxations in response to strains and strain
gradients, will be reported elsewhere.

Theory. Our approach here is essentially a generalization of
the analysis introduced by Resta.13 We consider an insulating
crystal, fully relaxed at zero electric field E, and oriented such
that one of its primitive reciprocal lattice vectors lies along x̂.
We then identify one entire plane of atoms, corresponding to
atom i in the home unit cell and its periodic images normal to
x̂, and displace the entire plane rigidly by u0iβ in direction β.
This is done under electric boundary conditions in which the
macroscopic E continues to vanish away from the displaced
plane. In general, this induces a step in the macroscopic
electrostatic potential, so that if done simultaneously to every
N th plane of type i along x̂, it results in an average Ex �= 0;
instead, what remains unchanged is the electric displacement
field Dx . For this reason, we work at “mixed electric boundary
conditions” (MEBCs) in which we keep the macroscopic
(i.e., supercell-averaged) fields fixed to Ey = Ez = 0 and
Dx = 4πPs,x , where Ps is the spontaneous polarization of the
undeformed crystal.

We define the planar-averaged change of charge density
induced by this displacement to be

fiβ(x) = ∂ρ̄(τix + x)

∂u0iβ

, (1)

where ρ̄(x) is the y-z planar average of ρ(r) and τ i is the
location of atom i in the unit cell. We also define the moments
of the induced charge redistribution via

Q
(n,x̂)
iβ = A

∫
dxfiβ(x)xn, (2)

where A is the cell area normal to x̂. Note that the zeroth
moment Q

(0,x̂)
iβ vanishes due to charge conservation, and that

Q
(1,x̂)
iβ can be identified as the “Callen” or “longitudinal”

dynamical charge.
By definition, the frozen-ion FEC describes the P induced

by a homogeneous strain gradient ν, that is,

ulix = 1
2ν(la + τix)2, (3)

where l is a cell index and a is the lattice constant along
x. In the spirit of Martin14 and Resta,13 we approach this
state via the long-wave (q → 0) limit of a displacement wave
uliβ = uiβeiq(la+τix ), where uiβ = uβ (independent of i) is
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small enough that a linear-response approach is appropriate.
Then the charge density induced by the displacement of
sublattice i is

ρ̄iβ(x) = uiβ

∑
l

eiq(la+τix )fiβ(x − la − τix). (4)

This has Fourier components at ρ̄iβ(q + G) at all G = 2πm/a,
but we focus on the G = 0 component defined by ρ̄iβ(q) =
(1/a)

∫ a

0 dxe−iqx ρ̄iβ(x) and obtain

ρ̄iβ(q)= uiβ

a

∫ ∞

−∞
dx ′e−iqx ′

fiβ(x ′)

= uiβ

V

(
−iqQ

(1,x̂)
iβ − q2

2
Q

(2,x̂)
iβ + i

q3

6
Q

(3,x̂)
iβ

)
, (5)

where x ′ = x − la − τix is used to obtain the first line and
the series expansion of e−iqx is used to obtain the second
(terms of order q4 and higher have been dropped), and V =
aA is the cell volume.15 Restoring uiβ = uβ we get a total
ρ̄β(q) = ∑

i ρ̄iβ(q), and using Poisson’s equation in the form
ρ̄(q) = −iqPx(q), this implies a polarization modulation

Px,β (q) = uβ

V

(
−i

q

2
Q

(2,x̂)
β − q2

6
Q

(3,x̂)
β

)
, (6)

where Q
(2,x̂)
β = ∑

i Q
(2,x̂)
iβ and Q

(3,x̂)
β = ∑

i Q
(3,x̂)
iβ . The first

term of Eq. (5) has dropped out due to the acoustic sum rule∑
i Q

(1,x̂)
iβ = 0.

Now we define the (unsymmetrized) strain tensor and
gradient of the strain tensor to be, respectively,

ηβγ (r) = ∂uβ(r)

∂rγ

, νβγ δ(r) = ∂ηβγ (r)

∂rδ

. (7)

For the wave uβ(r) = uβeiqx this implies ηβx(q) = iquβ and
νβxx(q) = −q2uβ , with other elements such as ηβy vanishing.
We also define the (unsymmetrized) frozen-ion piezoelectric
and FxE coefficients to be

eαβγ = ∂Pα

∂ηβγ

, μαβγ δ = ∂Pα

∂νβγ δ

, (8)

which we interpret in the spirit of the long-wave method
as eαβγ = limq→0 ∂Pα(q)/∂ηβγ (q), etc. Combining the above
expressions with Eq. (6), it follows that15

exβx = − 1

2V
Q

(2,x̂)
β , (9)

μxβxx = 1

6V
Q

(3,x̂)
β . (10)

Equation (9) expresses the frozen-ion (or “purely electronic”)
piezoelectric tensor in terms of induced quadrupoles quantified
by the elements of Q(2,x̂). This is basically the same as the
result given in the classic paper of Martin,14 except that here
all quantities are defined in the MEBC (fixed Dx , Ey , and
Ez). Similarly, Eq. (10) corresponds to the induced-octupole
formulation derived in Resta’s Ref. 13 and agrees with
Eq. (22) therein [our Q(3) is Resta’s AQ(3)]. Note, however,
that Resta’s derivation was limited to elemental (and therefore
nonpolar and nonpiezoelectric) crystals. Instead, the derivation
here is general, showing that the frozen-ion FxE response has
contributions only from the induced octupole term.

(a)

(b)

(c)

FIG. 1. (Color online) Supercell geometries. Large (red/dark
gray) and small (green/light gray) dots are two species of atoms;
open dots are atoms before being displaced as shown by arrows.
Rectangles indicate supercells. (a) Bulk supercell for method A.
(b) Slab supercell for method B; vertical lines indicate dipole
correction layers in vacuum. (c) Bulk supercell for method C.

First-principles calculations. To compute the FECs from
Eq. (10) using ab initio methods, we need to set up a supercell
calculation that allows us to calculate the fiβ(x) and, from
these, the Q

(3,x̂)
iβ , under MEBC (�Dx = Ey = Ez = 0). We

have designed three independent procedures to accomplish
this, using three different supercell configurations. In method
A, shown in Fig. 1(a), a supercell is built from N repetitions
of the bulk cell, and then two atomic layers are displaced
in opposite directions under the usual boundary conditions in
which the supercell-averaged E = 0. Since the induced dipoles
are equal and opposite, they compensate each other, �P =
�D = 0, and the MEBC are satisfied. In method B, shown
in Fig. 1(b), the supercell contains a slab cut from the bulk
material; one central layer is displaced, and there is an external
dipole layer in the vacuum that is constantly readjusted so that
Ex in the vacuum region does not change. Again, as long as
there is no free charge on the surfaces, this enforces �Dx = 0.
Finally, in method C, illustrated in Fig. 1(c), the supercell is
again bulklike, but only one layer is displaced, now using a
first-principles code capable of enforcing �Dx = 0. In each
case, the supercell size or slab thickness has to be chosen to
be large enough so that the induced charge disturbances fiβ(x)
do not overlap or extend to the surface.16

The calculations have been performed within density-
functional theory. We used the local-density approximation17

for C, Si, MgO, NaCl, and SrTiO3, and the generalized gradient
approximation18 for BaTiO3 and PbTiO3. We used SIESTA

(Ref. 19) for methods A and B, ABINIT (Refs. 20 and 21) for
method C, and ELK (Ref. 22) for the all-electron calculations to
be discussed later. Supercells were built from 12 unit cells for
the perovskites and eight conventional cells for C, Si, MgO,
and NaCl in method A and four conventional cells for MgO in
methods B and C; slabs in B are separated by 20 Å of vacuum.
Atomic displacements of 0.04 bohrs were used in SIESTA and
ABINIT, and 0.015 bohrs in ELK.
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TABLE I. First and third moments of displacement-induced
charge density for MgO using three different methods.

Q(1) (e) Q(3) (e bohr2)

Method A B C A B C

Mg 0.63 0.63 0.63 −8.91 −8.79 −8.35
O −0.63 −0.63 −0.63 −12.96 −12.77 −13.12
Sum 0.00 0.00 0.00 −21.87 −21.56 −21.47

Table I shows the first and third moments of MgO
(Q(2) = 0 by symmetry) from methods A–C using identical
norm-conserving pseudopotentials. Clearly the results are in
good agreement, confirming the consistent implementation
of MEBC in all three approaches. Methods A and B can
be used to calculate FECs using standard first-principles
electronic-structure codes (although method B requires a
vacuum-dipole capability), but they require larger supercells.
Converged results can be obtained using smaller supercells
with method C, but only using a code that implements fixed-D
electric boundary conditions.21

Table II lists the moments and FECs for several materials.
For elemental and binary dielectrics, it shows that |μxxxx | de-
creases as ionicity increases. While the anion |Q(3)| increases
from MgO to NaCl, the cation contribution decreases, and cell
volume effects also play an important role. For all the ABO3

perovskite structures, the frozen-ion FECs are remarkably
similar. The largest contribution comes from the A atoms,
unlike the (Callen) dynamical charges Q(1), for which Ti and
O1 give dominant contributions.

TABLE II. Lattice constants [of a conventional cell (Ref. 15); a

and c for FE PbTiO3], first and third moments, and FECs as obtained
using method A.

a Q(1) Q(3) μxxxx

(bohrs) (e) (e bohr2) (pC/m)

C 6.69 C 0.00 −13.01 −175.4
Si 10.22 Si 0.00 −27.94 −105.7
MgO 7.73 Mg 0.63 −8.91 −95.6

O −0.63 −12.96
NaCl 10.66 Na 0.45 −1.18 −47.9

Cl −0.45 −27.59
SrTiO3 7.31 Sr 0.39 −54.81 −144.7

Ti 1.20 −16.48
O1 −0.92 −27.53
O3 −0.33 −6.59

BaTiO3 7.52 Ba 0.40 −65.16 −141.9
Ti 1.11 −13.80
O1 −0.89 −27.10
O3 −0.31 −6.78

PbTiO3 7.43 Pb 0.44 −59.03 −156.0
Ti 0.83 −25.56
O1 −0.69 −23.09
O3 −0.29 −9.57

PbTiO3 7.35 Pb 0.51 −57.40 −148.9
(FE) (Ref. 23) 7.88 Ti 0.76 −28.41

O1 −0.65 −20.61
O3 −0.31 −9.60

TABLE III. Moments of MgO obtained from method A using the
all-electron (AE) approach or pseudopotential without (PS) or with
(PS+) rigid-core correction.

Q(1) (e) Q(3) (e bohr2)

AE PS AE PS PS+
Mg 0.62 0.63 −14.57 −8.91 −13.76
O −0.62 −0.63 −12.38 −12.96 −13.02
Sum 0.00 0.00 −26.95 −21.87 −26.80

Rigid-ion model and pseudopotential dependence. Note
that the Q(3) moments reported in Tables I and II, and hence
the μxxxx , are all negative. To see why, consider a model in
which each cation or anion is represented by a spherically
symmetric charge ρi(r) that displaces rigidly as a unit.
A brief calculation shows that Q

(3)
i = ∫

d3rx3[−∂xρi(r)] =
4π

∫
drr4ρi(r). The positive nuclear charge at r = 0 makes

no contribution, so within this model all Q
(3)
i < 0. It is

not surprising, then, that the real system shows a similar
behavior.

The above analysis also implies that the Q
(3)
i , and hence

μxxxx , should depend on the treatment of the core density
and the pseudopotential construction. (By contrast, Q(1), and
hence exxx , is unaffected.) For example, if the ion charge
density is partitioned into core and valence contributions in
the above rigid-ion model, both parts will contribute. We
illustrate this in Table III by presenting results for MgO based
on two approaches: an all-electron (AE) calculation, and a
pseudopotential (PS) calculation in which only the change in
valence electron density is used to define fiβ(x), as for the
results presented in Tables I and II. We confirm that AE and
PS results agree for the piezoelectric contributions, but find a
significant difference for the FxE ones.

This difference arises as follows. Suppose the cell-averaged
electrostatic potentials φ̄AE and φ̄PS are adjusted such that
the valence-band maxima εVBM agree between the two bulk
calculations. If the PS is of high quality, other features of
the band structure, as well as forces, etc., will show good
agreement. However, φ̄AE �= φ̄PS because −eφ(r) is typically
much deeper in the AE core region. Similarly, strain deriva-
tives will also differ: dφ̄AE/dηxx �= dφ̄PS/dηxx . For a strain
gradient at fixed Dx we have 4π�Px = −�Ex = dφ̄/dx =
(dφ̄/dηxx)(dηxx/dx) so that μxxxx = (dφ̄/dηxx)/4π . We
therefore expect μAE

xxxx �= μPS
xxxx . Similar considerations apply

to the theory of deformation potentials, which also depend on
the moments Q(3).24,25

The difference between Q(3,AE) and Q(3,PS) is unimportant
for some purposes, as for obtaining the spatial gradient of
εVBM induced by a strain gradient, where it cancels out of
the final result. Otherwise, there is a simple fix: for each
atom type, we compute a “rigid core correction” (RCC)
Q

(3,RCC)
i = 4π

∫
drr4[ρAE

i (r) − ρPS
i (r)] using the densities

from free-atom AE and PS calculations, and then add these
Q

(3,RCC)
i corrections to the Q(3,PS) values. We have done this

for Mg and O, obtaining Q(3,RCC) = −4.85 and −0.06 e bohr2,
respectively. The corrected values, shown in the last column
of Table III, are now in good agreement with the AE ones.
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Surface contributions. We also considered calculating
μxxxx by constructing a slab supercell with two surfaces, as
in Fig. 1(b), but applying layer displacements corresponding
to the homogeneous strain gradient of Eq. (3). Letting px

be the total slab (TS) dipole per unit area, we can define
a FEC via μTS

xxxx = px/νL, where ν = νxxx and L is the
slab thickness. However, we find that μTS

xxxx does not agree
with the FEC computed using methods A–C. On the other
hand, if we compute the FEC from the slope of the elec-
trostatic potential in the interior of the slab using window
convolutions as in Ref. 13, we obtain μxxxx = −Ex/4πν,
in good agreement with the results of methods A–C. (In
comparison with method B, however, we found this method to
be more difficult to implement and slower to converge with slab
thickness.)

To explain why μTS
xxxx �= μxxxx , we note that μTS

xxxx contains
contributions from the slab surfaces. To see this, write 4πpx =
φvac

R − φvac
L = δφR − ExL − δφL, where R and L are right

and left surfaces, and for each surface δφ = φvac − φ̄, the
difference between the vacuum level just outside and the
macroscopic potential just inside the surface. Dividing by
−4πνL, we find μTS

xxxx = μxxxx + (δφR − δφL)/4πνL. Now
even if the two surfaces were identical initially, in the presence
of the strain gradient ν they exist at different strain states
�ηxx = νL and thus have different δφ values. In linear re-
sponse we expect δφR − δφL = �ηxx(dδφ/dηxx), from which
it follows that μTS

xxxx = μxxxx + (dδφ/dηxx)/4π . The second
term is surface-specific26 and reflects the dependence of the
surface work function on local strain.

Because we prefer that the FEC should be defined as a bulk
property independent of surface termination, we adopt μxxxx ,
and not μTS

xxxx , as our definition of the FEC.
Transverse components. The derivation of Eqs. (9) and (10)

yielded eαβx and μαβxx only for the case α = x. We can remove
this restriction by replacing Eq. (1) by

Pα,iβ(x) = ∂J̄α(τix + x)

∂u̇0iβ

, (11)

where J̄α(x) is the y-z planar average of the current density
in direction α induced by the adiabatic motion u̇0iβ of atomic
plane i in direction β, again under MEBC. Defining moments

J
(n,x̂)
α,iβ = A

∫
dxPα,iβ (x)xn, Eq. (6) for the polarization in

direction α induced by motions in direction β is replaced by

Pαβ(q) = uβ

V

(
−iqJ

(1,x̂)
αβ − q2

2
J

(2,x̂)
αβ

)
, (12)

where J
(n,x̂)
αβ = ∑

i J
(n,x̂)
α,iβ . It follows that

eαβx = − 1

V
J

(1,x̂)
αβ , μαβxx = 1

2V
J

(2,x̂)
αβ . (13)

For the longitudinal case α=x, this result is equivalent to
Eqs. (9) and (10), since continuity implies ∇ · Piβ(r) =
−fiβ(r), from which it follows that Q

(n+1,x̂)
iβ = (n + 1)J (n,x̂)

x,iβ .

By contrast, the moments J
(n,x̂)
α,iβ for α �=x contain additional

information about the transverse motions (e.g., J
(0,x̂)
y,iβ are

transverse, or Born, charges).
In principle, the Pα,iβ(x) and their moments J

(n,x̂)
α,iβ are com-

putable using the methods of density-functional perturbation
theory. While we have not implemented such a calculation
here, Eq. (13) formally solves the problem of extending the
present theory to the tensor elements eαβx and μαβxx . By
carrying out similar calculations with different crystal axes
aligned along x̂, it should be possible to obtain the full tensors,
although care must be taken to account for the modified
interpretation of the MEBC after the crystal is rotated.

Conclusions. We have shown that the longitudinal frozen-
ion FEC is proportional to the third moment of induced charge
density under MEBC. An extension using the second moment
of the induced current density yields also the transverse
FECs. This formulation is exact for all insulating crystals.
Furthermore, three practical methods for calculating FECs
using ab initio methods have been demonstrated by computing
the frozen-ion FECs for several materials. Issues concerning
pseudopotential dependence and surface effects have also been
discussed. Although it remains to include lattice contributions
associated with internal relaxations that can occur in response
to strains and strain gradients, our work represents an important
step in the direction of a full first-principles theory of FxE.
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