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We calculate the transverse effective charges of zinc-blende compound semiconductors using Harrison’s
tight-binding model to describe the electronic structure. Our results, which are essentially exact within the
model, are found to be in much better agreement with experiment than previous perturbation-theory estimates.
Efforts to improve the results by using more sophisticated variants of the tight-binding model were actually
less successful. The results underline the importance of including quantities that are sensitive to the electronic
wave functions, such as the effective charges, in the fitting of tight-binding models.@S0163-1829~96!02024-3#

The Born effective chargeseT* , also known as transverse
or dynamic effective charges, are the fundamental quantities
that specify the leading coupling between lattice displace-
ments and electrostatic fields in insulators.1 In general the
effective charges are site-dependent tensors,

Pi5(
l , j

eTi j
* ~ l !uj

~ l !1O~u2!, ~1!

where Pi is the polarization in Cartesian directioni , and
uj
( l ) is the displacement of sublatticel in Cartesian direction
j . However, for compound semiconductors of the zinc-
blende structure, which are the focus here, it is easily shown
that the effective charges are scalars, and are equal and op-
posite for cation and anion; it is conventional to use the
positive cation effective charge to characterize a given com-
pound. The effective charges for a variety of zinc-blende
semiconductors have been computed usingab initio density-
functional linear-response theory and are within;10% of
experiment.2,3 However, it is interesting to inquire whether
more approximate schemes can give a good accounting of
the effective charges in compound semiconductors. If so, ad-
ditional insight into the chemical and physical factors that
affect theeT* might be obtained.

One particularly attractive and well-known approximate
scheme is the universal tight-binding model of Harrison.4,5 It
provides a straightforward and computationally efficient ap-
proach to calculating electronic properties of solids using a
minimal orthogonalsp3 basis set, with the Hamiltonian lim-
ited to the on-site and nearest-neighbor terms. The on-site
elementses andep are taken from calculated free-atom term
values, while the interatomic elements (Vsss , Vsps , Vpps ,
andVppp) are taken to be species-independent ‘‘universal’’
constants times the inverse square of the distance. Given its
simplicity, the model is impressively successful in estimating
many electronic properties of a wide variety of materials.4,5

It is thus natural to ask what the Harrison tight-binding
model would predict for the effective charges of the zinc-
blende compound semiconductors. Oddly, this question does
not appear to have been answered previously. The only pre-
vious work of which we are aware made use of a two-center
perturbation approximation to obtain estimates of the effec-
tive charges.6,7 This approach used an expedient division of
the effective charge into ‘‘static’’ and ‘‘transfer’’ charge

contributions, with the interpretation of the latter being open
to some question.8 The purpose of this paper is to present
essentially exact calculations of the transverse effective
charges computed for zinc-blende II-VI, III-V, and IV-IV
semiconductor compounds using the Harrison tight-binding
parametrization. While the results could have been obtained
using linear-response techniques, we found it simpler to
compute theeT* ’s instead from finite differences, calculating
directly the change in bulk polarization from a small dis-
placement of one sublattice using the formulation of King-
Smith and Vanderbilt.9 Our calculations are both closer to
the experimental values and more strongly correlated with
them than the previous reults. However, they are still signifi-
cantly lower than experiment, and the correlation is still not
very good. We also tried including off-diagonal position ma-
trix elements, and considered a modified universal tight-
binding model that was proposed to incorporate nonorthogo-
nality of the basis functions.10 Unfortunately, both
modifications were found toworsenthe results.

The details of our theoretical approach are as follows. We
consider each zinc-blende compound at its experimental lat-
tice constant, with and without displacements of one sublat-
tice along theẑ direction by60.0001 Å . The Bloch func-
tions are computed in the tight-binding representation using
standard direct matrix diagonalization on a mesh ofk points.
According to the theory of Ref. 9, the electronic contribution
to the polarization takes the form

Pe52
ie

~2p!3(n51

M E
BZ
dk^unku¹kuunk&, ~2!

where the sum runs over occupied bands and theunk are the
periodic parts of the Bloch wave fuctions,

unk~r !5e2 ik•rcnk~r !. ~3!

We are only interested in thez components ofP for the
distortions considered. After discretization ink space, these
are given9 as

Pz52
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wherek'5(kx ,ky) is discretized on a mesh of spacingDk,
and the contribution from a string ofJ kz points takes the
Berry-phase form11

f~k'!5Im ln)
j50

J21

det̂ um,k' ,kj
uun,k' ,kj11

&. ~5!

Here the argument of the determinant is a 434 matrix cor-
responding to the fact thatm andn run over the four occu-
pied bands. We typically use a discretization onto a 16316
mesh ink' space, and extrapolate toJ5` using strings of
J532 andJ564 kz points. The trivial ionic contribution to
Pz is added, and the value ofeT* deduced by simple finite
differences.

Strictly speaking, the polarizationP and effective charge
eT* are not well-defined until the matrix elements of the po-
sition operator are specified in the tight-binding basis. In the
context of the above formulation, these position matrix ele-
ments are needed for the conversion~3! between theunk and
cnk . The simplest ansatz is to assume that the position op-
erator is diagonal in the tight-binding representation, with
elements reflecting the coordinates of the atoms. However,
such an ansatz is rather unphysical; it would imply that the
center of charge of ansp hybrid on an atom would lie ex-
actly at the center of that atom, whereas in reality it would be
displaced toward the principal lobe of the hybrid. We report

our results first for the simple ‘‘diagonal’’ ansatz. Later, we
discuss the effects of trying to improve upon this ansatz, as
well as the effect of including the nonorthogonality in the
model of Ref. 10.

The results for the orthogonal Harrison model4 using the
diagonal representation ofr are given in the column labeled
‘‘O-D’’ ~orthogonal, diagonal! for a variety of zinc-blende
structures in Table I.12 The last two columns give the values
of the perturbation estimates of Kitamura and Harrison
~KH!,6 and the experimental values, for comparison. The
data are also represented graphically in Fig. 1. The filled
symbols are our results; the open ones are those given in
Kitamura and Harrison.6 ~The filled squares represent com-
pounds not studied in Ref. 6.! Our calculations show a clear
improvement, although we still systematically underestimate
the experimental values ofeT* , in most cases by 10–25%.
@This can be compared with the local density approximation
~LDA ! results, which also systematically underestimate the
exprimental values, but by only;2–10%.2# The correlation
between our calculations and experiment is not very good,
although it should be noted that the lowest filled point is BN,
a first row compound for which the model is less accurate.

While the present results are certainly an improvement
over the perturbation estimates of KH, there is clearly room
for improvement. We thus investigated two possible modifi-
cations of the tight-binding model to see whether they would
bring the theoretical results into better agreement with ex-
periment. First, we tried going beyond the artificial diagonal
ansatz for the tight-binding representation of the position op-
erator by including some off-diagonal terms. Specifically, we
included on-site matrix elements betweens and p orbitals,
e.g.,^suzupz&. The values of these matrix elements were ob-
tained from separate LDA calculations on free~neutral, spin-
unpolarized! atoms. By symmetry, off-diagonalp-p matrix
elements ofr are zero, and we assumed all off-diagonal in-
tersite elements to be zero as well. The contribution of these
extra off-diagonal terms to the polarizationP was calculated

FIG. 1. Comparison of theoreticaleT* values from this work
~filled symbols! and from perturbation estimates of KH~open sym-
bols, from Ref. 6!, plotted against experimental values. Filled
squares indicate results for compounds not considered by KH.

TABLE I. The transverse chargeeT* for zinc-blende semicon-
ductors calculated at the experimental lattice spacingd, compared
with perturbation estimates of Kitamura and Harrison~KH! and
experimental values. O and NO indicate orthogonal and nonor-
thogonal tight-binding models, respectively, while O and OD refer
to diagonal and off-diagonal representations of the position opera-
tor.

d ~Å! O-D O-OD NO-D KHa Expt.b

SiC 1.88 1.97 2.20 1.84 2.57
BN 1.57 1.24 0.96 1.01 2.47
BP 1.97 20.09 20.18 20.23
BAs 2.07 20.39 20.42 20.54
AlP 2.36 1.92 1.61 1.64 2.28
AlAs 2.43 1.75 1.50 1.50 2.30
AlSb 2.66 1.48 1.22 1.32 1.93
GaP 2.36 1.88 1.57 1.62 0.89 2.04
GaAs 2.45 1.73 1.47 1.51 0.71 2.16
GaSb 2.65 1.41 1.12 1.29 0.40 2.15
InP 2.54 2.26 1.94 1.99 1.26 2.55
InAs 2.61 2.11 1.85 1.86 1.07 2.53
InSb 2.81 1.86 2.14 0.75 2.42
BeS 2.10 1.61 1.08 0.71
BeSe 2.20 1.56 1.04 0.71
BeTe 2.40 1.51 0.96 0.57
ZnS 2.34 1.89 1.46 0.53 1.25 2.15
ZnSe 2.45 1.86 1.47 0.50 1.15 2.03
ZnTe 2.64 2.05 2.50 0.98 2.00
CdS 2.53 1.98 1.61 1.10 2.77
CdTe 2.81 1.92 1.53 0.41 1.24 2.35

aReference 6.
bReference 7.
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as a simple expectation value, using the already calculated
wave functions~the Berry-phase approach is not needed!.
The results are given in the column labeled ‘‘O-OD’’~or-
thogonal, off-diagonal! in Table I, and are compared with the
previous results~open versus closed circles! in Fig. 2. Un-
fortunately, the correction appears to be in the wrong direc-
tion, and there is no apparent improvement in the correlation
between theoretical and experimental values.

Second, we attempted to improve the results by using a
tight-binding model that includes nonorthogonality of the ba-
sis, as proposed by van Schilfgaarde and Harrison.10 They
used extended Hu¨ckel theory to derive the overlap elements

Sll 8m5
2Vll 8m

K~e l1e l 8!
~6!

whereVll 8m are the inverse-squared scaled potential terms
from the original model,e l and e l 8 are the on-site energies
from the same model, andK is a parameter depending on
row of the periodic table, chosen to fit the equilibrium spac-
ings of the IV-IV crystals. The Hamiltonian parameters were
also renormalized following Eq.~11! of Ref. 10. Some care
is required in the application of the theory of Ref. 9 to this
case: the inner product appearing in Eq.~5! has to be gener-

alized to take a form such aŝfm,k' ,kj
uSk' ,k̄ufn,k' ,kj11

&,

whereufnk‹ is the vector of tight-binding coefficients corre-
sponding touunk‹, Sk is the overlap matrix at wave vector
k, andk̄5(kj1kj11)/2. The results are shown in the column
labeled ‘‘NO-D’’ ~nonorthogonal, diagonal! in Table I, and
as the filled triangles in Fig. 2. Once again, this ‘‘correction’’
is seen to act in the wrong direction, worsening the agree-
ment with experiment.

The failures of the above two attempts to improve the
tight-binding model are disappointing, but perhaps in hind-
sight they are not surprising. For the case of the nonorthogo-
nal model, a partial explanation may lie in the fact that the
nonorthogonality was added in large part to improve the fit
for structures that were not fourfold coordinated, which is
not relevant here.

More fundamentally, we note that the model Hamilto-
nians we tested were developed by fitting to energy bands;
thus, the fit included only information about energy eigen-
values, and not the wave functionsper se. However, the
electric polarization is a quantity that depends sensitively on
the electronic wave functions, and cannot be computed from
the bands alone. There is thus little reason to expect good
agreement on polarization properties such as the effective
charges. This suggests that a real improvement in the tight-
binding model might best be accomplished by including
quantities that are sensitive to the wave functions, such as
eT* values, in the fitting procedure itself.

In summary, we have carried out essentially exact calcu-
lations of the transverse effective chargeeT* in compound
semiconductions within Harrison’s universal tight-binding
scheme. We find a significantly improved agreement with
experiment, compared with previous perturbation estimates.
However, the theoretical results still show a systematic un-
derestimate relative to experiment, by an average of 20%.
Attempts to improve the agreement by including off-
diagonal position matrix elements, or nonorthogonality of
the basis, were actually found to lead to a worsening agree-
ment with experiment. Based on this experience, we suggest
that it might be helpful to use the effective charge in the
fitting database for future tight-binding models. Such an ap-
proach might lead to a more accurate description of the elec-
tronic properties of semiconductors within this class of
simple, but very useful, models.
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