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Berry flux diagonalization: Application to electric polarization
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The switching polarization of a ferroelectric is determined by the current that flows as the system is switched
between two variants. Computation of the switching polarization in crystal systems has been enabled by the
modern theory of polarization, where it is expressed in terms of a change in Berry phase from the initial state
to the final state. It is straightforward to compute this change of phase modulo 27, thus requiring a branch
choice to specify the predicted switching polarization. The measured switching polarization depends on the
actual path along which the system is switched, which in general involves nucleation and growth of domains
and is therefore quite complex. In this work we present a first-principles approach for predicting the switching
polarization that requires only knowledge of the initial and final states based on the empirical observation that for
most ferroelectrics, the observed polarization change is the same as that for a path involving minimal evolution
of the state. To compute the change along a generic minimal path, we decompose the change of Berry phase into
many small contributions, each much less than 27, allowing for a natural resolution of the branch choice. We
show that for typical ferroelectrics, including those that would have otherwise required a densely sampled path,
this technique allows the switching polarization to be computed without any need for intermediate sampling

between oppositely polarized states.
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I. INTRODUCTION

Bistable systems with a change in electric polarization on
switching between the two states are of central importance in
functional material and device design. The most familiar of
such systems are ferroelectrics, with two or more symmetry-
related polar insulating states [1]. Switching in systems in
which the two states are not symmetry related, for example, in
antiferroelectrics or heterostructures, is also of great interest
for novel devices [2,3].

First-principles prediction of the switching polarization in
periodic systems is based on the modern theory of polariza-
tion, which expresses the polarization change between two
states in terms of the change in Berry phase as the system
evolves along a specified adiabatic path [4,5]. From knowl-
edge of the initial and final states, the polarization change
is determined modulo the “quantum of polarization” eR /€2,
where e is the charge of an electron, R is a lattice vector, and
2 is the volume of the unit cell. Additional information about
the path would be needed to determine which of the allowed
values corresponds to any given path.

Since the path for a process such as electric field switching
of a ferroelectric generally involves nucleation and growth of
domains, beyond the scope of current first-principles compu-
tation, it might at first seem that first-principles prediction of
the switching polarization should not be possible. However,
it is an empirical fact that good agreement with experimental
observation has been obtained for many ferroelectrics by com-
puting the polarization change along a fictitious minimal path
[6-8], usually constructed by simple linear interpolation of the
atomic positions of the up- and down-polarized states, main-
taining their lattice translational symmetries. The polarization
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change along this fictitious path is then computed by sampling
densely enough along the path so that the polarization change
for every step along the path can be chosen (and is chosen) to
be small compared to the quantum of polarization. However,
this method can be computationally intensive, depending on
the sampling density required. Moreover, for some systems, it
might be that not all the states on the simple linear interpo-
lation path are insulating, and additional effort is required to
find an insulating adiabatic path connecting the up and down
states. As a result, this approach has proven to be problematic
for automated high-throughput applications [9].

In this paper, we present a method for predicting switch-
ing polarization given only the initial and final states. Our
approach uses information computed from the two sets of
ground state wave functions that goes beyond that used in
a conventional Berry phase calculation. The key idea is to
incorporate certain assumptions about the physical path, elim-
inating the need to construct a fictitious path and perform
calculations for intermediate states. We begin by discussing
the method for the simplest case of the electronic contribution
to the switching polarization for a one-dimensional polar
insulator. We then generalize to three-dimensional materials
and discuss the ionic contribution to the polarization. Finally,
first-principles results are presented for a realistic benchmark
system to illustrate the various aspects of the method and
to compare with the fictitious-path method. The approach
presented here is not limited to computation of switching
polarization in ferroelectrics and can be applied to the change
in polarization between two symmetry-inequivalent states,
for example, in antiferroelectrics, heterostructures, and pyro-
electrics, and in the computation of the nonlinear response of
insulators to electric fields.
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II. FORMALISM

A. Background and notation

We start by considering a one-dimensional crystal switch-
ing from initial state A to final state B along a specified
path, parameterized by X, along which the system remains
insulating. According to the modern theory of polarization
[4,5,8,10], the electronic contribution to the change in polar-
ization can be expressed as

—e
APip = 7 D, (nH

where & is the Berry flux,

= ff Q(k, Mdrdk, 2)
S

obtained by integrating the Berry curvature Q2(k, 1) over the
region S with A4 < A < Ap and —7/a < k < 7w /a (the first
Brillouin zone). Here the Berry curvature

Qk, 1) = Z —2Im (9 u, (k, A)|Oxun(k, 1)) 3)

is written in terms of the cell-periodic parts of the occupied
Bloch wave functions |u,(k, 1)) and has been traced over
the occupied bands n. The existence of the derivatives in
Eq. (3) requires the choice of a “smooth gauge”; that is, for
a single occupied band, the k- and A-dependent phase of the
wave functions |u(k, A)) must be chosen so that |u(k, 1)) is
differentiable as a function of k and A over all of S. For
multiple occupied bands, specification of a gauge may involve
a (k, A)-dependent unitary rotation of the occupied bands.
Since physical observables like the change in polarization
along a specified path do not depend on the choice of gauge,
we are free to choose a gauge for which |u, (k, A)) are periodic
in k.
Application of Stoke’s theorem gives

b = % A(q) - dq, “)
c

where C is the boundary of the surface S, q = (k, 1), and
A(q) = (Ag, A,) is the Berry potential given by

Ac =Y i un(k, 20, (k, 1), (5)

n

Ar =i (e, 2|03 (K, 1)) - (6)

n

Since we have chosen a gauge periodic in k, we have
|u,(k + 2w, X)) = |u,(k, L)). Then, we have A, (k + 2w, L) =
A; (k, A), and the contributions fol A; (k, M\)dX and flo A, (k +
2m, A)dA from the two portions of the path C along the A
direction cancel. The two remaining segments take the form

w/a
¢, = / Ak, 1)dk, %)

—n/a
and it follows that
D =, — Gay- (®)

The electronic contribution to the change in polarization is
then given by Eq. (1).

While the evaluation of (8) requires only wave functions on
the boundary of S, the equivalence of Egs. (2) and (8) requires
the existence of a smooth gauge on all of S that matches the
choice of gauge on the boundary. If the gauge is required to
be smooth only on the boundary of S, without this additional
constraint, then a gauge transformation can change quantities
such as ¢,, and ¢,, by multiples of 27 [4,5,8]. We refer
to such quantities as “gauge invariant modulo a quantum,”
in distinction to quantities which are “fully gauge invariant”
and to “fully gauge dependent” quantities that can take on
any value in a continuous range with a change in gauge. In
this case @ in Eq. (8) is determined only modulo 2, and
the change in polarization is determined only modulo the
quantum of polarization eR /€.

In other words, Eq. (2) is the fundamental expression for
the change in polarization along a specified path. It depends
on the wave functions at all intermediate k and A and is fully
invariant under gauge transformation of the wave functions.
On the other hand, the Berry phase difference (8) depends
only on the wave functions on two edges of the boundary
of S and under gauge transformation of these wave functions
is only gauge invariant modulo a quantum. It is equal to the
change in polarization along the specified path only if the
gauge chosen on the boundary is one that can be smoothly
continued into the interior onto the wave functions at all
intermediate k and A.

The fictitious-minimal-path method, the most widely used
method for resolving the branch choice for the difference
¢»; — ¢5, to compute the change in polarization along a
specified path, relies on sampling a minimal path, usually
obtained by linear interpolation, at intermediate values of
A. The density of sampling increase until each new ¢,
can be chosen such that |¢; ,, — ¢:,| K w. With a suffi-
ciently dense sampling the branch choice identified by this
procedure will match that of the continuum formulation,
giving the correct polarization change for this path. In prac-
tice the computation of ¢, requires a discretization in k.
Section I C provides more details on how the relevant quan-
tities are computed when states are sampled on a discrete
mesh.

Here we present an alternative approach to resolving the
branch choice that makes full use of the information contained
in the initial and final states while eliminating the need for
sampling at intermediate values of A. Moreover, this approach
requires a k-space sampling no denser than that required for
the computation of the formal polarization. Like the previous
methods, the fully gauge invariant quantity & is separated
into smaller contributions that, while gauge invariant only
modulo 27 in principle, can always be taken much smaller
than 27 in practice. However, here the construction relies only
on the wave functions of the initial and final states, without
reference to intermediate steps along the path. The additional
assumption required for this procedure is that the initial and
final states at A4 and Ap must be similar enough that their
gauges can be aligned in a sense to be described shortly.
Essentially, the gauge alignment procedure implements a
minimal evolution of the electronic structure, in analogy
with the previously assumed minimal evolution of the ionic
structure.
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B. Gauge class

We first consider the case of a single occupied band in one
dimension with Bloch states |u(k)). Following Eq. (8), the
Berry phase around the Brillouin zone at a given X is given
by

w/a
¢ = (u(k)idku(k)) dk ©))

—/a

and, following the terminology introduced in the previous
section, is gauge invariant modulo a quantum: specification
of a gauge that is smooth on the first Brillouin zone and
periodic in k allows transformations of the form e=#® |u(k)),
where B(k) is differentiable and B(k + 27 /a) = B(k) + 2nn
for some integer n, which changes ¢ by 2mn. For a given
physical system, we can test whether two choices of gauges
a and b will produce the same value of ¢ by computing

Y k) = (' (k)u’ (k) . (10)

Note that ¥ (k) has exactly unit norm and is just e=#®),
where (k) describes the gauge change related a to b. If (k)
is smooth and its phase does not wind by a nonzero integer
multiple of 27 as k traverses the one-dimensional Brillouin
zone, the two gauges will produce the same ¢ and can be said
to belong to the same “gauge class.”

Next, we consider two crystals A and B with single oc-
cupied bands, each with a smooth gauge, and ask whether
their respective gauges belong to the same gauge class in a
similar sense. With this motivation, we define, in analogy with
Eq. (10),

Yk = W ()P (k) (11)

where y48(k) will generally not have unit norm. In fact, for
this procedure to be meaningful, systems A and B must be
sufficiently closely related that the norm of y48(k) remains
nonzero everywhere in the Brillouin zone. If the phase of this
yA8(k) does not wind by a nonzero integer multiple of 27, we
consider their gauges to belong to the same gauge class.

We are now in a position to introduce our key idea for the
prediction of the switching polarization from system A to B.
We recall the empirical fact, discussed in the Introduction,
that good agreement with experimental observation has been
obtained for many ferroelectrics by computing the polariza-
tion change along a fictitious minimal path. Our insight is that
in general, along such paths, the wave function phases will
evolve in a minimal way that preserves the gauge class, so
that the switching polarization corresponds to the polarization
difference of Egs. (1) and (8) with Berry phases ¢* and ¢®
computed with the requirement that the two gauges belong to
the same gauge class. Crucially, the branch-choice ambiguity
in the individual ¢* and ¢® is no longer present after the
difference is taken.

The generalization to the multiband case is straightforward.
We define

yAB(k) = det M8 (k), (12)
where M48(k) is the overlap matrix given by

MAE (k) = (i, ()|l (k) (13)

for occupied band indices m and n. The gauges are said to
belong to the same class if the phase winding of y48(k) is
zero.

One way to ensure that gauges A and B belong to the same
gauge class is to align one to the other. In the single-band
case, the gauge of B is aligned to that of A by taking x (k) =
Im In y8(k) and then letting

|i® (k)) = e *® 1uB (k). (14)

As a result, the new ?AB(k) is real and positive, so that
there is clearly no winding. Similarly, the multiband gauge
alignment can be accomplished by carrying out the singular-
value decomposition of M4 in Eq. (12) as M8 = ViZW,
where V and W are unitary and X is positive real diagonal.
Then the multiband analog of e is U = VW, and the gauge
of B is aligned to that of A by the transformation

i) = > (U ) [ueh). (15)

The new overlap matrix is then M2 = VXV, whose de-
terminant 7% in Eq. (12) is clearly real and positive, thus
eliminating the relative winding of gauge B with respect
to A.

The physical interpretation of forcing both systems to
belong to the same gauge class is that we are assuming a
minimal evolution of the electronic states. If the initial and
final states represent exactly the same bulk system, the result
of this procedure is obviously that the change in polarization
is zero. In this situation, other choices of gauge that give a
nonzero value describe a physical path where one or more
quanta of charge are pumped by a lattice vector over an
adiabatic cycle with the periodic system returning to its initial
state. In making the same-gauge-class assumption for systems
where the initial and final states are different, but still closely
related, we similarly identify a result which involves a mini-
mal evolution of the state. An analogy can be made with the
implicit assumptions already being made when one constructs
a switching path for the ions. When comparing initial and final
states, one typically specifies which ion maps to which by
minimizing displacements between ions of the same species,
e.g., such that no ion moves by more than half a unit cell. The
gauge alignment procedure described above does something
similar, mapping which band goes with which by maximizing
wave function overlaps and eliminating phase differences at
corresponding k points.

C. Discrete k space

In any numerical calculation, functions of £ must be sam-
pled on a discrete mesh in k. In this case, we can again align
the gauge of B to that of A using Eq. (14) or Eq. (15) and
compute the polarization difference via Eq. (8). However, in
the discrete case there is a new potential source of ambiguity
coming from the need to enforce smoothness with respect to
k. After discretization Eq. (7) becomes

¢ = ImIndet [ [ M* ki, kis1), (16)

where M is the overlap matrix

M), (ki kigr) = (), (ko) uh (Kig1)) - a7
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This ¢, is gauge invariant, but only up to an integer multiple of
2. This is reflected by the Imln operation in Eq. (16), which
will result only in a phase in the interval —m < ¢, < m. If
one is interested in this phase on its own (i.e., for computing
formal polarization), this makes perfect sense since it is truly
a lattice-valued quantity. However, our present goal is to
compute the difference in phase between two systems with
the requirement that both systems are in the same gauge class.
For this purpose it is useful to rewrite Eq. (16) in a form where
values outside this interval are possible (with the branch being
determined by the gauge). To this end we rewrite Eq. (16) as

¢ =Y A, (18)

where
Al()\.) = ImlndetM,\(ki,kiH) (19)

is a discrete analog of the Berry connection A;. We choose
a sufficiently fine k mesh and a sufficiently smooth gauge so
that each 4; is much less than 7 in magnitude; then ¢4 can
be unambiguously computed (for the chosen gauge). We then
choose the gauge in B to be aligned to that of A. Assuming this
also results in a smooth gauge in B, we could then confidently
compute AP from Egs. (1) and (8).

D. Gauge-invariant formulation

The procedure described in the last section involved con-
structing a smooth gauge in A, aligning the gauge in B,
and then computing each ¢, via Eq. (18). This represents a
straightforward, but also inconvenient, means of applying the
same-gauge-class assumption to a realistic calculation. In this
section and the next we will develop an equivalent procedure
that is more computationally efficient and does not require
explicit construction of smooth or aligned gauges.

First, we note that the value obtained above is equivalent to
evaluating ® as

=) AA, (20)

where
AA; = Ai(hp) — Ai(ha) (2D

is the difference between Eq. (19) evaluated at the initial
and final configurations (with the previously discussed gauge
choices). At present, it is required that k has been sampled
densely enough such that each A4; is smaller in magnitude
than 7.

We next note that the quantity AA4; is equal to the discrete
Berry phase computed around the perimeter of the rectangular
plaquette marked by the green arrows in Fig. 1. To see this,
we denote the four corners of this plaquette as g, = (k;, 14),
q, = (ki, Ap), q3 = (kix1, Ap), and q, = (kiy1, Aa) and refer
to it henceforth as plaquette p located at k; = k. Defining the
overlap matrices

MED = (u(g)lun(q))) (22)

the four-point Berry phase about the loop, traced over occu-
pied bands, is

#” = Im Indet [M 12 M3 B34 pg 07, (23)
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FIG. 1. Sketch of the joint (k, 1) space for computing a change
in polarization between A, and Ag. Blue circles represent points
where Bloch wave functions have been computed. The light gray
box represents the surface S that is integrated over in Eq. (2).
Dotted green lines represent the plaquettes i, and the solid green
lines represent the path on which the parallel transport procedure
is performed around the green plaquette it encloses to obtain its
contribution to PZ — P4,

This four-point Berry phase is equal to the Berry flux through
the plaquette by the same Stoke’s theorem argument used to
relate Egs. (2) and (4). This plaquette Berry flux ¢; can be seen
to be equal to AA; computed with the gauges specified above
since the alignment of gauges ensures that M‘!? and M®%
have real positive determinants and thus do not contribute to
the phase being extracted by the Imln operation. The advan-
tage of computing ¢ as in Eq. (23) is that it is completely
insensitive to the gauges used to represent the states at any of
the four q; [11]. Using Eq. (20), we can write & as the sum
over plaquette Berry fluxes,

o = Zq)". (24)
p

As the Imln operation suggests, ¢” is only gauge invariant
up to an integer multiple of 27, so the above formula still
requires that the k-mesh spacing be fine enough that each
|¢?| < m for all k,, just as was required for AA;.

E. Berry flux diagonalization

With Egs. (1), (23), and (24), one can compute the polariza-
tion difference using arbitrarily chosen gauges for systems A
and B. However, there is still a requirement that the k mesh be
fine enough that all ¢, in Eq. (24) are smaller in magnitude
than w. For a single-band system, this typically does not
require a mesh any finer than that needed to compute ¢, from
Eq. (16). However, the plaquette Berry fluxes ¢” from Eq. (23)
are traced over all occupied bands, so their values can quickly
grow much larger in magnitude than = when many bands are
contributing.
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We can instead decompose each plaquette flux into a sum
¢p =, ¢n of smaller gauge-invariant phases ¢}, where n
runs over the number of occupied bands. These are the multi-
band Berry phases or Wilson loop eigenvalues of plaquette
p, obtained from the unitary evolution matrix {,, acquired by
traversing the boundary of the plaquette. Explicitly,

iU, = M<12>M(23)M<34>M<41>, (25)

where M) is the unitary approximant of M/, that is, M =
ViW, where

M=V'sw (26)

is the singular-value decomposition of M. The eigenvalues
of the unitary matrix 4, are of the form i, providing the
needed ¢, which are gauge invariant. Since ImlIndet 4, is
taken as the Berry flux through plaquette p, we have, in a
sense, diagonalized this Berry flux by obtaining the eigenval-
ues of 4. Finally, ¢ can be summed over all plaquettes to
obtain the total polarization difference via

O=>"> "¢ (27)
p n

This is our central result.

For the method to be applicable the two states A4 and
Ap must be similar enough that the singular values in ¥ do
not become too small [this corresponds to the continuum-
case requirement that the norm of 42 in Eq. (11) should
remain nonzero]. For agreement with the continuum case
the individual ¢? must each be much smaller in magnitude
than . This condition is typically satisfied with a k-mesh
density appropriate for a standard Berry phase polarization
calculation, but the density of the k mesh could be increased if
necessary. These conditions are further discussed in Sec. V C.

The above expressions were all written for the one-
dimensional case for the sake of simplicity; the generalization
to two and three dimensions is quite straightforward. Just
as is typically done for the computation of the Berry phase
polarization, the computation is carried out separately for each
string of k points in the direction of the desired polarization
component, and the results are then averaged over the com-
plementary directions.

Note that while the computation of overlap matrices be-
tween neighboring k points is quite routine, this procedure
also requires overlaps between wave functions of corre-
sponding k points at different A values (typically different
structures). The implementation details for this procedure are
discussed in Sec. III.

F. Ionic contribution and alignment

Up to this point, we have focused only on computing
the electronic contribution to the change in polarization for
already fixed choices of unit cells at each A. Differences
in origin choice and cell orientation between A4 and Ag, in
general, will change the decomposition of the Berry phase
polarization into electronic and ionic contributions and, in
particular, can alter the Bloch function overlaps in Eq. (17)
[12]. The Berry flux diagonalization method is most robust
when structures are aligned to maximize overlaps and thus
keep elements of the ¥ matrix in Eq. (26) (the singular values)

from becoming too small. We make this choice of unit cell
by first aligning the structures to minimize the rms displace-
ments of the ionic coordinates. After this initial alignment,
we further refine the choice of origin by translating along
the polarization direction to maximize the smallest of all the
singular values encountered while scanning over all k points in
the above-described procedure. This additional refinement can
be performed without additional first-principles calculations
using the existing wave functions; in the plane-wave repre-
sentation this is accomplished by computing

(AB) _ A B\ __ (A)* (B) —iG-
an (k) - <wmk‘TT I'[,nk) - ZCm,G+kCn,G+ke l T’
G

where T; is the extra translation by 7 and C,, g4k are the plane
wave coefficients.
The ionic contribution to the polarization change is given
by
e
APy = — Y ZAr, (28)
Vcell i
where Ar; is the displacement of ion i between states A4 and
Ag.

III. METHODS

The Berry flux diagonalization method is a postprocessing
step for wave functions generated by first-principles density-
functional-theory codes. Our current implementation of the
method [13] is for wave functions in a plane-wave basis. Here
we perform calculations in ABINIT using the norm-conserving
scalar relativistic ONCVPSP version 0.3 pseudopotentials with
the local-density approximation exchange-correlation func-
tional [14]. The necessary overlap matrices are computed
from the NetCDF wave function files produced by ABINIT,
read using the ABIPY library [15]. The PYMATGEN library [16]
is used in the process of computing the ionic contribution.

We validate and demonstrate the Berry flux diagonalization
method as follows. First, we use the method to compute
the switching polarization of the prototypical ferroelectric
perovskite oxides BaTiOs;, KNbOj3, and PbTiO3, for which
the computation of the switching polarization by existing
methods is straightforward. We then compute the switch-
ing polarization of pure PbTiO; and PbTig75Zr¢ 503 with
a 2x2x1 supercell, using both the present method and the
fictitious-minimal-path method for direct comparison. The
atomic positions in PbTiy 75Zr( 2503 were taken to be the same
as in the pure system.

IV. RESULTS

The computed switching polarizations for the prototypical
ferroelectric perovskite oxides BaTiO3;, KNbO3, and PbTiO3
are 0.26, 0.29, and 0.77 C/mz, respectively, resolving the
branch choice in the Berry phase differences with the quantum
of polarization for the primitive cells being 1.04, 1.03, and
1.08 C/m?, respectively. These switching polarization values
are in complete agreement with reported first-principles val-
ues obtained by the fictitious-minimal-path approach, which
were previously established to be in good agreement with ex-
perimental observations [6]. In this section, we give a detailed
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analysis of the results for pure PbTiOs, which has the largest
polarization and thus presents the most difficulties of the three.
We do this for three cases, namely, in the primitive five-atom
cell, in a2x2x 1 supercell, and in the same supercell, but with
one Ti replaced by Zr.

The key quantities here are the Wilson loop eigenval-
ues, which are summed in Eq. (27) to obtain the change
in polarization. For PbTiOs3, the distribution of the Wilson
loop eigenvalues is shown in Fig. 2 for plaquettes along the
string of k points corresponding to k., = 7 /4a,k, = 7 /4a
for the primitive cells and to the corresponding point k, =
7 /2a, ky = 7 /2a for the supercell systems. All Wilson loop
eigenvalues are found to be much smaller in magnitude than
7, mostly clustered around zero, with a bias in the direction of
the electronic polarization change. Here this is negative given
the choice of initial and final states.

Each individual contribution to the change in polarization
for the supercell is identical to that of the primitive cell, except
that in the supercell each individual contribution appears with
multiplicity four due to the translational symmetries that were
lost in the supercell system. So while the change in dipole
moment for the supercell is four times larger than that for the
primitive unit cell and is thus significantly larger than the 27
phase ambiguity, this does not present any difficulties in the
Berry flux method.

The Wilson loop eigenvalues for the system with one Ti
replaced by Zr are shown in the left portion of Fig. 2. All
eigenvalues fall in the same range as the pure PbTiO3 system,
but with some splitting of values. The switching polarization
for the system with Zr was found to be 0.762 C/m? compared
to the slightly larger 0.771 C/m? of the pure system.

In Fig. 3, we show the singular values of overlap matrices
M between initial and final states at corresponding k points
for PbTiO3 in its primitive cell. These singular values are
the diagonal elements of X from Eq. (26). If the singular
values do not approach zero at any point in the Brillouin
zone, the computed information for initial and final states
determines the polarization change within the same-gauge-
class assumption. Figure 3 shows that the singular values for
PbTiOj3 are well behaved.

V. DISCUSSION

A. Comparison to fictitious-path approach

In this section we compare the Berry flux diagonaliza-
tion method to the commonly used fictitious-path approach
[7,17,18], using PbTiOs3 in its primitive cell and in a 2x2x 1
supercell as illustration.

For the fictitious-path approach, we choose a simple lin-
early interpolated path between oppositely polarized states.
Figure 4 shows the formal polarization which is determined
modulo the polarization quantum, computed at points along
the path for two different sampling densities. Starting with
an arbitrary choice for the initial state, the branch is chosen
by connecting to the closest value for the next sampled state
along the path. The difference between the final and initial
states is then divided by 2 to get the spontaneous polarization.

For the case of the primitive cell, calculations for three
intermediate states on the path are needed to resolve correctly

Occurrences in pure supercell
5 —1n —1n
string kx=5 3, ky=5 3

0 5 10 15 20

5 0 5
Occurrences in PZT
string k=3 2, k,=3 1

Occurrences in primitve cell
string ky=1 2, ky=2 2

FIG. 2. Histogram of Wilson loop eigenvalues [¢? from Eq. (27)]
for the plaquettes highlighted in the insets following the form of
Fig. 1. In each of the two middle plots, the two highlighted plaquettes
have identical contributions due to time reversal symmetry. Values
for pure PbTiO; are shown on the right. The occurrences of values
for the primitive and supercell systems differ only by a factor of 4, as
indicated by the two axis scales at the top and bottom of the figure.
Values for PbZr »5Tij 7505 are shown on the left.

the branch ambiguity. In the case of the supercell, because
of the fourfold decrease in the polarization quantum, the
number is significantly larger: 15 intermediate calculations
must be done to resolve the branch ambiguity. The Berry flux
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FIG. 3. Singular values throughout the Brillouin zone for
PbTiO3, sampled on a 12x 12x 12 I'-centered k mesh.

diagonalization approach in both cases, shown by the blue
arrow, predicts the change in polarization (with the correct
branch choice) using only the wave functions in the initial and
final states.

We note that other approaches have been discussed that
utilize partial information in addition to the evolution of
Prormal, sSuch as nominal valence charges and Born effective
charges [5]. This additional information can help determine
the choice of polarization value at the next point on the

1.08 1

r 1.076

r 0.807

r 0.538

r0.269

0.00 1 r 0.000

Pformal (C/mz)

r —0.269

r—0.538

r —0.807

-1.08 1 r—1.076

Down Up Down Up

FIG. 4. Evolution of formal polarization of PbTiOs along a lin-
early interpolated switching path for the primitive cell (left) and a
2x2x1 supercell (right). Ticks and horizontal lines mark the polar-
ization quantum. The blue arrow indicates the change in polarization,
which, with the Berry flux diagonalization method, requires only

calculations in the initial state and symmetry-related final state.

path even when this is not the smallest change, reducing
the sampling density needed. However, the implementation
tends to be ad hoc and is not suitable for automated high-
throughput applications. Furthermore, such approaches may
not be reliable in situations where these assumed charges are
not constant through the switching process.

B. Relation to Wannier functions

The Wilson loop eigenvalues ¢} used in Eq. (27) and
shown in Fig. 2 have a close relation to the position expecta-
tion value of maximally localized Wannier functions, which
we refer to maximally localized Wannier centers [19]. The
parallel transport procedure used in obtaining these ¢~ is pre-
cisely the same as that used in obtaining the Wannier centers
maximally localized along one dimension. In the Berry flux
diagonalization method the procedure is performed around
the plaquettes, while when computing maximally localized
Wannier functions the procedure is performed across the loop
formed by traversing the Brillouin zone at a single A. In
the Wannier case, the Wilson loop eigenvalues obtained are
complex numbers with phase 2wr,/a, with the r, being the
maximally localized Wannier centers [20]. The 7, can be
treated as the positions of point charges to compute the for-
mal polarization [20]. Similarly, the Wilson loop eigenvalues
obtained in the Berry flux diagonalization method can be
understood as contributions to changes in positions of point
charges, yielding the change in formal polarization.

C. Conditions for applicability

To make the correct branch choice and compute the change
in polarization, some assumption about the dynamics of the
switching process must be made. In the method presented in
this work, the assumption is that the system evolves in some
minimal way between oppositely polarized states based on
the empirical fact that computation of the polarization change
along a fictitious minimal path generally corresponds to the
measured value. Ionic contributions to the change in polariza-
tion are separated by assuming displacements are minimized,
and electronic contributions are separated by assuming that as
the wave functions evolve along the physical switching path,
they maintain a high degree of overlap.

This regime where the latter assumption breaks down can
be detected automatically. When the changes in the electronic
states across changes in A becomes large, the overlaps in
wave functions become small, and some singular values of
the ¥ matrix of Eq. (26) approach zero. The implementation
of the method checks to make sure that no singular values
anywhere in the Brillouin zone fall below a threshold (see
Fig. 3). Numerical experiments have shown that a threshold
of around 0.15 seems to work well for systems tested. There
is, of course, also a branch ambiguity if the Wilson loop
eigenvalues [¢? of Eq. (27)] have magnitudes close to 7. In
practice, we have found no cases where this happens without
the requirement on the singular values failing first. This can
be understood from the viewpoint that the Wilson loop eigen-
values are related to displacements of Wannier centers, with
a value of 7 corresponding to a single charge moving by half
a unit cell. When the charge is moved over such a distance

045141-7



BONINI, VANDERBILT, AND RABE

PHYSICAL REVIEW B 102, 045141 (2020)

the overlaps tend to become small, especially in an insulating
system where states are localized. For such systems, one
can revert to constructing intermediate states along A. If
each change in polarization is computed using the Berry flux
diagonalization method, A can be sampled more coarsely than
methods that track only the total phase. However, in doing
so one should beware of making possibly unsafe assumptions
about the dynamics of the switching process.

VI. CONCLUSION

The Berry flux diagonalization method presented here pro-
vides a way to compute the change in polarization that is more
easily automated, as well less computationally expensive, than
existing approaches. The magnitudes of the singular values
obtained in the course of the calculation provide a built-in test
of whether the two systems being compared are sufficiently
similar that a class of minimal paths producing the same

change in polarization can be inferred. Future work will
explore the application of this method to the change in polar-
ization between two states that are not symmetry related, such
as in pyroelectrics, antiferroelectrics, heterostructures, and
insulators in finite electric fields. It will also be interesting to
test the applicability of the approach to different classes of fer-
roelectrics, such as organic, inorganic order-disorder, charge-
ordered, and improper ferroelectrics. Generalizations of the
method to the computation of other quantities requiring Berry
curvature integration, such as Chern numbers and characteri-
zation of Weyl points, should also reward future investigation.
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