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We present a novel method for the calculation of the static and electronic dielectric tensor
polar insulating crystals based on concepts from the modern theory of dielectric polarization.
an application, we present the firstab initio calculation of the dielectric constants in the wurtzite III-V
nitrides AlN, GaN, and InN. [S0031-9007(97)04523-7]
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The modern quantum theory of polarization in di
electrics has been formulated only in recent years [1
This development has opened a new era in the first pr
ciples theory of ferroelectricity and pyroelectricity [2].
The new theory has been used successfully to calcula
in a well defined and computationally efficient way, the
macroscopic polarization changes induced by pertu
bations other than an electric field. Examples of suc
perturbations are, e.g., lattice vibrations [2], ferroelectr
distortions [2], and piezoelectric deformations [3,4]
whereby the quantities being calculated are typical
dynamical Born charges, spontaneous polarization, a
piezoelectric constants.

So far, no direct attempt has been made towards t
goal of determining the dielectric tensor (which of cours
quantifies the response to an external electric field) usi
polarization theory. In this Letter we present a nove
method for calculating the static dielectric tensor of
crystal based on concepts from polarization theory;
particular, the method rests entirely on the evaluation
the dielectric polarization in zero field via the geometri
quantum phase approach [1]. The method works in a
polar material, i.e., any material having infrared-activ
zone-center modes. As an application, we provide,
our knowledge, the first determination of the dielectri
constants´k along the (0001) axis for the wurtzite
III-V nitride compounds AlN, GaN, and InN.

The current method of choice for dielectric respons
calculations is density functional perturbation theor
(DFPT) [5], a general and powerful approach to respon
properties. The method presented here, besides its diff
ent foundations, is less general but considerably simp
to implement than DFPT, and it may become a usef
alternative.

The static dielectric tensor.—The calculation of the
dielectric tensor is highly nontrivial, because it entails th
determination of the electronic, as well as vibrational an
elastic-piezoelectric, responses to an external electrosta
field. The elements of the dielectric tensor are

´0
ij ­ dij 1 4p

dPi

dEj
, (1)
0031-9007y97y79(20)y3958(4)$10.00
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where E is the screened macroscopic electrostatic fie
and P the macroscopic polarization resulting from th
response of the electronic and ionic degrees of freedo
In the Born-Oppenheimer approximation the macroscop
polarization P in the presence of a generic strain o
electrostatic perturbation can be conveniently express
as P ­ P0 1 Plat 1 PE, the sum of the spontaneou
polarizationP0 of the equilibrium structure in zero field,
the polarizationPlat induced by lattice response, and th
electronic screening polarizationPE. In the linear regime
and using Voigt notation, the two latter components c
be expressed in terms of the lattice structure distortion a
screened electric field as

Plat
i ­

X
l

e
s0d
il el 1

e
V

X
sj

Zp s
ij us

j , (2)

PE
i ­

1
4p

X
j

s´`
ij 2 dijdEj , (3)

where ´
`
ij is the electronic component of the dielectri

tensor,V is the bulk cell volume,el the strain field,us
k is

the displacement of atoms from its equilibrium position,
e

s0d
il is the clamped-ion component of the piezoelectr

tensor, andZs
ik is the Born effective charge:

e
s0d
il ­

≠Plat
i

≠el

Ç
u

, Zp s
ik ­

V
e

≠Plat
i

≠us
k

Ç
e

. (4)

The spontaneous component of the polarization does
depend on strain and fields, and it is nonvanishing also
zero field. Using Eqs. (2) and (3) we can rewrite Eq. (
as

´0
ij ­ ´`

ij 1 4p
X

l

e
s0d
il

≠el

≠Ej

Ç
u

1
4pe

V

X
sk

Zp s
ik

≠us
k

≠Ej

Ç
e

.

(5)

We shall discuss first how the second and third terms a
evaluated, and then discuss the electronic dielectric tens
The last two terms in Eq. (5) quantify the contribution
of the macroscopic and microscopic structural degre
of freedom to the total polarization, respectively. In th
absence of other external perturbations, the strain fieldel
© 1997 The American Physical Society
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and the atomic displacementus
k are related to the screened

field E by the condition of vanishing stress,

sl ­
X

i

eilEi 2
X
m

llmem ­ 0 , (6)

and vanishing Hellmann-Feynman forces,

Fs
i ­ e

X
j

Zp s
ij Ej 1 V

X
ls

J
s
il el 2

X
js0

Fs s0

ij us0

j ­ 0 .

(7)

The quantities appearing in Eqs. (6) and (7) are the elas
constants

llm ­ 2
≠sl

≠em
2

X
is0

≠sl

≠us
i

dus
i

dem
, (8)

the piezoelectric tensor

eil ­
≠Plat

i

≠el
1

X
js

≠Plat
i

≠us
j

dus
j

del

­ e
s0d
il 1 e

X
jkss0

Zp s
ij F

21 ss0

jk J
s0

kl , (9)

and the harmonic force constants and internal stra
parameters

Fss0

ij ­ 2
≠Fs

i

≠us0

j

Ç
e

, J
s
il ­

1
V

≠Fs
i

≠el

Ç
u

. (10)

Combining Eqs. (6) and (7), we obtainu and e as a
function of the electric field:

us
i ­

X
jks0

F
21 ss0

ik

√
eZp s0

kj 1 V
X
lm

J
s0

kll
21
lm emj

!
Ej ; (11)

ei ­
X
jk

l21
ik ekjEj . (12)

These relations are the first two key ingredients of o
method. Substituting them into Eq. (5), we obtain aft
some manipulation the following general expression f
the static dielectric tensor:

´0
ij ­

4pe2

V

X
klss0

Zp s
ik F

21 ss0

kl Zp s0

lj

1 4p
X
mn

eim l21
mn enj 1 ´`

ij

­ ´a
ij 1 ´b

ij 1 ´`
ij . (13)

As implied by Eq. (6), this definition holds for fixed
stress, certainly an experimentally relevant situation. T
first term in the last equation is due to atomic displac
ments from the equilibrium position at fixed lattice pa
rameter; the second is the contribution of piezoelectricit
related lattice constant changes; the third is the pure el
tronic dielectric screening for a frozen lattice system.

A central point of the above analysis is that all the in
gredients of Eqs. (4) and (8)–(10) needed for Eq. (1
can be calculated from distorted and strained bulk ce
using ab initio total-energy and force calculations, sup
plemented by calculations of the dielectric polarization
zero field using the Berry-phase approach [1,3,4,6]. T
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only exception is the electronic dielectric constant´`, for
which [6] an alternate approach has to be devised.

The electronic dielectric tensor.—As we now show,
´` can be obtained using the relationship between mac
scopic polarization in zero field and charge accumulati
at the interfaces of an appropriately built homojunction
the material of interest [7,8]. In an insulating superlattic
consisting of periodically alternating slabs of equal lengt
stacked along direction̂n and made of materials 1 and
2, the displacement field orthogonal to the interfaces
conserved:D1 ­ E1 1 4pP1sE1d ­ E2 1 4pP2sE2d ­
D2. (We use a scalar notation for the components of t
vectors alongn̂.) Expanding the polarization to first or-
der in the screened fields in the two materials asPisEd ­
Pi 1 xiEi, with Pi the polarization in zero field andxi

the susceptibility, one obtains

4psP2 2 P1d ­ ´`
1 E1 2 ´`

2 E2 .

In the absence of zero-field (e.g., spontaneous) polari
tion, the familiar equalitý `

1 E1 ­ ´
`
2 E2 is recovered. To

proceed, we note that periodic boundary conditions imp
E ; E1 ­ 2E2, andDE ; E1 2 E2 ­ 2E, so that

4psP2 2 P1d ­
1
2

s´`
1 1 ´`

2 dDE .

The charge accumulation per unit area at the interfa
between materials 1 and 2 issint ­ 6DEy4p . Therefore,
switching to an obvious vector notation,

sint ­ 62 n̂ ? sP2 2 P1dys´`
1 1 ´`

2 d , (14)

which connects the macroscopic bulk polarizationsP1,2

at zero field with the componentś`
1,2 of the dielectric

tensors of the interfaced materials along the interfa
normaln̂.

In an undistorted homojunction, i.e., a superlattice
which material 1 is identical to material 2, there is n
interface, no polarization change can occur, and the int
face charge is zero. However, a polarization differen
can be generated in a controlled manner by inducing
small distortiond of one of the atomic sublattices in hal
of the superlattice unit cell. The interface chargesint ac-
cumulated at the interface between distorted and und
torted regions can be easily calculated via macrosco
averages [7,9]. The zero-field polarizationsP2 for the
material in the undistorted state andP1 for the material
in the same strain state as in the superlattice are evalua
directly using the Berry phase technique. From Eq. (14
one then extracts the average electronic dielectric const
´` ­ s´`

1 1 ´
`
2 dy2.

In principle ´1, the dielectric constant in the distorted
state, differs from the actual dielectric constant´2; thus,
so does ¯́ . However, in the limit of zero distortion,́̄
equals the component of the dielectric tensor alongn̂:

´` ­ lim
d!0

¯́ .

This limit can be evaluated with essentially arbitrar
accuracy by extrapolation or interpolation. The procedu
3959
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just outlined, yielding the electronic dielectric constant,
the third key ingredient of the method.

In summary, in the present approach the static dielect
tensor is calculated via (i) calculation of the elasti
and force constants, (ii) calculation of the piezoelectr
tensor and Born charges, and (iii) evaluation of th
electronic dielectric tensor. Task (i) requires standa
total energy and stress calculations; tasks (ii) and (iii) u
the geometric quantum phase polarization; task (iii) als
uses relatively small, accurately controllable superce
calculations. In the latter, one must take care that (a) t
slabs are short enough that the constant electric fie
will not cause metallization, and that (b) the slabs a
sufficiently long to recover bulklike behavior away from
the interfaces. Both requirements are generally met a
by materials with small calculated gaps for sufficientl
small applied strains.

The quantities needed to evaluate the dielectric tens
are usually obtained by means of DFPT [5,10]. Th
novelty of the present method is in the absence of
perturbative approach, and in the determination of th
electronic screening and piezoelectric properties usi
their connection with the geometric quantum phase.

Application to III-V nitrides.—We now apply the
formalism just developed to the calculation of´

0
33ja, the

component of the static dielectric tensor along the (000
axis at fixed lattice constanta, for the wurtzite III-V
nitrides AlN, GaN, and InN [11]. Besides serving as a te
of our theory, this calculation provides, to our knowledge
the first ab initio theoretical prediction of the dielectric
constant for these materials.

In the present case, only a few independent eleme
of the tensors described above are needed, namely, th
containing derivatives of the total energy and polarizatio
with respect to the lattice constantc and the internal
structure parameteru. The piezoelectric constant and the
Born effective charge involved are

e33 ­ c0
≠P3

≠c

Ç
u

1 2eZp
33F21

33 J33 ,

Zp
33 ­

p
3 a2

0

4e
≠P3

≠u

Ç
c

.

The force constantF33 (whenceF
21
33 ­ 1yF33 is ob-

tained) and the internal strain parameterJ33 are cal-
culated as derivatives of the Hellmann-Feynman forc
F3 with respect to an atomic displacement from equilib
rium, and to a homogeneous strain of the lattice structu
respectively:

F33 ­ c21
0

≠F3

≠u

Ç
c
, J33 ­

4
p

3 a2
0

≠F3

≠c

Ç
u

.

The relevant inverse elastic constant isl
21
33 ­ 1yl33,

where

l33 ­ c0
≠s3

≠c
2 VJ33F21

33 J33 .

All calculations are done using density functiona
theory in the local density approximation (LDA) to de
3960
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scribe the exchange and correlation energy, and ultras
pseudopotentials [12] for the electron-ion interaction.
plane-wave basis cutoff at 25 Ry and 12-point Chad
Cohen [13] mesh are found to give fully converged valu
for the bulk properties. Given their known importanc
[14], the semicored states of Ga and In are included in th
valence. The piezoelectric tensor and Born charges h
been calculated [4] via the Berry phase technique [1,6] u
ing a 16-point Monkhorst-Pack [15]k-point mesh in the
a-plane direction and 10-point uniform mesh in thec di-
rection, testing convergence up to 360 total points. F
the ´` supercell calculation, we have employed (0001
oriented superlattices of typically four formula unit
(16 atoms), and typical cation sublattice displaceme
along (0001) of 1%–2% of the bond length for AlN an
GaN. Smaller displacements (,0.3%) were used for InN.
25 Ry cutoff and 12k points in the irreducible superlattice
Brillouin zone guarantee convergence. No ionic relax
tion is allowed, so that the response is purely electronic

We report in Table I the calculated dielectric constan
and their various components as given by Eq. (13) for Al
GaN, and InN, along with the available experimental da
[16–18]. The electronic dielectric constants are very clo
to the experimental values for both AlN and GaN, slight
larger for InN. The calculated static constant agrees w
with experiment for GaN, the only one for which it is
available experimentally. We also list the values of th
various constants contributing tó0 in Table II. For AlN
and GaN, the structural constants are similar, while t
piezoelectric coefficiente33 is much higher in AlN. InN
behaves somewhat differently, as expected from previo
experience on other In compounds [5].

In homopolar semiconductors, the external field does n
cause distortions of the crystal lattice, so that the sta
dielectric constant coincides with the electronic one; o
method as outlined above is not applicable in this ca
since no zero-field polarization can exist in these mate
als. It does apply, however, to all heteropolar materials,
which a polarization can always be induced by appropria
atomic displacements. Apart from the electronic respon
a lower crystal symmetry such as in wurtzites enables
action of screening mechanisms related to lattice dist
tions. As apparent from Eq. (13), the difference among´0

TABLE I. Calculated high-frequency and static dielectri
constant in AlN, GaN, and InN compared with availabl
experimental data (in parentheses).́a33 and ´

b
33 are the first

and second terms in Eq. (13), respectively, and´
0
33 ­ ´

a
33 1

´
b
33 1 ´

`
33.

´
a
33 ´

b
33 ´

`
33 ´

0
33

AlN 5.06 0.64 4.61 (4.68a) 10.31 · · ·
GaN 4.44 0.15 5.69 (5.70b) 10.28 (10.4c)
InN 5.51 0.61 8.49 (8.40b) 14.61

aFrom Ref. [16].
bFrom Ref. [17].
cFrom Ref. [18].
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TABLE II. Constants needed in the evaluation of´0 in AlN,
GaN, and InN (see text).

e33 Zp
33 F33 J33 l33

Units Cym2 · · · Nym 1021 Nym3 1011 Nym2

AlN 11.462 22.70 1204 10.45 13.81
GaN 10.727 22.72 1209 10.38 13.80
InN 11.092 23.02 1155 10.32 12.22

and´` is due to the polarization induced by optically activ
lattice vibrations (as quantified by the dynamical charge
and to the piezoelectric response, if any, along the app
priate axis (as measured by the piezoelectric constants).
a previous paper [4] we have shown that AlN, GaN, an
InN have large effective charges, and the highest piez
electric coefficients among all tetrahedrally bonded sem
conductors. Indeed (see Table I), the difference betwe
static and high-frequency dielectric constants is large:
III-V nitrides the phonon-related term is comparable to th
electronic one, and the piezoelectric component is ab
10% of each of the other two. An important point to b
noted is that the piezoelectric contribution cannot be n
glected in an accurate calculation. This will be even mo
important in materials with large piezoelectric constan
such as ferroelectric perovskites.

In conclusion, we have presented a novel procedu
for the calculation of the dielectric tensor based o
the geometric quantum phase polarization theory. T
method uses only bulk calculation, with the exception of
small supercell calculation, needed in the determination
the electronic dielectric constant. As an application, w
have provided the firstab initio prediction of the dielectric
constants of wurtzite AlN, GaN, and InN.
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Note added.—A calculation of ´` for AlN and GaN
[19] was brought to our attention after submission. Th
results reported there are in fair agreement with ours.
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