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Polarization-Based Calculation of the Dielectric Tensor of Polar Crystals
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We present a novel method for the calculation of the static and electronic dielectric tensor of
polar insulating crystals based on concepts from the modern theory of dielectric polarization. As
an application, we present the firh initio calculation of the dielectric constants in the wurtzite IlI-V
nitrides AIN, GaN, and InN.  [S0031-9007(97)04523-7]

PACS numbers: 71.15.—m, 77.22.Ej, 77.84.Bw

The modern quantum theory of polarization in di- where E is the screened macroscopic electrostatic field
electrics has been formulated only in recent years [1]and P the macroscopic polarization resulting from the
This development has opened a new era in the first prinresponse of the electronic and ionic degrees of freedom.
ciples theory of ferroelectricity and pyroelectricity [2]. In the Born-Oppenheimer approximation the macroscopic
The new theory has been used successfully to calculatpplarization P in the presence of a generic strain or
in a well defined and computationally efficient way, the electrostatic perturbation can be conveniently expressed
macroscopic polarization changes induced by perturas P = P° + P2 + PE  the sum of the spontaneous
bations other than an electric field. Examples of suctpolarizationP° of the equilibrium structure in zero field,
perturbations are, e.g., lattice vibrations [2], ferroelectricthe polarizationP' induced by lattice response, and the
distortions [2], and piezoelectric deformations [3,4], electronic screening polarizatid®F. In the linear regime
whereby the quantities being calculated are typicallyand using Voigt notation, the two latter components can
dynamical Born charges, spontaneous polarization, anble expressed in terms of the lattice structure distortion and

piezoelectric constants. screened electric field as

So far, no direct attempt has been made towards the © ¢
goal o_f.determining the dielectric tensor (whiph _of course Pt = Ze,-, € + v Zzyu; (2)
guantifies the response to an external electric field) using ! 5j

polarization theory. In this Letter we present a novel
method for calculating the static dielectric tensor of a
crystal based on concepts from polarization theory; in . ) ) )
particular, the method rests entirely on the evaluation ofvhere &;; is the electronic component of the dielectric
the dielectric polarization in zero field via the geometrictensor,V is the bulk cell volumee; the strain fieldu; is
guantum phase approach [1]. The method works in an;,he displacement of atomfrom its equilibrium position,
polar material, i.e., any material having infrared-activee;, is the clamped-ion component of the piezoelectric
zone-center modes. As an application, we provide, téensor, andZ;; is the Born effective charge:
our knowledge, the first determination of the dielectric gplat v gpht
. j (0) i g i

constantsg along the (0001) axis for the wurtzite ej;] =——|, K = — 5 4)
I1I-V nitride compounds AIN, GaN, and InN. u e duy

The current method of choice for dielectric responsel he spontaneous component of the polarization does not
calculations is density functional perturbation theorydepend on strain and fields, and it is nonvanishing also in
(DFPT) [5], a general and powerful approach to responséero field. Using Egs. (2) and (3) we can rewrite Eq. (1)
properties. The method presented here, besides its diffe®S

1 o
PP = - Dlleii = 8))E;. @)
J

36[ €

ent foundations, is less general_but considerably simpler . ©) d€ dare oy Ul
to implement than DFPT, and it may become a useful &;; = &;; + 4772&1 | TV 2Lk —
; =" 9E; |,V T OE; e
alternative. s
The static dielectric tenso~The calculation of the ()

dielectric tensor is highly nontrivial, because it entails thewe shall discuss first how the second and third terms are
determination of the electronic, as well as vibrational ancevaluated, and then discuss the electronic dielectric tensor.
elastic-piezoelectric, responses to an external electrostatithe last two terms in Eq. (5) quantify the contributions
field. The elements of the dielectric tensor are of the macroscopic and microscopic structural degrees
dpP; 1) of freedom to the total polarization, respectively. In the
dE;’ absence of other external perturbations, the strain &gld

8?j = 61] + 4
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and the atomic displacemenmj are related to the screened only exception is the electronic dielectric constafif for

field E by the condition of vanishing stress, which [6] an alternate approach has to be devised.
The electronic dielectric tenseAs we now show,
o= Zeiin - Z/\zmem =0, (6)  &* can be obtained using the relationship between macro-

o i m scopic polarization in zero field and charge accumulation
and vanishing Hellmann-Feynman forces, at the interfaces of an appropriately built homojunction of

R . s o5l ol the material of interest [7,8]. In an insulating superlattice
Fi=e Zzij Ej+ V) Eie - Z‘Di/‘ up = 0. consisting of periodically alternating slabs of equal length,
/ Is 2 % stacked along directiofi and made of materials 1 and
2, the displacement field orthogonal to the interfaces is
The quantities appearing in Egs. (6) and (7) are the elasticonserved:D, = E; + 47w P|(E|) = E, + 47w P5(E,) =
constants D,. (We use a scalar notation for the components of the
da do; du’ vectors alongi.) Expanding the polarization to first or-
Am = — -2 , (8)  der in the screened fields in the two materialPasE) =
o€, — Ju; de,, . L .
] ) 1 P; + xiE;, with P; the polarization in zero field ang;
the piezoelectric tensor the susceptibility, one obtains
aP aPP du; o i
e = i + a—u’sd—ej 47w (P, — Py) = ¢7E; — &5 E,.
” ! In the absence of zero-field (e.g., spontaneous) polariza-
- 6’,('?) + e Z Z?}SCI)J?”/E}Y(}, (9) tion, the familiar equalityE; = &5 E, is recovered. To
jkss' proceed, we note that periodic boundary conditions imply
and the harmonic force constants and internal straif = E1 = —Ez, andAE = E, — E; = 2E, so that
parameters 1. .
o — _OF =s _ 1 OF} (10) dm(Py = P1) =5 (o1 + 82)AE.

Y auj-' ¢ TPV a1 The charge accumulation per unit area at the interface
Combining Egs. (6) and (7), we obtaim and € as a bet_we(.en materlals;and 285 = iA_E/47r. Therefore,
function of the electric field: switching to an obvious vector notation,

_ / % ¢! — Si =i2ﬁ‘P_P) 800+8x, 14
up = Py (ezkjs +tv Zﬂiz)tzmlemj>5j; (11) . N (P2 =P ./( L) . .( :
k! Im which connects the macroscopic bulk polarizatidhs
- t zero field with the components;, of the dielectric
=Y A3 enE; . 12) 2 ! 5.2 ;
€ ]Zk ik kL (12) tensors of the interfaced materials along the interface
normalii.

These relations are the first two key ingredients of our

o X . In an undistorted homojunction, i.e., a superlattice in
method. S.UbSt'FUtmg them |n_to Eq. (5), we obta|r_1 aﬂerwhlch material 1 is identical to material 2, there is no
some manipulation the following general expression for. - .

L . i interface, no polarization change can occur, and the inter-
the static dielectric tensor:

face charge is zero. However, a polarization difference

&0 — 4e? Z 755 ool s can be generated in a controlled manner by inducing a
iy g T S small distortiond of one of the atomic sublattices in half
of the superlattice unit cell. The interface chasgg ac-
+ 4 Zeim A €nj + €5 cumulated at the interface between distorted and undis-
mn torted regions can be easily calculated via macroscopic
=ef; + 8?]‘ + & (13) averages [7,9]. The zero-field polarizatioRs for the

As implied by Eq. (6), this definition holds for fixed material in the L_lndistorted.state alq for Fhe material
stress, certainly an experimentally relevant situation. Thé the same strain state as in the superlatnce are evaluated
first term in the last equation is due to atomic displacedirectly using the Berry phase technique. From Eg. (14),
ments from the equilibrium position at fixed lattice pa- °Ne ther; extr.’;olccts the average electronic dielectric constant
rameter; the second is the contribution of piezoelectricity—goc = (‘?1 + &2)/2. ) ) ) ]
related lattice constant changes; the third is the pure elec- IN principle &, the dielectric constant in the distorted
tronic dielectric screening for a frozen lattice system. ~ State, differs from the actual dielectric constapt thus,

A central point of the above analysis is that all the in-SO doess. However, in the limit of zero distortiong
gredients of Egs. (4) and (8)—(10) needed for Eq. (1359quals the component of the dielectric tensor alfting
can be calculated from distorted and strained bulk cells & = lim &.
using ab initio total-energy and force calculations, sup- 6—0
plemented by calculations of the dielectric polarization inThis limit can be evaluated with essentially arbitrary
zero field using the Berry-phase approach [1,3,4,6]. Thaccuracy by extrapolation or interpolation. The procedure
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just outlined, yielding the electronic dielectric constant, isscribe the exchange and correlation energy, and ultrasoft
the third key ingredient of the method. pseudopotentials [12] for the electron-ion interaction. A
In summary, in the present approach the static dielectriplane-wave basis cutoff at 25 Ry and 12-point Chadi-
tensor is calculated via (i) calculation of the elasticCohen [13] mesh are found to give fully converged values
and force constants, (ii) calculation of the piezoelectricfor the bulk properties. Given their known importance
tensor and Born charges, and (iii) evaluation of the[14], the semicore states of Ga and In are included in the
electronic dielectric tensor. Task (i) requires standardialence. The piezoelectric tensor and Born charges have
total energy and stress calculations; tasks (ii) and (iii) uséeen calculated [4] via the Berry phase technique [1,6] us-
the geometric quantum phase polarization; task (iii) alsang a 16-point Monkhorst-Pack [15]-point mesh in the
uses relatively small, accurately controllable supercelk-plane direction and 10-point uniform mesh in theli-
calculations. In the latter, one must take care that (a) theection, testing convergence up to 360 total points. For
slabs are short enough that the constant electric fielthe ¢* supercell calculation, we have employed (0001)-
will not cause metallization, and that (b) the slabs areoriented superlattices of typically four formula units
sufficiently long to recover bulklike behavior away from (16 atoms), and typical cation sublattice displacements
the interfaces. Both requirements are generally met alsalong (0001) of 1%—2% of the bond length for AIN and
by materials with small calculated gaps for sufficiently GaN. Smaller displacements-(.3%) were used for InN.
small applied strains. 25 Ry cutoff and 1% points in the irreducible superlattice
The quantities needed to evaluate the dielectric tensdrillouin zone guarantee convergence. No ionic relaxa-
are usually obtained by means of DFPT [5,10]. Thetion is allowed, so that the response is purely electronic.
novelty of the present method is in the absence of a We report in Table | the calculated dielectric constants
perturbative approach, and in the determination of theand their various components as given by Eq. (13) for AIN,
electronic screening and piezoelectric properties usin@aN, and InN, along with the available experimental data
their connection with the geometric quantum phase. [16—18]. The electronic dielectric constants are very close
Application to IlI-V nitrides—We now apply the to the experimental values for both AIN and GaN, slightly
formalism just developed to the calculation df;|,, the  larger for InN. The calculated static constant agrees well
component of the static dielectric tensor along the (0001yvith experiment for GaN, the only one for which it is
axis at fixed lattice constant, for the wurtzite Ill-V  available experimentally. We also list the values of the
nitrides AIN, GaN, and InN [11]. Besides serving as a testvarious constants contributing td in Table 1l. For AIN
of our theory, this calculation provides, to our knowledge,and GaN, the structural constants are similar, while the
the first ab initio theoretical prediction of the dielectric piezoelectric coefficientss; is much higher in AIN. InN
constant for these materials. behaves somewhat differently, as expected from previous
In the present case, only a few independent elemengxperience on other In compounds [5].
of the tensors described above are needed, namely, thosen homopolar semiconductors, the external field does not
containing derivatives of the total energy and polarizatiorcause distortions of the crystal lattice, so that the static
with respect to the lattice constamt and the internal dielectric constant coincides with the electronic one; our
structure parameter. The piezoelectric constant and the method as outlined above is not applicable in this case,

Born effective charge involved are since no zero-field polarization can exist in these materi-
aP;3 . e als. It does apply, however, to all heteropolar materials, in
€33 = Co " + 2eZ3;P33 H33, which a polarization can always be induced by appropriate

u

) atomic displacements. Apart from the electronic response,

_\/§ ay 9P3 a lower crystal symmetry such as in wurtzites enables the
4e  Qu | action of screening mechanisms related to lattice distor-

The force constantbss (WhenceCI)3_31 = 1/®d3; is ob- tions. Asapparent from Eq. (13), the difference amehg

tained) and the internal strain paramet€s; are cal-

culated as derivatives of the Hellmann-Feynman forceI'ABLE I. Calculated high-frequency and static dielectric

F3 with respect to an atomic displacement from equilib-constant in AIN, GaN, and InN compared with available
rium, and to a homogeneous strain of the lattice structureyxperimental data (in parenthesesys; and &5 are the first

* j—
233 -

respectively: and second terms in Eq. (13), respectively, aflg = &5 +
o _, 0F; — 4 0F; 8?3 + 3.
33=¢C | £33 = —7=>% - | - ”
0 u | \/3 (1(2) ac |y 8(313 823 €33 8(3)3
The relevant inverse elastic constant A§y = 1/As3, AIN 506 064 4.61 (4.6 10.31
where GaN 444 015 569 (5.7 1028 (10.4)
dos | INN 5.51 0.61 8.49 (8.49 14.61
A3 = cg— — VEx D5 Ess.
33 " 9¢ 3333 =3 aFrom Ref. [16].

All calculations are done using density functional ®From Ref. [17].
theory in the local density approximation (LDA) to de- °From Ref. [18].
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TABLE II. Constants needed in the evaluation&¥fin AIN,
GaN, and InN (see text).

[6] The polarization difference between any two states of a
crystal, connected by an adiabatic transformation (labeled

€3 7z ;3 =™ A3 by A) leaving the system insulating, is
Units C/m? N/m 10* N/m? 10" N/m? 5 N
AN +1462 —270 +204  +045 +3.81 APe=-—E;%5]~ dA/.dk
GaN  +0.727 —2.72  +209 +0.38 +3.80 S Bz
INN~ +1.092 —3.02 +155 +0.32 +2.22 92

dW(k, k')

s

K/'=k

X
oA ok’

. L . . where

ande” is due to the polarization induced by optically active @ . o .

lattice vibrations (as quantified by the dynamical charges), ¢ (k, k) = Im{In[detS""(k, k')]}

and to the piezoelectric response, if any, along the appro- s the geometric quantum Berry phase, and

priate axis (as measured by the piezoelectric constants). In SO, k) = (k) | uP(K)

a previous paper [4] we have shown that AIN, GaN, and

INN have large effective charges, and the highest piezo-

electric coefficients among all tetrahedrqlly bonded semi- transformation should leave the system insulating, the

Con,dUCtors', Indeed (see T"_"ble I)_' the dlfferen(_:e betwegn method does not allow a direct determinationsf

static and high-frequency dielectric constants is large: in 7] £, Berardini, V. Fiorentini, and D. Vanderbilt, ifil-

I1I-V nitrides the phonon-related term is comparable to the V Nitrides, edited by F.A. Ponce, T.D. Moustakas,

electronic one, and the piezoelectric component is about |, Akasaki, and B.A. Monemar, MRS Symposia Pro-
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noted is that the piezoelectric contribution cannot be ne-  1997), p. 923.
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