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Ab initio total-energy calculations are used to determine theoretically the structural con-
figuration of the vacancy in trigonal Se. The method consists of calculating the forces, as
well as the total energies, within the local-density and frozen-core approximations, for a su-
perlatiice structure containing a vacancy. In this way, relaxations at the vacancy can be ful-
ly taken into account, including a possible self-healing of the vacancy. A slightly relaxed
symmetric version of the ideal vacancy is the lowest-energy structure found; neither asym-
metric relaxation nor valence alternation appears to occur. A simple Hubbard Hamiltonian
is used to analyze the spin configuration of the lowest-energy structure.

I. INTRODUCTION

In the preceding paper (hereafter referred to as
paper I), it was shown that accurate structural infor-
mation on trigonal selenium may be obtained by cal-
culating the total energy as a function of structure,
using local-density theory and ab initio pseudopoten-
tials. Here, this approach is extended to the study of
the neutral vacancy in trigonal Se.

The vacancy is an interesting defect because its
structure is not easily guessed a priori. The un-
reconstructed vacancy has a single atom removed
from one of the chains of the trigonal structure, and
therefore gives rise to two dangling bonds, one on
each of the chain-termination atoms above and
below the vacancy. In this symmetric vacancy
structure V5, shown in Fig. 1(a), each of the two de-
fect atoms is neutral and is therefore expected to
have a singly occupied “dangling-bond” gap state,
very much like the C? defect proposed for glassy
Se.!l=3 The structure has an exact C, symmetry
about an axis passing through the vacancy site, so
that (in the absence of spin splitting) one has a state
of even symmetry and one of odd symmetry; the
lower of these is fully occupied, while the higher is
unoccupied. Thus no Jahn-Teller distortion is re-
quired.

Nevertheless, several interesting reconstructions
are possible candidates for the lowest-energy (stable)
vacancy. One possibility is a charge transfer from
one dangling bond to the other. While this is un-
favorable in terms of Coulomb interactions, the en-
suing lattice distortions might stabilize the structure,
in analogy to the proposed stability of the D*D~
pair in chalcogenide glasses."? If this distortion
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takes the form of simply introducing an asymmetry
in the lengths of the bonds adjoining the two oppo-
sitely charged defect atoms, the asymmetric vacancy
structure ¥, of Fig. 1(b) results. On chemical
grounds, however, the positively charged atom
might be expected to bond to a neighboring chain to
form a threefold-coordinated site, analogous to the
proposed C3 defect in the glass.? The reconstructed
vacancy V, of Fig. 1(c) then results.

An intriguing alternative candidate for the stable
vacancy structure is shown in Fig. 1(d). In this

(a) Vs (b) Va

FIG. 1. Schematic view of proposed vacancy struc-
tures. (a) Symmetrically relaxed version of ideal vacancy.
(b) Asymmetrically relaxed version. (c) Reconstructed
structure embodying a threefold-coordinated Se site. (d)
Self-healed structure, in which bridging bonds span the
vacancy.
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self-healed vacancy structure Vg, the two dangling
bonds have bonded together to reconstitute the origi-
nal chain. This requires substantial displacements
of several atoms on each side of the original vacancy
site; the resulting structure has a region over which
one chain is “stretched” to make up for the missing
atom. In the limit that the interchain interactions
are negligible compared to the intrachain interac-
tions, this self-healed structure will almost certainly
occur, because the energy cost in intrachain elastic
energy can be made arbitrarily small by making the
stretched region arbitrarily long. In trigonal Se, the
interchain forces are weak but by no means negligi-
ble (see paper I). If the solitonlike Vg, structure
were stable in trigonal Se, it would presumably be
extremely mobile and would soon migrate to a sur-
face, defect, or impurity. Thus vacancies created
e.g., by bombardment would appear to self-
annihilate rapidly on experimental time scales.

Finally, it is possible that the vacancy has the
symmetric structure ¥, but reconstructs electroni-
cally by acquiring a spin-polarization in which a
spin-up electron resides on one dangling bond while
a spin-down electron resides on the other. This “an-
tiferromagnetic” model bears a resemblance to
models for spin ordering among dangling bonds on
the Si(111) surface.*®> However, for a finite spin
system such as the vacancy, no sharp transition
occurs; the question here is not the existence, but the
degree, of such ordering.

In this paper, we calculate the total energy of the
various candidates for the stable vacancy, taking re-
laxations fully into account by calculating the
Hellman-Feynman forces. We find that among the
non-spin-polarized candidates, the symmetric V; is
more stable than the charge-transfer configurations
V, and V,. Our results with respect to Vg, are not
definitive; we did not find a configuration more
stable than ¥, but a more thorough search would
have to be done before ¥, could be ruled out. Fi-
nally, a model spin Hamiltonian with parameters
taken from the realistic calculation indicates that
spin polarization will be present but weak at V.

In Sec. II we describe the structural supercell
models used in the calculations. Section III contains
a discussion of some of the details of the total ener-
gy and force calculations. The results are given and
discussed in Sec. IV. Finally, Sec. V contains a
summary and conclusions.

II. STRUCTURAL MODELS

In order to model the vacancy structure, we have
constructed a superlattice whose supercell contains
eight atoms and one vacancy. This is done by re-
moving every ninth atom from the trigonal crystal

structure in the pattern shown in Fig. 2. The cells
have been chosen in this staggered manner so as to
maximize the distance between neighboring vacan-
cies.

Let the lattice vectors for trigonal Se be
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The lattice vectors for the superlattice structure of
Fig. 2 can be written
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This forms a convenient set because the superlattice,
while strictly trigonal, has =66.0° and is therefore
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FIG. 2. (a) Side view of superlattice structure contain-
ing a vacancy (dotted circles) and eight atoms (full circles)
per cell. (b) Top view of a slab three atoms thick taken
from the same structure; vacancies (open circles) are max-
imally spaced among normal Se atoms (black dots). Plus
signs ( + ) indicate chain axes.
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almost fcc. Thus special k points® can be chosen as
though for an fcc structure.

For the lattice constants a and ¢, we use the calcu-
lated values from paper I, so that in the absence of a
vacancy we have a fully relaxed structure. The cal-
culated values @ =3.97 A and ¢ =4.91 A imply that
each vacancy site has six nearest- nelghbor vacancies
6.32 A away in the directions + a;, etc, and six
second-neighbor vacancies 6.88 A away in the a- -b
plane of Fig. 2(b). It should be pointed out that for
the case of V;, the C, symmetry of the vacancy is
honored by the basis, but not by the lattice, of our
model. Thus only the local environment of a given
vacancy (up to a radius less than 6.32 A) has C,
symmetry with respect to atom locations. Thus the
C, symmetry may be said to be weakly broken for
the superlattice geometry of Fig. 2(a).

The structures used to model the various hy-
pothetical vacancy types V, V,, V,, and Vg, were all
obtained by keeping the lattice constants of the su-
perlattice fixed and moving the eight atoms within
the cell. The choice of atom locations was usually
guided by a previous force calculation, in a manner
to be described shortly.

III. CALCULATIONAL METHOD

The calculation of the total energy for the vacan-
cy structures was done using the method of paper I.
This uses the momentum-space representation to
calculate the total energy’ with Wigner exchange
correlation® and an ab initio norm-conserving pseu-
dopotential.” The energy cutoffs for the plane-wave
basis were reduced slightly from those of paper I to
make the calculation tractable for the larger cells
used here. The search for the minimum energy
structure was carried out using E,=2.5 Ry and
Ep=8.33 Ry for the lower and upper Lowdin cut-
offs;!? the total energy for the relaxed structure was
then evaluated more accurately using E,=4.30 Ry
and Ep=14.33 Ry (corresponding to N, =205 and
Np~1040 plane waves, respectively). Tests were
carried out at higher cutoffs to insure that adequate
convergence had been obtained.

In order to carry out the present calculation, two
extensions of the method were necessary. Firstly,
the large size of the unit cell and the presence of de-
generate half-occupied gap states give rise to a
charge instability in the iterative procedure which is
eliminated using a dielectric matrix method.
Secondly, the lack of symmetry and consequent
large number of independent structural degrees of
freedom make it almost impossible to find the varia-
tional minimum of the total energy without calcu-
lating the forces. The calculations of the forces us-
ing the Lowdin perturbation scheme'® require some

care, but can be used in conjunction with a simple
force-constant model to predict displacements which
lead rapidly to the variational minimum. This sec-
tion will be concerned primarily with these two ex-
tensions. In addition, strain energies associated with
the supercell periodic boundary conditions are dis-
cussed, and are shown to be unimportant.

Let us start with the dielectric matrix method.
The charge instability problem referred to above can
be understood as follows. Let V‘* be the mean-field
potential obtained on the nth iteration, p'™ the
charge density obtained by solving the Schrédinger
equation for V™, and U™ be the new potential con-
structed by screening with p®. If " were the con-
verged potential V%, we would have U™ =p®

=7, Now suppose we add a perturbation:

VW) =V'O(r)+8V cos(Gr) . (3)

Then we expect, by the definition of the dielectric
function e(q,q’ ), that

U(n)(,.)= V(O)(r)
+ 3 [866'—€(G,G')]8V cos(G'r) . )
peT

Here, the perturbing potential 8V cos(Gr) is the sum
of the external perturbation V" — U™ and the in-
duced perturbation U™ — V9. If we approximate

E(G,G’ )zE(G)BGG' (5)
then

UP(r)=V'r)+[1—€(G)18V cos(Gr) . (6)

Clearly for € > 2, the perturbation has an oscillatory
divergent behavior. Since e(¢—0)~10—20 in many
semiconductors, this is a severe problem for the
small reciprocal lattice vectors that occur for large
unit cells. This problem can be solved by employing
a wave-vector—dependent damping parameter
a(G,G’) in the construction of the new potential:

vetrG)=v"e)
+ 2 alG,G")
<

X[UM(G)—V"™(G")] (T

or, using the approximate Eq. (5),
V(G =a(G)U™(G) +[1—a(G)]V™(G)
®)

From Eq. (6), the best a is a(G)=¢e~(G). We use a
Fermi-Thomas (FT) dielectric function with a
small-g cutoff:

€(G)=1+kir/(G*+42) . 9)
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By treating kgr and go as adjustable parameters, it
is possible to find values which give fast conver-
gence. A scheme of this type was first proposed by
Kerker.!!

The use of the diagonal a(G) above is adequate
for bulk calculations in large supercells, but there is
an even more severe instability which arises because
of the presence of partially occupied defect states on
the two dangling bonds. In this case, charge can os-
cillate from one defect state to the other in the self-
consistent iteration process. Consider, for example,
a simple two-state model in which the self-consistent
bonding state

1
¢b=7;(¢1+¢2) (10a)

is doubly occupied, while the antibonding state

1
¢a=7—2‘(¢1—¢2) (10b)

is empty. Let the splitting between €, and €, be 2v,
where v is the hopping matrix element between ¢,
and ¢,. Now consider a small perturbation

H'=—Bala,+Bala, , (11)

where a,{ and az are creation operators for ¢; and

&,. Then perturbation theory gives that the charge
J

4rre?
€(G,G’ )ZSGG"“ s
GZQ k,n,n’

2 e(E,,'k —€r )e(GF—E,,k )

on state ¢, will increase by
Ag,=(B/v)g. (12)

on the next iteration. This then gives rise to a new
perturbation H' of the form (11) with

B*V=U Aq,
=(U/v)B%M, (13)

where U is some unscreened Coulomb correlation
energy for adding a second electron to the dangling
bond. For a free atom, U~8 eV, and the vacancy
dangling bonds interact by v=0.2 eV, so that the
charge instability of Eq. (13) can grow by a factor of
~ 40 for certain reciprocal lattice vectors of the va-
cancy superlattice structure. The result is that the
diagonal a(G) of Eq. (9) is inadequate to damp the
oscillation.

The problem is solved by going back to Eq. (7)
and using a(G,G’' )=¢€~1(G,G").1? Since the oscilla-
tory behavior comes primarily from the small G vec-
tors, we calculate €(G,G’) only for

| G|,| G'| <Gmax- Moreover, since most. of the
divergent behavior comes from small energy denom-
inators, we impose a cutoff E_ ., upon the size of
the energy denominators considered in calculating
€(G,G'). We add to the calculated €(G,G’)

’ iG'r —iGr | ¢ iG'r | 1 ’ —iGr
><(nk]e [nk){nk|e ""|n'k)+(nk|e"|n'k){(n'k |e " |nk) (14)

a contribution yerr(G) to make up for contributions
from denominators greater than E,,. For | G | or
| G'| > Gax> €(G,G') is taken to be diagonal, and
equal to €pr(G). The parameters Gy =1.8 au"!
(~60 G vectors), E,, =5 eV, and y=0.8 are found
to allow rapid convergence (i.e., reduction of max-
imum errors in V(G) by a factor of 3 on each itera-
tion), without increasing the overall cost of the com-
puter calculations by more than a few percent.

We consider now the problem of calculating the
Hellman-Feynman forces. The expression for the
forces in the momentum-space representation has
been given previously.” However, one comment
about the calculation of forces using Lowdin pertur-
bation theory'® should be made. In the Lowdin
theory, one can choose whether or not to work with
perturbed wave functions as well as eigenvalues
(folding out the wave function). We have found
empirically that folding out the wave functions is
not very important in obtaining good total energies
(paper I). However, it is essential if one wants to ob-

E—Ey

T

tain reasonable Hellman-Feynman forces. Presum-
ably this is because there is no variational principle
on the force. The use of the folded-out wave func-
tions in conjunction with nonlocal pseudopotentials
leads to an expensive double sum in the evaluation
of the forces. Therefore, we calculate the local con-
tribution to the forces using the folded-out wave
functions, but the nonlocal contribution is calculated
using the unperturbed wave functions. When the
full double sum was done in test cases, the correc-
tion was found to be negligible.

Once the forces are in hand, we need to use them
to predict atomic displacements which will relieve
the forces. That is, we wish to guess a structure
which will give rise to vanishing forces (the equili-
brium or lowest-energy structure). Let F! be the
force in the ith Cartesian direction on atom u; we
can expand

FHR+AK)=~FMR)— S KIAY, (15)
jv
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where Kf” is the dynamical matrix. Clearly we
want to choose

A= E(K"l) YFY(R) . (16)

The key obtaining rapid convergence to the equili-
brium structure is the choice of a model for Kf".
The simplest choice is

K,‘;V: lw5,~jl( . (17)

This corresponds to moving each atom in the direc-
tion the force is pointing, by an amount proportion-
al to the force. This model is empirically found to
be highly inadequate in our case. Because of the
strong intrachain bonds and weak interchain bonds
in Se, the force constants are highly anisotropic. We
have found that using a simple Born—von Karman
force-constant model improves drastically upon Eq.
(7) in terms of convergence speed. It contains three
bond-stretching parameters fit to some test calcula-
tions of the total energy of trigonal Se. For nearest
neighbors, second-intrachain  neighbors, and
nearest-interchain nelghbors, they are k,= 1.19
RyA~2% ky=0.1 RyA=% and kgx=0.1 RyA—2
respectlvely An addltlonal contribution of the form
(17), with k=0.25 RyA‘ , was added in to elim-
inate vanishing eigenvalues of K.

In some of the vacancy models studied (e.g., ¥, or
Vi, Fig. 1) it is not possible to uniquely define the
four nearest interchain neighbors of a given atom.
We have therefore made it a practice to identify a
set of possible interchain neighbors for each atom,
corresponding to those neighbors (other than first-
and second-intrachain neighbors) at a distance less
than some cutoff radius R,,,,. For these neighbors,
we include a force constant

kg =kg exp[—a(R—R")], (18)

where RC is the crystalline nearest interchain neigh-
bor distance (d, of paper I) and « is a constant. In
addition, we have found it useful to define a ficti-
tious force F; of the form

Fy=kr©(R°—~R)(R —R°)exp[ —a(R —R")]
(19)

from each such possible interchain neighbor, and to
add these contributions to the Hellman-Feynman
forces before inserting in Eq. (16). These repulsive
forces are usually quite small or zero (only neighbors
closer than R® contribute), but they do prevent the
chains from cross-linking in certain topologies
which are unavailable to the true vacancy. (That
they are otherwise allowed, in our calculation, is an
artifact of the superlattice geometry) The parame-
ters R, .,=3.9 A a=3 A~ 1 and kp=5.0 RyA_

have been adopted.

The use of this simple model in conjunction with
Eq. (16) allows us to predict displacements which
converge quickly upon the equilibrium geometry.
Initial geometries were guessed for V, V,, and Vg,
of Fig. 1 by requiring that all nearest-neighbor bond
lengths and bond angles (including those at the
threefold-coordinated site) be equal to those of the
crystal. (For V, asymmetric displacements away
from V; were made by hand.) Typically, ~3—4 cy-
cles using Eq. (16) were needed to remove ~90% of
the strain energy of the initial configuration. In no
case did the total energy increase as a result of a
predicted set of displacements.

The dielectric matrix and the force-constant ma-
trix discussed in this section are philosophically
similar. Both are aids for rapidly approaching the
(electronic or structural) variational minimum. The
various approximations made in modeling €(G,G")
and K" do not effect the final result; they only ef-
fect the speed with which the calculation converges
on this result (and whether it converges at all). For
the vacancy in Se, the simple models for €(G,G’)
and K" presented here make possible an otherwise
intractable calculation.

Finally, we have also tested how the structural re-
laxation energy changes when the constraints arising
from periodic boundary conditions (PBC’s) are re-
moved. The tests were carried out for V,, whose
cross-linked geometry might give rise to substantial
PBC-related stresses. The total energy was moni-
tored as these stresses were relieved by going to
larger unit cells, up to 72 sites per cell (71 atoms and
a vacancy). Because it is prohibitive to carry out the
pseudopotential calculations for such large cells, we
have instead used an eight-parameter Keating-type
force constant Hamiltonian'® for Se to monitor the
relaxation energy. The Keating model is imple-
mented by deleting any couplings involving the re-
moved vacancy atom, and by treating the extraordi-
nary bond at the threefold site on the same footing
as all other intrachain bonds. For each supercell
size, the structure is relaxed iteratively until the
minimum energy configuration is reached. The
remaining strain energy for V, is found to be 0.068
eV for the supercell of Fig. 2, and reduces to 0.060
eV for the 71-atom supercell. Thus the PBC-related
strain energy is expected to be <0.01 eV for the
Keating model. Of course the Keating model may
not be accurate at the defect sites, but we may take
this as an order-of-magnitude estimate of the true
PBC-related strain energy, which we claim must
therefore be <0.05 eV. For V;, it must be much
less. As we shall see, corrections of this magnitude
cannot change our conclusions in any way, and they
will hereafter be dropped.
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IV. RESULTS AND DISCUSSION

Consider the unrelaxed version of the symmetric
vacancy structure ¥, of Fig. 1(a). Since this struc-
ture is an important reference point for what fol-
lows, we begin by describing its electronic states in
some detail.

In an earlier paper,'* we showed that many essen-
tial features of the defect states in Se could be un-
derstood in terms of a very simple tight-binding
model, having three p orbitals per site interacting
with first neighbors only, and having bond angles
and dihedral angles set equal to 90°. For this model,
the px, py, and p, subsystems of orbitals on a chain
decouple from each other and from those of neigh-
boring chains. In the bulk, each such chain consists
of alternating o-bond orbitals and nonbonding p or-
bitals, coupled by 7 interactions. When the chain is
interrupted by a vacancy, as in Fig. 3, one obtains a
dangling-bond state on the end of each remaining
half-chain. Each such dangling-bond state is made
out of that subsystem (py, py, or p,) for which there
are two adjacent nonbonding p orbitals at the end of
the chain without an intervening o-bond orbital.
(These are shown in Fig. 3.) The dangling-bond
state consists primarily of a 7* combination of these
two nonbonding p orbitals, with most of the weight
on the site adjoining the vacancy.!* For the real va-
cancy, the two dangling-bond states on either side
should interact weakly. The overall vacancy defect
states are thus expected to be symmetric and an-
tisymmetric combinations (¢, and ¢,) of the two
dangling-bond states, the lower being doubly occu-
pied and the upper being empty.

Figure 4 shows that this is indeed the case. The
charge density'® of the filled symmetric state is
shown at the end of a chain [Fig. 4(a)] and across
the vacancy [Fig. 4(b)]. (These views correspond to

FIG. 3. Schematic view of p orbitals which participate
in dangling-bond gap states in simple tight-binding model.
Two dangling-bond gap states consist primarily of =*
combinations of p, orbitals on sites 1 and 2, and of p, or-
bitals on sites 1’ and 2'.

(a)

FIG. 4. Charge densities for occupied gap state of ideal
vacancy: (a) for plane passing through the last two atoms
on chain (black circles), and normal to bond angle with
the third atom (open circle, out of plane); (b) for plane
passing through vacancy (dotted circle) and two neighbor-
ing sites (black circles).

the x-z plane passing through sites 1-2, and the y-z
plane passing through sites 1-V-1', respectively, in
Fig. 3.) The unfilled antisymmetric state, not
shown, lies ~0.5 eV above the symmetric state, in-
dicating a hopping matrix element of ~0.25 eV be-
tween the dangling-bond states on either side of the
vacancy. (The absolute energy location of these
states in the gap is not uniquely defined for a super-
lattice calculation of this kind, because of an ambi-
guity in the zero of the Coulomb potential.)

Note that the covalent bond between each of the
onefold-coordinated atoms and its nearest neighbor
is a unique one. For the neutral case, there is not
only a o-bond component, but also a half = bond.
(For a positively charged chain end, this would be a
full 7 bond, because the m* state would be empty.)
This partial 7-bonding character does not occur in
the bulk, and therefore gives rise to a new kind of
bond at the dangling chain ends by the vacancy.

We have calculated the total energy of the unre-
laxed vacancy to be 1.44 eV, measured relative to
the energy of the same number of bulk atoms. (That
is, 1.44 eV is the activation energy for creating va-
cancies in the bulk, or, the energy released per va-
cancy as vacancies migrate to the surface.)
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So far, we have considered only the ideal (unre-
laxed) vacancy structure. If we use the methods of
the preceding section to calculate the forces on this
structure, we find that they are small but not zero.
After three cycles of calculating forces, we find that
the total energy stabilizes at 1.34 ¢Y. The bonds ad-
joining the one-fold-coordinated atoms have shor-
tened slightly to 2.290 and 2.300 A. The lengths of
the other bonds along the chain remain near the
2.367-A bulk value,'® with an rms deviation of 0.028
A from this value. The last bond angles at the chain
ends have the values 105.80° and 103.91°, compared
to 102.60° in the bulk. The small differences be-
tween the relaxations on either side of the vacancy
are due to the broken C, symmetry of the superlat-
tice; for the true vacancy, this would be a symmetric
relaxation, giving rise to a relaxed V; [Fig. 1(a)].

To summarize, the relaxations giving rise to V;
are small, are dominated by a shortenmg of the fmal
bonds by ~0.07 A, and are reflected in a lowering
of the total energy by ~0.1 eV. The electronic
structure is essentially unchanged from that of the
unrelaxed vacancy described above.

The V; structure found here corresponds to a lo-
cal minimum of the total energy in structural space,
but it need not be a global minimum. Even if it is, it
would be interesting if some of the other structures
(eg., V, or V,) were local minima; they would then
be metastable structural configurations. We have
therefore “manually” constructed structures of the
kind V,, V,, and V, of Figs. 1(b)—1(d), and then al-
lowed the forces to relax the structure with these
guesses as starting points.

Consider first the V, structure of Fig. 1(b). The
motivation for considering such a structure is relat-
ed to the partial 7 bond at the onefold-coordinated
atom, discussed above. The neutral chain end has a
half 7 bond. If an electron were to be transferred
from one chain end to the other, the positive chain
end would have a full 7 bond, while the negative
chain end would have no 7 bonding. Thus the final
bond on the positive chain end might be expected to
shorten, while that of the negative would lengthen.
It is possible that this structural relaxation could
support the charge transfer, in the manner of a
“negative U.” We find that this is not the case; the
asymmetric structure ¥, simply relaxes back to the
symmetric structure V;. The shorter bond of the V,
does become somewhat positively charged, but the
effect is evidently not strong enough to overcome
the strain energy of creating the asymmetry.

The motivation for considering the V, structure
of Fig. 1(c) is similar. As mentioned in Sec. I, the
situation is very reminiscent of the negative U defect
model for glassy chalcogenides®? in which the for-
mation of a “valence alternation pair” (consisting of

a positive threefold and a negative onefold-
coordinated site) is proposed to be energetically
favorable. We constructed an initial guess for the
V, structure by demanding that all of the nearest-
neighbor bond lengths and bond angles (including
those at the threefold-coordinated site) be identical
to those of the trigonal chain in the bulk. This actu-
ally turns out to be a rather bad guess at a relaxed
geometry; after 2—3 cycles of calculating forces and
relaxing the structure, we find that the total energy
has been lowered by ~0.8 eV from the initial guess.
However, it is still ~0.3 eV higher in energy than
the relaxed ¥V structure. At this point, the structure
is still threefold coordinated on one side of the va-
cancy, although the extraordinary bond is becoming
longer than the others. Further cycles of relaxation
simply drive the structure back to the V; configura-
tion.

Finally, an initial guess at the self-healed vacancy
structure Vg was constructed by demanding that all
of the bond lengths (including the one bridging the
vacancy) be equal to that of the bulk, and that the
bond angles be as close as possible to that of the
bulk. In our superlattice model, a chain made out of
eight atoms per cell has to span a distance which is
covered by nine atoms in a normal chain, so that the
bond angles must be widened. The resulting “initial
guess” structure of Vy, is actually a perfectly helical
chain which rotates 135° per atom (as opposed to
120° in the bulk) and has bond angles of 109.37".
The calculated total energy for this structure is 2.04
eV, or ~0.7 eV higher than the relaxed V.

This structure is perhaps not the most appropriate
starting point. For an isolated Vg, one would ex-
pect one or a few bonds to be stretched most, with
displacements decaying to zero outside this region (a
kind of domain wall). We have also constructed
structures in which we identify the displacements
AR which would take the initial ¥, sh Structure into
the ¥ structure, and then dlsplace the initial Vg, by
aAR where oz—l—l2 and . For these structures,
the bond bridging at the, vacancy is longer than the
others (2.464 and 2.771 A for a———L and -, respec-

tively), thus modeling the case in whlch one bond is

stretched the most. The total energies are calculated
as 1.99 and 1.88 eV, respectively, for these two
cases. For both these intermediate cases, the forces
indicate that further stretching of the weak bond is
desirable. Thus the energy appears to be falling
monotonically as we approach the V; structure.

Because the energies are all so much higher than
that of the V;, a global minimum at a structure
resembling Vg, seems unlikely. Moreover, no evi-
dence of a local minimum has been found. Howev-
er, we have not performed a sufficiently exhaustive
search of structural configurations to rule out the
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existence of a stable or (especially) metastable Vg,
center.

Finally, we return to the ¥, which now appears
to be the most likely structure for the vacancy, and
consider its spin configuration. This is modeled us-
ing a simple two-state Hubbard Hamiltonian Hpy:

Hy=6 3 nig+v 3 (alya5,+c.c.)
io [
—+ U’ 2 Ry, (20)
i

where v is the hopping matrix element and U’ is the
screened Coulomb correlation energy. The sub-
scripts i =1,2 label the dangling-bond states ¢; and
¢, with self-energies €, on either side of the vacancy,
o labels the spin, a;, are creation operators, and #n;,
are number operators. The eigenstates of the two-
electron problem consist of a spin triplet with energy
E;=2¢j, and three spin singlet states. The spatial
basis states for the singlets can be taken to be either

P, =¢1(1)¢,(2),
D, =¢,(1)¢5(2) , 21

= —=[81(1g2) + 41121,
or

D) =y (1)(2)
Dy =,(1)4,(2) (22)

<1>'3=—‘}7[¢g<1)¢u<2>+¢u<1>¢g(2)] :

where

¢u,g=71—2'[¢1i sgn(v)g,] . (23)

If the mixing angle 0 is defined by
tan6=4v /U’ (24)
then the lowest singlet state has energy
Eg=2¢y—2vtan(6/2) . (25)

Thus this singlet state is the ground state. For this
state, the probability P; of finding the electrons in
one of the “ionic” configurations ®; or ®, is

P;=sin%(6/2) . (26)

This probability approaches % for U’ <<4v, and 0
for U'>>4v, and is therefore a measure of the im-
portance of correlation between spins. The case
P;—0 corresponds to the highly correlated antifer-
romagnetic limit.

These spin-correlation effects should give rise to a
correction to the non-spin-polarized local-density to-
tal energy Ensp- To estimate this correction, we as-
sociate Ensp with the expectation value of Hy in
state @} (two electrons in the “bonding” state):

(@) | Hy | ®))=260—2v | +U'/2. 27)

This association is valid because ®) is composed of
only a single Slater determinant.!” The spin-
polarization correction AEgp is thus given by the
difference between Eqgs. (27) and (25).

For the vacancy in Se, we estimate v ~0.25 €V, as
discussed earlier in this section. To obtain an ap-
proximate U’, we take the Coulomb correlation en-
ergy U for putting two electrons on an isolated
dangling-bond state, and then reduce this by the at-
tractive Coulomb energy arising from the oppositely
charged sites on either side of the vacancy. Using
the methods of the following paper (paper III of this
series) (see the discussion of the density matrix
method and the Madelung terms), we estimate 0.92
and —0.59 eV for the repulsive and attractive terms,
respectively, giving an overall U’ of ~0.33 eV.
This is to be understood as a rough estimate only.
Using these values, we obtain §=72°, P;=0.34, and
AEgp=—0.03 eV. The overall estimate for the to-
tal energy of the relaxed symmetric vacancy V; is
now 1.31 eV.

Thus the spin-polarization energy correction is
quite small, and the ionic contributions to the
ground state are only weakly suppressed. In short,
the V; exhibits a weak tendency towards antifer-
romagnetic ordering.

V. SUMMARY

A superlattice structure containing vacancies is
constructed to model the vacancy in trigonal Se.
Total energies and Hellman-Feynman forces are
then calculated in the local-density approximation,
using an ab initio nonlocal pseudopotential to
represent the Se cores.

Several new features of the calculational method
are discussed in some detail. First, it is shown that
an approximate calculation of the dielectric matrix
allows fast convergence of the self-consistent itera-
tive procedure, whereas oscillatory divergences
occur otherwise. Then, the implementation of the
force calculation in the Lowdin perturbation scheme
is discussed. Finally, a simple Born—von Kdrman
force-constant model is used to predict displace-
ments which will relieve the forces, thereby relaxing
the structure quickly and efficiently to its equilibri-
um configuration.

A variety of structures are considered for the Se
vacancy. The simplest, a slightly relaxed version of
the ideal symmetric vacancy structure, turns out to
have the lowest energy of those studied. The activa-
tion energy to create this vacancy is ~1.3 eV.
Structures which embody asymmetric relaxation,
valence alternation (i.e., a threefold-coordinated Se



6310 DAVID VANDERBILT AND J. D. JOANNOPOULOS 27

site), and self-healing, all have higher energy and ap-
pear to relax directly to the symmetric structure
without passing over an energy barrier. These con-
clusions are tentative for the case of the self-healed
vacancy, for which a more extensive search of
structural configurations would be desirable.

Finally, the spin configuration of the lowest-
energy symmetric vacancy structure is analyzed us-
ing a simple Hubbard Hamiltonian. The ground
state is a spin singlet whose spatial wave function is
a linear combination of ionic and neutral configura-
rations. It is estimated that the ionic configurations
are only weakly suppressed, and that the spin polari-
zation energy is only a few hundredths of an eV, in-
dicating that the system is only weakly correlated.
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