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We introduce a new method for specifying the occupations of states in local-density
theory by allowing “off-diagonal occupation numbers” (i.e., a generalized density matrix).
We show that this technique has important applications to superlattice and slab
geometries, allowing bonding-type interactions between defects, molecules, or surfaces to
be effectively eliminated. Moreover, previously inaccessible charge states may now be
studied. The method is shown to have the full sanction of local-density theory.

I. INTRODUCTION

In the theoretical study of aperiodic systems
such as defects, molecules, and surfaces, the use of
superlattice or slab geometries is frequently a cru-
cial simplification. The philosophy is to model a
truly isolated defect (or molecule or surface) by
embedding it in a periodic matrix; one must then
ensure that interactions between defect states (or
molecular orbitals or surface states) are unimpor-
tant. It is the purpose of this paper to present a
novel method which eliminates the dominant
bonding-type interactions. In certain cases the
method reduces to the obvious prescription of
averaging over the Brillouin zone or over bonding
and antibonding combinations of states. In other
cases, however, it leads to a new and powerful
technique which may, for example, be crucial to
the theoretical study of charged defects in semicon-
ductors.

The plan of the paper is as follows. In Sec. II
we introduce the method with reference to a simple
two-state model system. In Sec. III we show how
the method can be applied in a realistic self-
consistent local-density calculation; a sample calcu-
lation of this type-is presented for illustrative pur-
poses. In Sec. IV we demonstrate the validity of
the method in the context of local-density theory.
Finally, Sec. V contains a brief summary. Certain
details of Sec. IV are deferred to the Appendix,
which also contains a derivation of the expression
for the Hellman-Feynman forces.
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II. THE DENSITY MATRIX METHOD

By way of illustration, consider the simple
model of Fig. 1. Here we have two defects, 4 and
B, which would have defect gap states ¢/, and ¥
with eigenvalues €4 and €p if they were truly iso-
lated. (We shall use the language of defects,
though the discussion applies equally to molecules
or surfaces.) Let us assume, moreover, that each
defect is neutral when the gap state is singly occu-
pied, as is typical for a dangling bond in a semi-
conductor. Now if the defects are not isolated, so
that V=1, | H | 5 )40, one obtains bonding

FIG. 1. Energy-level diagram for simple two-level
system. €, and €; are the energy eigenvalues for isolat-
ed defects A and B, respectively; these interact to give
the “bonding” and “antibonding” combinations €; and
€.
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and antibonding states
Y1 =1v,cos0+1psing ,
Y,=1,sin0—1Pzcosl ,

where 0 defines a mixing angle. Let the energy
zero be defined so that

(1)

6A=_A ’
(2)
€B=+A .

Then the solution of the Schrédinger equation
gives

tan20=—V /A, (3)
€1=—(A24+V?*)12= _Asec20 ,
6=+ (A2+ V)12 = 4+ Asec20 .

)

Note that we have implicitly assumed that ¢, and
¥p remain orthogonal in the interacting case; we
shall return to this point at the end of this section.

Now suppose one is modeling the system A°B°
containing two neutral defects. A naive calcula-
tion of the ground state would place two electrons
in the bonding orbital 1, (i.e., occupation numbers
ny=2, n,=0). However, this introduces two seri-
ous errors compared to the case of isolated defects:
(i) The system energy is lowered by

AE=2€1—€A —€p
=—2A2 V)2, (5)

and (ii) because 9, has more weight on 1, there is
a charge transfer from B to 4 of a fraction

2|4 | 1) |*—1=cos20 (6)

of an electron. Moreover, in the limit of weak in-
teraction ¥'—0, we obtain two electrons in 1, and
none in ¥, which rather models the case 4 "B +.

Luckily, for the case of neutral defects 4°B°,
there is a simple prescription which solves the
problem. We just specify that the two electrons be
shared between ¥; and v,:

n1=1, n2=1. (7)
Then the energy difference is
61+€2———€A —63=0 N (8)

and the charge transfer is

{a [ 90) P+ |{¥q | ) |*—1=0. 9)

Thus the effects of the interaction .V are effectively
eliminated. Moreover, one obtains the correct limit
as ¥—0. In a superlattice calculation with one de-

fect per supercell, one can similarly eliminate the
effects of interactions between all pairs of defect
states by integrating over all k vectors in the Bril-
louin zone; with two or more defects per supercell,
one must explicitly average over two or more
bands as well.

Consider now the charged configuration A "B ™.
Again, one would like to have a prescription for
populating ¢; and 9, in such a way that the total
energy and charge transfer are independent of the
interaction V. However, the sum of the occupation
numbers n; and n, is constrained, so that one has
only a single degree of freedom with which to fit
two criteria. Worse, even if one were to abandon
an attempt to satisfy the total energy constraint,
there is no choice of n, and n, which will transfer
all charge from 3 to 4.

In order to provide ourselves with sufficient de-
grees of freedom to satisfy both the energy and
charge constraints, we must generalize from the
specification of n, and n, to the specification of a
2X2 density matrix.! Herein lies the heart of our
method. The density matrix can be written

=R 1Y) Gj=12), (10)

where the superscript H denotes the fact that the
matrix is written in the Hamiltonian eigenstate rep-
resentation, in which the basis vectors are the
eigenstates of the interacting system. In this repre-
sentation, we can make the connection
—»nH
ny 11 » (11

H
ny—nj,

from the traditional occupation numbers. The
specification of n gives us the additional degree
of freedom we need.

To choose 7 we make use of the local representa-
tion of the density matrix, in which the basis vec-
tors are ¥4 and 15 themselves. We then simply
require that the density matrix in this representa-
tion,

nap={Va| 7 |¥p) (a@,B=4,B), (12)
be diagonal with the occupations of ¥, and ¢
along the diagonal, e.g.,

20
L_
"=loo

’ (13)

for the case 4 “B™*. Transforming to the eigen-
state representation, we find

14-cos260  sin26

U= Gn20  1—cos26 | (14)
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where use has been made of Eq. (1). The total en-
ergy is now

E=tr(ff)= 3 nl,e,=—2A. (15)

Of course, we could have obtained the same result
by evaluating the trace in the eigenvector represen-
tation instead, but the use of the local representa-
tion in Eq. (15) makes explicit the fact that the en-
ergy is now independent of the interaction V.
Similarly, the charge density

p(r= 3 nfyi(rg;(r)
ij

=3 nlgli(r)ypr) (16)
aBL
is most easily evaluated in the local representation,
giving

p(r=2|1,(r |2, (17

which is also manifestly independent of V. Note
that evaluating in the eigenstate representation
leads to

p(r)=nil | $(r) [ *+n35 | $(r) |2
+2Re[nByt(ry(n)] . (18)

It is the last term on the right side which allows us
to transfer additional charge from v to ¥,.

Thus, our density-matrix (DM) method says
simply to specify the occupations in the local rep-
resentation, then transform to the usual energy
eigenstate representation to obtain a density matrix
containing off-diagonal occupation numbers; the
energy and charge are then given by Egs. (15) and
(16). (For a superlattice calculation containing two
defects per cell, we must also average over all k
vectors, using the density matrix method to specify
the band occupation at each k point.) Note that in
the case of neutral defects 4°B°, one has

10
01

nL::n =

Thus the prescription given earlier in Eq. (7) is
seen to follow as a special case of the density-
matrix method.

Finally, let us return to the question of
nonorthogonality. If S= (v, | ¥5 )40, then the
eigenvalues €; and €, are renormalized by the fac-
tors (1+S sin20)'/2, respectively. Then the evalua-
tion of tr(AH) in the Hamiltonian eigenvector rep-
resentation leads to an error in the energy,

8E=—28V+0(S?), (19)

for the neutral and charged cases alike. This is
small compared to the error in Eq. (5) for which
the density matrix successfully corrects.

III. APPLICATION TO A REALISTIC
CALCULATION: DANGLING BONDS IN Se

In the previous section we saw how the DM
method can be used to effectively eliminate the in-
teraction between the gap states on neighboring de-
fects. In a realistic calculation, however, an added
complication arises: The local basis orbitals (the
¥4 and ¢p of the preceding section) are not known
a priori. As we shall see shortly, this problem is
easily overcome. It is then a simple matter to cal-
culate the p(r) via Eq. (16), and from p the usual
Hartree and exchange-correlation potentials with
which the next iteration is set up. When self-
consistency is achieved, p is also used to calculate
the total energy via the usual prescription of local-
density theory.?

Let us consider a concrete example. Suppose we
wish to investigate the different possible charge
states (D ~, D% D7) of the dangling bond in
selenium. A pair of dangling bonds can easily be
made by creating a vacancy in crystalline (trigonal)
Se; this vacancy structure can then be repeated in a
superlattice configuration. With the correct choice
of lattice vectors, it is easy to construct a supercell
with one vacancy for every eight atoms along each
chain, and with no two vacancies side-by-side on
neighboring chains. Because all the Coulomb ener-
gies diverge unless the supercell is net neutral, we
are restricted to the charge configurations D°D°
and DD,

Each of the two defects has a dangling-bond gap
state near midgap.> When we diagonalize the
Hamiltonian at a given k point, we obtain two
eigenvectors ¥, and ¢, corresponding to the weakly
bonding and antibonding combinations of these
states. If we were really interested in modeling the
vacancy in Se, we would doubly occupy the bond-
ing orbital to get the true ground state:

20
H__
n=1q ol - (20a)
If we want to model distant neutral defects
(D°D%), we use
" L 10
n=nt= 1y ||. (20b)

In both cases, the dangling bonds are each neutral.
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If we want to model distant charged defects
(D~DT), however, we need

20
00

L

nt= . (20c)

For the latter case, we need to know the 2 X2 uni-
tary transformation that connects the “local” basis
functions ¥, and ¥ to the eigenstates ¥, and ,.
That is, we need to “find” the ¥4 and ¥ corre-
sponding to the energy eigenstates of the isolated
systems 4 and B.

To do so, we write the local state as a linear
combination of the two eigenstates

Y=o+, (21)

and then require that ¥, be given by the ¥ which
maximizes

(WPl
Wy @2

where P is a difference of two projection operators

P= andf’ | EMF| — and? |EMF], (23)
with the volumes Q4 and Qp being, e.g., spheres of
radius 1—2 A centered about defects 4 and B,
respectively. Similarly, 5 is defined to be the ¢
which minimizes Eq. (22); in fact, the appropriate
a’s are given by the eigenvectors

EJP,](ZJ =}\,a,' (i,j =1,2) ) (24)

of the matrix
Pij=<¢i|ﬁl¢j>- (25)

Physically, ¢4 is that linear combination of ¢, and
¥, which has the most character on (1, and the
least on Qp, and vice versa for 5. As long as i,
and yp are weakly overlapping states, the exact de-
finition of ¥4 and ¥ in terms of v, and ¥, will
only be very weakly dependent upon the geometry
of Q, and Qp.

This scheme provides a natural way to find the
unitary transformation which connects the local
and eigenstate basis; this must be done for each k
point on each iteration. In a plane-wave calcula-
‘tion, the matrix elements P;; are given by

Pj=3 P(Gp;(—-G), (26a)
G
P(N)= [, dT'8(F—T")
A
— [o,dT8F—1", (26b)
p,-j(f')=¢?(?)1//j(f’) . (26¢)

The Fourier transform of (26b) can be done analyt-
ically, while that of (26¢) involves no more effort
than is usual in constructing the charge density.

The total energy is evaluated in practice by sum-
ming the band-structure energy in the usual way
except for the substitution of Eq. (11):

S ei—tr(iH)= 3 nile; . (27
i i

The correction due to overcounting of Hartree and
exchange-correlation terms is calculated from p in
the usual way [see, e.g., Eq. (31)].

We have carried out this approach for the seleni-
um defects D°D° and D~D+ using a self-consis-
tent pseudopotential approach. The nonlocal pseu-
dopotential of Hamann, Schluter, and Chiang4 and
the Wigner exchange correlation formula® were
employed. For illustrative purposes it is sufficient
to use one special k point® and cutoffs of 2.5 Ry
and 8.33 Ry for the Hamiltonian and Lowdin’
basis sets, respectively.

The resulting charge densities for the defect
states are plotted in Figs. 2(a) and 2(b), respective-
ly. In the neutral case, we see that the dangling-
bond p states of each defect are equally occupied.
For D~ D™, however, it is clear that we have suc-
ceeded in transferring an entire electron from one
defect state to the other. (Of course, much of this

(@

(b)

FIG. 2. Charge-density plots for the defect bands at
vacancy in Se. (a) D°D° (b) D~D*. The plane of the
plot.contains the two defect sites (left and right) marked
by solid circles, and vacancy site (bottom center) marked
by the + sign. The contour interval is arbitrarily
chosen.



charge is screened by other states in the system, so
the defects do not really have the full charge of
+e. This is to be expected considering the large
dielectric constant of these materials.) It is now
straightforward to obtain the Coulomb “correla-
tion” energy E(D ~D*+)—E(D°D"), for example,
which we find to be 0.44 eV for this geometry.
We should emphasize, however, that there are two
classes of interdefect “interactions” which are not
eliminated by using the DM method.

Firstly, there are the Coulomb interactions be-
tween charged defects. In the D™D ™ example
above, we must recognize that we are calculating
properties of the D~ or D+ in the electric field of
other nearby defects, and that E(D ~D ™) contains
the Coulomb energy of the lattice of charges. In
solids, these effects will be greatly reduced by
dielectric screening.

Secondly, there are the overlap interactions typi-
cal of closed-shell systems, which are usually
characterized as repulsion due to Pauli exclusion.
As a somewhat artificial example, suppose we
wished to model atomic bromine by applying the
DM approach to the diatomic molecule Br,. The
use of the DM approach will eliminate the strong
bonding interaction, in which two holes are shared
in a o}, orbital. As a result, the DM version of Br,
will behave like a pair of closed-shell, i.e., noble
gas, atoms. The calculation of the overlap interac-
tion has previously been extended to open-shell sys-
tems?; the interaction is found to be quite weak
down to distances comparable to the molecular
bond length. Note, however, that the fact that
only two states near €, are included in the DM
may give rise to a larger error in a few cases. For
example, if one wished to model atomic sodium by
applying the DM method to the diatomic molecule
Na,, s-p hybridization would still give rise to sub-
stantial bonding despite the “filled s shell” charac-
ter. For any realistic calculation, of course, it is
the theorist’s responsibilty to control for the above
effects, whether by trying larger and larger unit

cells, or by compensating for the interaction by ap-
I
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propriate modeling.

Finally, one might question whether the effects
of Coulomb and exchange-correlation interactions
within a given defect (i.e., the effects of self-
consistency) are properly accounted for in the con-
text of local-density theory. In the following sec-
tion, we dispel this concern by developing the
method in the local-density formalism.

IV. THE DENSITY MATRIX
IN LOCAL-DENSITY THEORY

We begin with a brief review of local-density
functional theory,? where one assumes the
exchange-correlation energy of an N-electron sys-
tem may be written as a local functional of the
charge density. Thus the total electronic energy is

Elp]=Tlpl+ [ dTp(F){ Veu(¥)+exlp(F)]

tedp(]}, (28)

where T is the kinetic energy, V, the external po-
tential (e.g., the ion pseudopotential), and €5 and
€,. are the Hartree and exchange-correlation energy
functionals. The ground-state problem reduces to
finding the p which minimizes E in Eq. (28); it is
given by a self-consistent solution of

H=T+ Vet +10(p) +1ix(p) (29a)

ﬁi/li =€; ¢i , (29b)
N

p(M)=3 (D)2, (29¢)

i
where the potentials uy and u, are related to €y
and €, via

O (30)

3p
and where the 1; are the N lowest eigenstates of

the mean-field Hamiltonian H. The total energy
can then be recast as

p=e+p

N
E=3 &+ [dTp(D) exlp()]—pnlp(®)+eclp(P)] —paclp()]} . (31)

If we express p in terms of the density matrix as
in Eq. (16), then the ground-state solution is given
by

N
=2 14)¥i] . (32)
1

In other words, # and H are simultaneously di-

I
agonalizable, with 7 being simply a projection
operator which projects onto the N-dimensional
subspace spanned by the ;.

Now in a traditional excited-state calculation,

p(D)= 3 n; | ()%, (33)
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ie.,

ﬁ=2ntl¢l)<¢t . (34)

Whereas one had n; =0(es —¢;) for the ground
state, n; can now be used to arbitrarily populate
the excited eigenstates. However, one can only
construct a tiny fraction of all excited-state config-
urations in this way, because one is still restricting
7 to be simultaneously diagonalized with H. The
configuration 4 "B of Sec. Il is a trivial example
of an excited state which can only be reached by
relaxing this restriction. The crux our DM argu-
ment is to posit an arbitrary density operator,
which can be diagonalized as

A= n8,)(d;] . (35)
j

It corresponds to occupying each state ¢; with n;
electrons; in general the ¢; need not be eigenstates
of H. Moreover, we have an unambiguous pre-
scription for calculating the total energy of such an
excited state, i.e., Egs. (35), (16), and (28).

In principle, this generalized DM approach al-
lows us to study an infinite number of previously
inaccessible excited-state configurations. In prac-
tice, however, the utility of this approach in the
study of excitations is limited for two reasons.

Firstly, one is usually physically interested in the
excited eigenstates of the true many-body system;
in general it can be argued that this corresponds to
occupying excited one-electron eigenstates in the
local-density picture. Thus the traditional ap-
proach is usually adequate. (There are occasional
exceptions; consider, for example, an electron excit-
ed into a localized state weakly coupled to the con-
tinuum. As long as the lifetime of such a reso-
nance is long, it is physically correct to do the
self-consistent solution with one electronic charge
in the localized state, despite the fact that the tra-
ditional approach would give zero charge there.)

Secondly, the Hohenberg-Kohn theorem® of
density-functional theory states that the density-
functional total energy is equal to the true many-
body total energy only for the ground state of the
system. Thus, the DM and the traditional ap-
proaches both lack the sanction of this theorem
when applied to excited systems. We do not know
how seriously to take this objection; it may turn
out to be unimportant, particularly for the lowest
excited state of a given symmetry.

Thus, the applicability of the generalized DM
method to the study of excited systems is still to be
explored. In this paper, our approach is different.

We restrict ourselves to the case of modeling
noninteracting subsystems (e.g., defects or mole-
cules) in terms of weakly interacting ones. The
discussion which follows, and that of Secs. II and
III, apply to this latter case.

Consider, then, two subsystems 4 and B with in-
teraction V. In the limit of infinite separation
(V—0), the application of the DM method on the
entire system is identical to separate ground-state
calculations on the isolated systems A and B. Thus
the total energy is guaranteed to reflect the true
many-body energy. Of course, this is true only in-
sofar as the local density functional is a good ap-
proximation to the true density functional. For ex-
ample, one might object that a straightforward cal-
culation of the ground state of the entire AB sys-
tem ought also to reflect the true many-body ener-
gy. For the special case of two identical defects
(with degenerate levels), the result is indeed identi-
cal to the DM result. (We still assume infinite
separation.) On the other hand, for two different
defects, self-consistency will generally give rise to a
charge transfer between 4 and B, which proceeds
until €, =€p. Thus, the result is manifestly dif-
ferent from that of the DM. The extent to which
the two approaches differ is one measure of the er-
ror introduced by the local-density approximation.
In any case, the DM result is equally as valid as
the “ground-state” result, and has the physical ap-
peal of requiring integral occupation numbers of 4
and B, and allowing various charge states to be
studied.

Suppose now that we introduce an interaction V'
between the states of the two defects in the DM
approach. We show in the Appendix that the
charge density p and the total energy E are in-
dependent of V, under a set of assumptions which
are equivalent to neglecting the Coulomb and over-
lap effects discussed at the end of Sec. III. Thus
for small but finite V, the DM approach gives us
the “best” way to model the true many-body
ground-state energy of the isolated subsystems A4
and B.

V. SUMMARY AND CONCLUSIONS

We have introduced a generalized method for
specifying the occupations of ‘the states in local-
density theory by allowing “off-diagonal occupa-
tion numbers” (i.e., a general density matrix). We
have shown that this technique has important ap-
plications for modeling noninteracting systems in
terms of weakly interacting ones, and have present-



ed a sample calculation on defects in Se for illus-
trative purposes. Finally, we have demonstrated
that the method has the same sanction as the usual
local-density theory.
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APPENDIX

We formulate a generalized version of the DM
method as follows. Consider an isolated subsystem
A in its ground state, with eigenstates ¢7, Hamil-
tonian H§, and a density matrix n§ which is diag-
onal in the ¢7 representation. Now we allow 4 to
interact with subsystem B (with eigenstates ¢f y
Hamiltonnian Hg, and density matrix n8) and take
the unperturbed {¢§' ue? } to be our “local” basis.
In this basis, we have

ngO

Ro=

in the DM method for the noninteracting case.
Now let A and B interact via

0 v

V=a vl o

) (A2)

where a is a small parameter describing the
strength of the interaction. In general, one would
have block-diagonal as well as block-off-diagonal
elements in Eq. (A2), and nonzero overlaps
(¢ |¢ ). As pointed out in Sec. III, however, the
DM method does not aspire to eliminate Coulomb
and closed-shell overlap interactions, and we will
therefore assume a “pure bonding” interaction as
in Eq. (A2).

In a traditional calculation of the ground state,
we would vary n away from (A1) until the total
energy

E=tr(nH) , (A3)
given from
H=T+V+egp)t+eclp)+V, (A4)

is minimized. Suppose this occurs at ny for a=0;
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then the driving force for an n£n; at @40 must
come from the possibility of the new term

tr(nV) (AS)

lowering the total energy.
In the generalized DM approach, however, we
require that n remain block diagonal

nt 0
n 0 nB N (A6)
with
tr(n4)=N4,
tr(n®)=N?, (A7)

fixed, while E is minimized. Thus, a variational
principle still obtains. Within these constraints, 7
itself minimizes E for a=0. Now, however,

tr(n¥)=0, (A8B)

because V is block-off-diagonal while » is block di-
agonal. Thus, within the new constraints (A6) and
(A7), ny remains the solution even at nonzero a,
and the total energy (and charge density) remain
independent of a.

Physically speaking, without the DM constraint,
eigenfunctions from subspace 4 pick up com-
ponents in B to order 8=0 (a), giving rise to
8E =0(a?) by the variational principle. The use
of the DM method forbids this, so that E is in-
dependent of a.

Of course, the method as presented in Sec. III
only includes two states (those in the vicinity of e"’
and eB ) in the DM. In this case, eigenstates from
below 64 in A develop components from above eB
in B, so that

SE=0(a’/E,) , (A9)

with E, being the smallest energy denominator,
i.e., the band gap. For most cases of interest, the
error is negligible.

We turn finally to a discussion of the Hellman-
Feynman forces. The momentum-space expression
for the forces has been worked out previously for
the usual ground-state case.!° The electronic con-
tribution to the ith component of the force on
atom p can be written

dE
Ff—_
! dR¥
-2 _Em A10)
3R} an oRF (

n const
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The first term represents the explicit dependence of respect to the allowed # in the DM method implies
E upon R}, while the second represents the impli- 0E /0n =0; i.e., the second term in Eq. (A10) van-
cit dependence via n (i.e., via the wave functions). ishes as usual. The explicit dependence then gives

The fact that E is a variational minimum with
|

Fr=—i0, 3 (G'—Gexpli(G'—G)RFnL, th(k+C)(K+G"U(K+G,K+G"), (AlD)
Kmm'G G’
where m and m’ are band indices and U, is an arbitrary (e.g., nonlocal) ion pseudopotential. Equation
(A11) reduces to the usual ground-state expression!® in the case where the density matrix is diagonal in the
basis of energy eigenstates v,,.
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